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Abstract

Suspension feeding bivalves are commonly associated with seagrass habitats in the Gulf of
Mexico and Caribbean Sea. Biodeposits of some suspension feeding bivalves have been shown to
be high in nitrogen and phosphorus. Consequently, filter feeding bivalves may act as a bentho-
pelagic couple bringing planktonic production to the benthos, thereby elevating submerged aquatic
vegetation growth by increasing the nutrients available to the rhizosphere. Laboratory feeding
experiments were used to calculate the filtration rate of a typical suspension feeding bivalve
Modiolus americanus. Filtration rates were estimated to be 2.87+0.82 1h ™' g tissue dry weight .
Consumption rates were estimated to be 9.41+2.62 pg Chl a h™' g tissue dry weight™'. In
addition, field experiments were used to calculate mean biodeposition rates. Biodeposition rates
were estimated to be 2.25+0.36 g dry wt material g tissue dry weight day ~'. Therefore, at mean
field densities M. americanus are capable of depositing 218 kg dry weight material m~ annually.
These deposits will contain 215 g N and 7.1 g P. A flower pot experiment demonstrated that the
biodeposits of M. americanus were capable of increasing the pore water nutrient content and a
mussel density manipulation in the field revealed that the presence of mussels significantly
reduced leaf tissue C:N and C:P ratios. Pore water ammonium and phosphate concentrations were
four times greater in the highest mussel density than in the control treatments and the lower leaf
tissue C:N and C:P ratios in the presence of mussels established that this increased pore water
nutrient was available to the seagrass, Thalassia testudinum. Collectively, these experiments
suggest that suspension feeding bivalves may be important resource conduits converting
inaccessible PON and POP in the water column to elevated sediment nutrient levels within the
rhizosphere available for absorption by submerged aquatic vegetation. © 1999 Elsevier Science
BYV. All rights reserved.
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1. Introduction

Dense assemblages of filter feeding bivalves (e.g. mussels) remove suspended matter
from the water column and deposit it as feces or pseudofeces on the bottom. Biodeposits
from filter feeding bivalves may significantly contribute to the total suspended load in
shallow coastal environments (Haven and Morales-Almo, 1966; Tenore and Dunstan,
1973: Kraeuter, 1976; Tsuchiya, 1980). Such biologically mediated sedimentation has
the capacity to greatly exceed passive physical processes in the deposition of fine
sediments in estuaries and coastal environments (Biggs and Howell, 1984). These
biodeposits represent a potentially significant energy source to consumers (Vahl, 1980;
Kautsky, 1981; Newell et al., 1982; Stewart, 1987). For example, Newell et al. (1982)
calculated that one third of the annual production of particulate matter in a kelp bed area
was from fecal matter originating from suspension feeding benthic animals. After
bacterial enrichment, a significant proportion was reingested, leading these authors to
conclude that a mussel ‘fecal loop’ plays a significant role in the circulation of nutrients
and organic matter in a kelp community.

Additionally, filter feeders transform suspended material by changing particle size
distributions in the water column and by converting particulate material into dissolved
constituents or biomass via metabolism (Dame et al.,, 1980). Dame et al. (1985)
suggested that feeding by bivalve aggregates may act as a positive feedback loop in
which particulate nitrogen (phytoplankton) consumed by the filter feeding bivalves is
rapidly remineralized to ammonium (NH,). This ammonium is then available for plant
growth. This model has been envisioned as a nitrogen retention mechanism as well as a
process which accelerates the nitrogen cycle (Dame et al., 1989).

Previous studies have illustrated that filter feeding bivalves may control phytoplankton
abundance through feeding and nutrient excretion activities (Dame et al., 1980, 1985,
1989, 1991; Cloern, 1982; Officer et al., 1982; Carlson et al., 1984; Prosch and
McLachlan, 1984; Nichols, 1985; Doering and Oviatt, 1986; Boucher and Boucher-
Rodoni, 1988; Dame and Dankers, 1988; Yamamuro and Koike, 1993). These studies
generated great interest in the role that filter feeding bivalves have on phytoplankton
growth dynamics and biomass. However, the influence that suspension feeding bivalves
have on submerged aquatic vegetation has been largely ignored.

The potential for suspension feeding bivalves to affect the growth dynamics of marine
angiosperms may be great. Seagrass productivity is limited primarily by nutrient and
light availability. If both are equally important, this creates an apparent environmental
incongruity for seagrasses. Increasing water column nutrient levels results in elevated
plankton and epiphytic growth which may decrease light availability for seagrasses.
Therefore, seagrasses are usually limited to areas with relatively low water column
nutrient concentrations. But, unlike phytoplankton, which rely exclusively on water
column nutrient sources, seagrasses primarily takes up nutrients from the sediments by
using roots (Agami and Waisel, 1986). Previous studies have demonstrated that sediment
pore water is the primary source of nutrients for seagrass growth (Stewart, 1987).
Because biodeposits of some suspension feeding bivalves are high in nitrogen and
phosphorus (Kautsky and Evans, 1987, Jaramillo et al., 1992), filter feeding bivalves can
potentially transfer planktonic production from the water column to the benthos via feces
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and pseudofeces, and thereby enhance submerged aquatic vegetation growth by
increasing the nutrients available in the rhizosphere.

Bertness (1984) investigated the interaction of cordgrass, Spartina alterniflora, and
the semi-infaunal mussel, Geukensia demissa, demonstrating that the presence of this
mussel at densities as high as 900 individuals m~’ increased net production and the
above ground-below ground biomass ratio of S. alterniflora. Recently, Reusch et al.
(1994) suggested that the blue mussel, Myrilus edulis, fertilizes eelgrass, Zostera marina,
growth by the deposition of feces and pseudofeces. However, the effect that biodeposits
of filter feeding bivalves have on seagrass productivity remains uncertain.

One conspicuous plant-animal association within seagrass habitats of the Gulf of
Mexico and Caribbean Sea involves turtle grass, Thalassia testudinum, and the semi-
infaunal suspension feeding tulip mussel, Modiolus americanus (Leach) (Rodriguez,
1959; Jackson, 1973; Young and Young, 1982; Lyons, 1989; Valentine and Heck, 1993).
In St. Joseph Bay, Florida, extensive monotypic stands of T. testudinum contain patchily
distributed clusters of M. americanus, making this location ideal for experimental
manipulation and thus for determination of the significance of a seagrass—bivalve
interaction. Using both laboratory and field experiments, the following questions were
addressed: (1) what are the particle consumption, filtration and biodeposition rates of
Modiolus americanus? (2) how does the nutrient content of biodeposits compare to that
of naturally sedimenting material? (3) can the addition of biodeposits increase the
nutrient content of sediment pore water? and (4) are these nutrients available to
Thalassia testudium?

2. Study site

The potential effects of mussels on secagrass assemblages were observed in St. Joseph
Bay, Florida, in the northeastern Gulf of Mexico (30°00' N, 85°30" W) during the
summer (May—August) of 1996. St. Joseph Bay is a protected shallow coastal
embayment where salinities usually range from 30 to 36%ec (Stewart and Gorsline, 1962;
Folger, 1972; this study). Temperatures vary seasonally from approximately 8 to 30°C
(this study), and the mean tidal range is 0.5 m (Rudloe, 1985). The bay is oligotrophic
with water column nitrogen and phosphorus values seldom exceeding 3 and 0.2 pM,
respectively (J. Pennock, unpublished data). Phytoplankton abundance is also low,
usually below 5pg/1. Therefore, photosynthetically active radiation (PAR) is high, with
approximately 40% of measured light at the water surface reaching the seagrass canopy
(Heck and Valentine, in press).

St. Joseph Bay supports an extensive seagrass habitat occupying = 26 km” of shallow
bay bottom (McNulty et al., 1972). This seagrass habitat is dominated by large
monospecific stands of Thalassia testudinum interspersed with smaller patches of
Halodule wrightii, unvegetated sand flats, and small patches of Syringodium filiforme
(Iverson and Bittaker, 1986). Seagrass production is highly seasonal with blade biomass
and density peaking near 150 g AFDW m~ 2 and 3000 blades m~°, respectively, during
summer months (Iverson and Bittaker, 1986). Only the shallowest portions of the
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seagrass habitat are exposed during low tides, and wave energy is minimal. Associated
with these T. testudinum beds is the semi-infaunal tulip mussel, Modiolus americanus,
which is found in densities as high as 2000 individuals m > (Valentine and Heck, 1993).
Mean densities of M. americanus at the study site were 625 individuals m °. Due to the
great variability in mussel size between individuals, a linear regression of shell length to
g tissue dry weight was constructed for M. americanus:

tissue dry wt. weight = — 0.474 + 0.018%*shell length (1)

(r*=0.92; n=328). This allowed a more precise comparison to be made on g dry wt
tissue m > rather than on individuals m °. Based on this regression at mean field
densities, there was 426 g tissue dry wt in each m’ of sediment surface.

3. Materials and methods

3.1. Flow-through laboratory experiment

Consumption rate (matter ingested per unit time per unit mussel weight) (Hildreth and
Crisp, 1976) was estimated using flow-through techniques. Using a modified equation of
Northby (1976) consumption at time ¢ (C,) can be estimated by the equation:

C,=f(Qb,— Om,) (2)

where f is the flow rate, Qb, is the concentration of the rate-indicator substance at the
outflow of the control tank and Qm, is the concentration of the rate-indicator substance
at the outflow of the experimental tank (Frechette and Bourget, 1985). The use of this
equation requires the following assumptions: (1) that the control tanks are mounted in
parallel with the experimental tanks, (2) there is zero consumption in the control tank,
(3) that the flows between the experimental and control tanks are equal, and (4) that the
experimental organisms occupy a negligible proportion of total tank volume.

The rate-indicator substance for this flow-through experiment was an algal mono-
culture of the genus Thalassiosira. A randomized block design was used in this
experiment. Six replicate flow-through chambers were mounted in paraliel and randomly
assigned to either treatment (three control; three mussels present). The bottom of each
chamber was covered by approximately 3 cm of agar. Six mussels (approximate length
45 mm; constituting approximately 2% of the tank volume) were placed vertically into
the agar of the experimental chambers and allowed to acclimate for 30 min. The flow
rates in all six chambers were synchronized prior to each of the consumption rate
estimations. The experiment was repeated four times with mussels that had not been
used in previous trials (n = 12 for each treatment). After the initiation of the experiment,
a known volume of water (250 ml) was collected from the outflow of each chamber
every 5 min for 30 min. Output concentrations from control and experimental filtration
chambers were measured by nephelometry, using a Turner Associates Model 111
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fluorometer. In addition, acetone extracted chlorophyll a was collected on Whatman
GF/C glass fiber filters used as an index of phytoplankton biomass was determined by
fluorometry (Strickland and Parsons, 1972).

3.2. Biodeposition tubes field experiment

In the field, a randomized block design was used to estimate biodeposition rate and
test for differences in nutrient content of sedimenting material. Four replicate pairs of
PVC cylinders (50 cm in length, 19 cm ID) were tied to racks and attached to the
sediment surface perpendicular to the dominant tidal flow. The design of the biodeposi-
tion tube followed that of Kautsky and Evans (1987) and Jaramillo et al. (1992). One
cylinder of each replicate pair was randomly assigned to the experimental treatment
(n=4 for each treatment). The tops of the cylinders were covered by Vexar™ mesh (20
mm ID), and a vexar mesh shelf was placed 50 mm below the cylinder lids.

Mussels were collected 24 h prior to the initiation of the experiment and held in
aquaria allowing them to void their digestive tracts. Shell morphometrics were recorded
and each individual was marked with numbered electrician wire tape. At the initiation of
the experiment, mussels were randomly selected and placed between the mesh in the
experimental cylinder of each pair. To avoid size specific biodeposition rates, mussels of
all size ranges were randomly selected. Mussel biomasses within the cylinders ranged
between 236 and 680 g tissue dry weight m °, which corresponded with the average
field mussel biomass occurring in St. Joseph Bay (426 g tissue dry weight m~~). Natural
sedimenting material was collected in all the cylinders, while biodeposits were collected
only in those containing mussels. Biodeposition was calculated as the amount of material
collected in each mussel cylinder minus the average sedimentation obtained in the
control cylinders. After 27 days the cylinders were retrieved from the field. The
collected material within the cylinders were transferred to buckets and suspended while
ten 40-ml aliquots were removed from each cylinder’s sediment sample. Each aliquot
was drawn through a glass fiber filter (2.4 cm Whatman GF/C glass fiber filters) and
dried at 60°C to a constant mass. All ten filters were averaged together to estimate the
total suspended load for each cylinder. Five filters were then randomly assigned for
nutrient analysis or for ashing at 500°C for 5 h. Total carbon and nitrogen of the
sedimented material was determined by combustion with the Carlo-Erba NA1500
(Sharp, 1974). Particulate organic phosphorus (POP) was converted to inorganic
phosphorus by high temperature combustion. Residue polyphosphates were hydrolyzed
with addition of hydrochloric acid. Total phosphorus was measured by the reactive
phosphorus method. Extinction rates were read by spectrophotometric analysis at 885
nm (Fourqurean et al., 1992a). Differences between control and experimental cylinders
in C:N and C:P ratios of the sedimented material were tested with one-way analysis of
Variance (ANOVA).

3.3. Flower pot field experiment

A completely randomized design was used to conduct a 65-day in situ manipulation
experiment within a monospecific grassbed of Thalassia testudinum in St. Joseph Bay,
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Florida. Twelve plastic containers (15.24 cm in diameter; 0.75 1 volume) were filled with
sediment from which the organic material had been digested with 10% H,0,. The
containers were randomly assigned to one of three mussel density treatments (0
individuals mfz, 500 individuals mgz, and 1000 individuals mfz) and placed flush with
the sediment surface of the grassbed. A single sediment plug (10 cc) was extracted from
each container at the initiation of the experiment to establish initial nutrient con-
centrations and at the conclusion of the experiment to test for an increase in porewater
nutrient levels. Pore water was collected by centrifugation and analyzed on an Alpkem
Rapid Flow Analyzer 2 (RFA/2). Differences between the three treatments in sediment
porewater ammonium and phosphate were tested with a one-way ANOVA.

3.4. Leaf tissue nutrient content experiment

A completely randomized design was used to perform density manipulations of live
mussels in nine randomly assigned 0.25 m” plots within a heavily vegetated portion of a
turtle grass meadow. Plot margins were marked by anchoring PVC frames to the
sediment. Possible translocation of stored nutrients through the seagrass rhizomes out
of/or into the plots was prevented by severing the rhizomes around the perimeter of
each plot. This experiment was conducted for three months (March 1996-May 1996).

Mussels were added randomly to plots at treatment densities of 0, 500, and 1500
individuals m > (n=3 for each density). Within 7 days of planting, the mussels had
reattached themselves into natural positions. These densities approximate the range of
abundances most often observed in the bay (Valentine and Heck, 1993).

To document any potential changes in nitrogen and phosphorus concentrations in
blades due to treatment effects, five shoots were randomly collected from each plot after
3 months and biomass specific changes in the concentrations of carbon, nitrogen and
phosphorus in the dried blades were measured following Fourqurean et al. (1992a).
Leaves were gently scraped and washed in flowing tap water to remove epibionts and
sediments that had adhered to the leaves. These washed samples were dried to a constant
mass and homogenized by milling to a fine powder. The elemental contents of C, N and
P of these seagrass leaves were then ascertained for each treatment. Leaf tissue C and N
were determined by oxidation in a Carlo Erba Model 1500 CNS analyzer. Phosphorus
content was measured using a modification of the method presented in Solorzano and
Sharp (1980) by Fourqurean et al. (1992b) for total particulate phosphorus determi-
nation.

4. Results

4.1. Flow-through laboratory experiment

Outflow concentrations from the control chambers were 4.280.61 pg Chl a (n=12)
while those of the experimental chambers were 3.48+0.61pug Chl a (n=12). Using the
modified equation of Northby (1976), the consumption rate of Modiolus americanus was
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calculated to be 9.41+2.62 pg Chla h ™' g*] tissue dry wt., while the filtration rate was
calculated to be 2.87+0.82 1 h™' g~' tissue dry wt.

4.2. Biodeposition tubes field experiment

Natural sedimentation within the biodeposition tubes ranged from 33 to 173 g dry wt
day ', while biodeposition varied from 431 to 1171 g dry wt. m - day ™

(equlvalent to 1.013-2.75 g dry wt. g tissue dry wt.”' day ). The corresponding values
for ashfree dry wt. were 26-112 g m > day ' and 234-677 g dry wt. m ~ day ™'
(0.55-1.59 g dry wt. g tissue dry wt. ' day ') for sedimentation and biodeposition,
respectively. Combining all replicates, the average natural sedimentation rate was 120 g
dry wt m * day ' and the average biodeposition rates was 959 g dry wt m ° day '
(225 g dry wt. g tissue dry wt ' day'). C:N ratios were significantly lower for
biodeposits than for naturally sedimented material (p<<0.001, F=22.29, df=7) (Fig. 1).
Correspondingly, C:P ratios were significantly lower for biodeposits (p =0.03, F'=5.77,
df=7). However, N:P ratios were not significantly different between the two treatments
(p=0277, F=1.32, df=7).

4.3. Flower pot field experiment

Pore water nutrient concentrations increased dramatically from the initiation to the
conclusion of the experiment. The mean values for ammonium (NH, ) in the control, 500
mussel m~” and 1000 mussel m > treatments at the initiation of the experiment were
151, 608 and 227 uM NH,. After 65 days in the field, the pore water concentration of
NH, in the treatments were 1391, 5224 and 8803 wM NH, (Fig. 2a). At the highest
mussel density treatment, pore water ammonium levels increased by a factor of 38.
Similarly, the mean values for phosphate (PO,) in the control, 500 mussel m * and
1000 mussel m * treatments at the initiation of the experiment were and 101, 56 and 63
pM PO, and at the conclusion of the experiment the pore water concentrations of PO,
were 65, 185 and 461 puM (Fig. 2b). Over the course of the experiment, pore water PO,
levels decreased in the control treatments and increased in the highest mussel treatments
by a factor of 7. The pore water nutrient concentrations of both NH, and PO,
demonstrated a significant positive response to the presence of filter feeding bivalves
(p=0.001, F=19.73, df=11 and p<0.001, F=23.19, df=11, respectively).

4.4. Leaf tissue nutrient content experiment

Thalassia testudinum leaf tissue C:N exhibited a significant decline from 16.31+0.38
in the 0 mussel treatment, to 14.85+0.67 in the 500 mussel treatments, to 13.37+0.38 in
the 1500 mussel treatments (p=0.001, F=26.306, df=2) (Fig. 3). Differences were
significant for all treatment combinations (Student—Newman—Keuls method). A similar
pattern was observed for treatment effects on leaf tissue C:P which declined from
774.62%225.84 to 702.52%39.80 to 658.74+28.21 with increasing mussel densities
(p=0.012, F=10.113, df=2). However, leaf tissue N:P demonstrated no significant
change with increasing mussel densities (p=0.62, F=0.51, df=2).
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Fig. 1. (2) C:N, (b) N:P and (c) C:P ratios of Modiolus americanus biodeposits and naturally sedimenting
material from the biodeposition tube experiment (Bars=mean=1 S.D.).
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Fig. 2. (a) Pore water ammonium concentration comparison between control, 500 mussels m~ and 1000
mussels m ™ at day 0 and day 65, respectively. (h) Pore water phosphate concentration comparison between
control, 500 mussels m ° and 1000 mussels m™" at day 0 and day 63, respectively (Bars=mean*1 S.D.:
differing letters indicate significant differences between treatments using Student-Newman—Keuls multiple
comparison method).
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Fig. 3. (a) Leaf tissue C:N ratio comparison between between control, 500 mussels m * and 1500 mussels
m~>. (b) Leaf tissue C:P ratio comparison between control, 500 mussels m > and 1500 mussels m
(Bars=mean*1 S.D.; differing letters indicate significant differences between treatments using Student—
Newman-Keuls muitiple comparison method).
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5. Discussion

The experimental consumption rates of Modiolus americanus for this study were
compared to five models used in the literature to estimate consumption of suspended
particles by filter feeding bivalves (Table 1). Models from the literature are all functions
of size, temperature, or both. Four of the models predicted filtration rates within a close
margin of the actual measured filtration rates for M. americanus. However, the model of
Cloern (1982) significantly overestimated the actual filtration rate (Table 1). In these
laboratory experiments, M. americanus was demonstrated to be capable of consuming
twice the amount of Chl @ present in the water column in St. Joseph Bay. It is possible,
however, that the low Chl a content of the water column in St. Joseph Bay may be the
direct consequence of the high consumption rates of M. americanus and other
suspension feeding bivalves.

Organic matter deposited as feces may represent a significant proportion of nutrient
potentially available to submerged aquatic vegetation. C:N and C:P ratios have been
employed to assess the nutritional values of food, bacteria and detritus (Russell-Hunter,
1970; Kautsky and Evans, 1987; Parson et al., 1977). Lower C:N and C:P ratios indicate
higher concentrations of nitrogen or phosphorus. Accordingly, comparisons of C:N
ratios between naturally sedimenting particles and mussel biodeposits yield insights into
the characteristics of both materials. Biodeposits of M. americanus were greatly enriched
in both nitrogen and phosphorus, but C:N ratios for biodeposits analyzed in this study
were higher than that of previously published studies (Jordan and Valiela, 1982; Kautsky
and Evans, 1987; Jaramillo et al., 1992). C:N and C:P ratios were still significantly
lower for biodeposits than that of naturally sedimenting material. Approximately half of
the particulate nitrogen and carbon consumed by mussels is expelled as feces (Jordon
and Valiela, 1982; Hawkins and Bayne, 1985), while the corresponding amount for
phosphorus may be as high as 94% (Kuenzler, 1961). Bivalve molluscs can eliminate
between 5 and 50% of total nitrogen excretion in the form of amino acids, but this
phenomenon is highly seasonal and is usually associated with periods of starvation
and/or gametogenesis when catabolism of protein provides a reserved energy supply
(Bayne and Scullard, 1977). Previous studies have shown that ammonia excretion rates
for bivalve molluscs increase with temperature and show a positive logarithmic
relationship to body weight (Duerr, 1968; Bayne and Scullard, 1977).

Table 1
Comparison of filtration models from the literature with the estimates from the flow-through experiments for
Modiolus americanus (L=shell length, T=temperature, W= weight)

Filtration model Filtration estimate Reference
(m! ind”" min~")

[(L°%)(T %)) /2.95 2473 Doering and Oviatt (1986)
5.12L°% 21.92 Doering and Oviatt (1986)
2.59w°7 23.15 Coughlan and Ansell (1964)
0.76W 17.82 Officer et al. (1982)
168W°°7 65.86 Cloern (1982)

Actual 20.38 This study
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Table 2
Comparison of biodeposition rates from the literature with the estimates from the biodeposition tubes for

Modiolus americanus

Species Biodeposition rate Reference

(g N day ™' g tissue dry wt™")
Mytilus edulis 5.055%x107* Kautsky and Evans (1987)
Choromytilus chorus 2.066X107° Jaramillo et al. (1992)
Mpytilus chilensis 2.378%x 1077 Jaramillo et al. (1992)
Modiolus demissus 1.200x107° Jordan and Valiela (1982)
Modiolus americanus 247x107° This study

6.92x107° This study

Biodeposition rates of nitrogen for Modiolus americanus are consistent with those
previously reported for most other suspension feeding bivalves (Table 2). The estimates
of this field experiment reveal that if all of the nutrient within the biodeposits of M.
americanus were available to Thalassia testudinum, then on an annual basis biodeposits
would provide eight times greater nitrogen and seven times greater phosphorus than
required for maximal leaf growth in T. restudinum (Patriquin, 1972). If all of this
nutrient were directly available to the plant, then the requirements for maximal leaf
growth in Thalassia would be achieved through the biodeposits of 1/6th of the biomass
of M. americanus present in the average m” of sediment surface in St. Joseph Bay.

The C:N:P ratios of plants have been used to assess the nutrient status of
phytoplankton (Redfield, 1958) and macrophytes (Gerloff and Krombholtz, 1966). The
amount of nitrogen or phosphorus, relative to carbon, in plant tissues is a function of the
availability of N or P in the environment. Forqurean et al. {1992b) found that leaf tissue
C:N and C:P of T. testudinum decreased with increasing pore water soluble reactive
phosphorus and ammonium. Furthermore, the N:P ratio of seagrass leaf tissue reflected
the relative availability of N and P in the environment. In this study, pore water nutrients
increased dramatically in the presence of M. americanus and a subsequent decline in leaf
tissue C:N and C:P was observed with increasing mussel densities. This indicates that
the increased nutrient concentration of the sediments is biologically available to the plant
and that plants in association with suspension feeding bivalves have an increased
nutrient content within their leaf tissue. Thus, T. testudinum has more resources
available for growth when associated with M. americanus.

Numerous organisms have been shown to have a profound influence on the
communities they live in through habitat or resource modification (Jones et al., 1994).
Previous investigators have demonstrated a positive effect of suspension feeding
bivalves on plant production. Bertness (1984) found that the fecal material from
Geukenia demissa stimulated growth of Spartina alterniflora on which the mussels were
attached. Similarly, Reusch et al. (1994) documented enhanced growth of Zostera
marina in the presence of the suspension feeding blue mussel, Mytilus edulis. These
studies emphasize the stimulating effect of biodeposition on benthic plant production. In
the grass system of St. Joeseph Bay, the mussels can be envisioned as transforming the
unavailable particulate organic nitrogen and phosphorus in the water column into
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Fig. 4. Conceptual model of the role of Modiolus americanus in seagrass assemblages of Thalassia
testudinum. The annual estimates of filtration and biodeposition are listed.

accessible nitrogen and phosphorus in the sediments (Fig. 4). The estimates of M.
americanus biodeposition rates suggest that these organisms are capable of transferring a
significant amount of nitrogen and phosphorus from the water column to the benthos.
Consequently, their ecological impact may be great. It is conceivable that M. ameri-
canus, by increasing the sediment nutrient level, may create new habitable areas for
colonization by T. testudinwm or maintain sufficient nutrient levels for the continued
existence of T. testudinum in stressful environments.
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