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State University of New York at Stony Brook
Stony Brook, N.Y. 11794-2350

Abstract - Unlike connectedness in ordinary graphs, transfinite connectedness need not

be transitive. As a result, sections of a transfinite graph that are maximal with respect to

transfinite connectedness may overlap while being different, as is shown by an example.

A sufficient condition is established under which transitivity holds, in which case the said

sections partition the transfinite graph. A'related phenomenon is that it may not be possible

to assign a unique voltage to a node of a transfinite electrical network because the sum of the

branch voltages along a path between that node and a chosen ground node may depend upon

the choice of the path. This too is shown by example. Sufficient conditions are established

that insure that all nodes have unique node voltages, being independent of the choices of

the paths to ground. The proofs are based on a characterization of the totally ordered set of

nodes along any transfinite path, the characterization being a certain hierarchical structure

of nested sequences.

1 Introduction

The idea of a transfinite graph arises quite naturally from reflections about infinite electrical

networks [2, Section 8], [3, Examples 1.6-4 and 1.6-5]. The key difference between transfinite

graphs and the usual infinite graphs discussed heretofore is that, in the latter, two nodes

are either connected through a finite path or not connected at all whereas in the former

two nodes may also be connected through a transfinite path, that is, through a sequential

connection of many - possibly infinitely many - infinite paths. In fact, for transfinite

graphs there is a hierarchy of connectedness concepts, that hierarchy being indexed by the
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countable ordinals. Thus, we may speak of two nodes being k-connected but not i-connected,

where k and 1are countable ordinals with 1< k. (This idea of "k-connectedness" is different

from the usual concept, in which k is a cardinal number [1, Section 3].) O-connectedness

is the same as ordinary connectedness for graphs, but k-connectedness, where k ;:::1, is a

weaker and more general concept.

Moreover, k-connectedness (k ;:::1) is peculiar in that it may not be transitive as a

binary relation between branches. We show this by example. A consequence of this possible

nontransitivity relates to the k-sections (k ;:::1) of a transfinite graph; these are the reduced

graphs induced by maximal sets of k-connected branches. Different k-sections may overlap.

We establish a sufficient condition for the transitivity of k-connectedness between branches,

in which case the k-sections comprise a partition of the transfinite graph. The sufficient

condition is that, if two perceptible infinite or transfinite paths meet infinitely often in a

certain way, then their infinite extremities are either required to be shorted together or at

least one of them is open (Le., not shorted to any other node or infinite extremity).

Another related pathology that can arise concerns transfinite electrical networks, that

IS, electrical networks whose graphs are transfinite and whose branches contain resistors

and voltage sources. A node no may be assigned a node voltage with respect to a chosen

ground node ng if all the branch voltages along some (possibly transfinite) path between

no and ng sum to a finite amount. It can happen that the node voltage may depend upon

the choice of the path, in contrast to the situation for ordinary (i.e., O-connected), finite

or infinite, electrical networks. This too we show by example. We then establish sufficient

conditions that insure that all node voltages are unique, whatever be the choices of the

paths connecting nodes to ng. One condition is that node voltages be assigned only along

paths that are perceptible (Le., their resistances sum to a finite amount). Another condition

is similar to - but not exactly the same as - the prior condition requiring the shorting

together of infinite extremities of paths that meet infinitely often.

A substantial part of this paper is devoted to a characterization of the totally ordered

set of all the embraced nodes along a transfinite path, that characterization being a certain

hierarchical structure of nested sequences, called "k-sequences." k-sequences generalize
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ordinary sequences in much the same way as transfinite paths generalize ordinary paths.

2 Some Definitions

Transfinite graphs gk were introduced in [2]. To define them once again would be repetitious.

Please refer to [2] for any definitions not specified below. (Another exposition is given in

[3].) For the sake of definiteness, we shall establish our results for the case where either the

rank k is a natural number p or k is the first transfinite ordinal w. The former case extends

directly to higher ranks that are successor ordinals and the latter to higher ranks that are

limit ordinals. Also, for the latter case we have to consider the w-graphs gw of rank w used

in constructing the w-graphs gw. By definition gk contains no more than countably many

branches. We allow gk to have infinite O-nodes, self-loops, parallel branches, and nodes that

embrace nodes of lower ranks.

Henceforth, p and q will always denote natural numbers. Recall that a node n of rank

p (or of rank w) is defined [2, Sections 4 and 5] as a set whose elements are (p - I)-tips

(respectively, w-tips) except possibly for one element; that exceptional element, if it exists,

is a node no of rank q, where q :Sp-1 (respectively, where q is some natural number). Also,

every node n is required to have at least one such tip. The node n is called a nonsingleton if

it contains at least two elements. Furthermore, n is said to embrace itself, all its elements,

all elements of its embraced node no if no exists, all elements of the node that no embraces

if that too exists, and so forth through a finite sequence of embraced nodes of decreasing

ranks. As an immediate consequence of these definitions, we have

Lemma 2.1. If a node m is a nonsingleton, then any node n that embraces m is also

a nonsingleton.

It is a fact, that if two nodes a and c embrace a third node x, then either a embraces

c or c embraces a [2, Proposition 4.1]. It follows that all the nodes of a k-graph can be

partitioned into subsets, with two nodes being in the same subset if one node embraces the

other. Moreover, each such subset can be identified by anyone of its nodes. Its node of

maximal rank will be called a maximal node. All the nodes in any such subset are said to

be shorted together.
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We shall say that a p-tip tP and a node n are shorted together if the (p + I)-node that

contains tP either embraces n or is embraced by n. Similarly, we say that an w-tip tW and a

node n are shorted together if the w-node that contains tW embraces n (or is embraced by n

- a case that will not arise in this work because we are restricting ourselves to graphs with

ranks no larger than w). Also, two tips of possibly differing ranks are said to be shorted

together if the node that contains one of those tips embraces or is embraced by the node

that contains the other tip.

A p-path pP is said to meet a node n, whose rank need not be p, if pP embraces n or

embraces a node that is shorted to n or if pP has a p-tip that is shorted to n. In the former

case, we say that pP meets n with a node or nodally meets n; in the latter case, we say

that pP meets n with a p-tip. The nodes m and n, again of possibly differing ranks, are

said to be p-connected if there exists a finite q-path pq (i.e., pq contains only finitely many

q-nodes) such that q ::;p and pq nodally meets m and n. It follows from the last definition

that, if m and n are p-connected, then they are r-connected for all r 2': p. Two branches

are called p-connected if their incident O-nodes are p-connected.

The corresponding definitions for w-paths and w-paths are not much different. An w-

path pw (or an w-path PW) is said to meet a node n if pw (or, respectively, PW) embraces

n or embraces a node that is shorted to n or if pw (or PW) has an w-tip (or w-tip) that is

shorted to n. Again we say that the path meets n with a node or correspondingly with an

w-tip (or w-tip). The nodes m and n are said to be w-connected (or w-connected) if there is

a p-path (respectively, a p-path or an w-path or a finite w-path) that meets m and n. Two

branches are w-connected (or w-connected) if their O-nodes are.

A p-section of gk, where p ::; k, is a reduction [2, Sections 3 and 4] of gk induced by a

maximal set of branches that are pairwise p-connected, and similarly for an w-section and

an w-section. A node of any rank is said to be incident to a p-section SP if it is shorted ,to

a node of SP or to a p-tip of SP; by replacing p by w or w we get analogous definitions.

A partition of gk is a collection of reduced graphs [2, Sections 3 to 5] whose branch sets

comprise a partition of the branch set of gk. On the other hand, two reduced graphs of gk

are said to overlap if they share branches.
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We now wish to extend the definition of nondisconnectable O-tips [2, Section 14] to tips

of higher ranks. First some preparatory ideas: Recall that a representative of a p-tip is a

one-ended p-path which in turn is a one-way infinite alternating sequence of p-nodes nf and

(p - 1)-paths p[-l of the form:

Pp - {
q PP-l P PP-l P P P-l }- no, 0 , n1 , 1 , n2' 2 , . . . (1)

where the first node ng has a rank q ::; p and certain conditions are satisfied [2, Section 4].

Similarly, a representative of an w-tip is a one-ended w-path which in turn is an alternating

sequence of the form:

pw - { q pPo-l PI pPI-1 P2 pP2-1 .. .}- no, 0 , nl' 1 , n2' 2 , (2)

where q ::; Po < P1 < P2 < .. . and again certain conditions are satisfied [2, Section 5].

Now consider an infinite sequence of nodes {ml, m2, m3, . . .} of possibly differing ranks.

We shall say that the ml approach a p-tip tP (alternatively, an w-tip tW) if there is a rep-

resentative (1) for tP (respectively, (2) for tW) such that, for each natural number i, all but

finitely many of the ml are shorted to nodes embraced by the members of (1) (respectively,

(2)) lying to the right of nf (respectively, nfi). Later on, we shall also say that those nodes

lie beyond nf, We shall also say the ml approach any node that embraces tP (respectively,

tW).

Let ta and tb be two tips, not necessarily of the same rank. We say that ta and tb

are nondisconnectable or not disconnectable if there is an infinite sequence of nodes that

approach both ta and tb.

3 An Example

Consider the I-graph shown in Figure 1. It contains the O-nodes nJ where j = 1,2,3... , the

parallel branches aj and bj incident to nJ and nJ+1, the nonsingleton I-node n; = {t~, n~}

where n~ is an embraced O-node and t~ is the O-tip having as a representative the O-path

induced by the aj, the nonsingleton I-node nt = {t~, n~} where n~ is another embraced

O-node and t~ is the O-tip having as a representative the O-path induced by the bj, and
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finally two more branches f3aand f3b- the first one incident to n~ and the O-node n~ and

the second one incident to n~ and the O-node n~.

In this I-graph, the O-node n? is I-connected to both n~ and n~. However, n~ and n~ are

not I-connected because there is no O-path meeting n; and nL indeed, any tracing from n;

to n~ would perforce meet at least one of the n~ at least twice - thereby preventing that

tracing from being a I-path. Thus, I-connectedness is not transitive as a binary relation

between the nodes or between the branches.

Moreover, this I-graph contains exactly three O-sections: Sf induced by all the branches

aj and bj; S~ induced by f3aalone; finally, sg induced by f3balone. These O-section do not

overlap because O-connectedness (Le., ordinary connectedness) is transitive, whatever be the

transfinite graph. On the other hand, there are exactly two I-sections: si induced by f3a

and all the aj and bj; SJ induced by f3band all the aj and bj. Because of the nontransitivity

of I-connectedness for branches in this case (i.e., al is I-connected to f3aand to f3b,but f3a

and f3bare not I-connected), these two I-sections overlap but are not the same.

Furthermore, if every branch in Figure 1 is replaced by an endless p-path, where p is a

natural number, and if the rank of each node shown in Figure 1 is increased by p + 1, then

in the resulting (p + 2)-graph, two (p + 2)-sections will overlap but will not be the same.

However, that graph will have three (p + 1)-sections, which partition the graph.

Similarly, let us replace the aj and bj by one-ended j-paths, the nJ by j-nodes, and

n; and n~ by (,V-nodes, but let us leave n~, n~, n~, n~, f3a, and f3b as they are. The result

is an (,V-graph having two different (,V-sections which overlap. On the other hand, its three

w-sections partition the (,V-graph; two of those w-sections are also O-sections.

The overlapping of the two I-sections in the I-graph of Figure 1 is the result of the

nontransitivity of I-connectedness for branches. However, if another branch were to be

appended incident to n~ and n~, the I-nodes n; and n~ would become I-connected and 1-

connectedness would become transitive for all nodes and branches in the resulting I-graph.

It is tempting therefore to conjecture that the transitivity of I-connectedness for branches

may be obtained for any I-graph from the following condition: If two nonsingleton i-nodes

are incident to the same O-section, then they are i-connected. However, this conjecture is
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not true.

As a counterexample, consider the I-graph of Figure 2. Each heavy dot therein repre-

sents a nonsingleton I-node. Each SJ is a O-section like the O-section of Figure 1 induced by

the aj and bj branches. The O-node of SJ corresponding to n~ in Figure 1 is embraced by

a I-node of Figure 2 - except for that O-node of Sr. (Note that, there is no O-path in SJ

that meets the I-nodes corresponding to n; and n~ in Figure 1.) Furthermore, the RJ and

TjOare O-sections, each consisting of a single endless O-path. Finally, this I-graph extends

infinitely to the right.

It can be seen that every two nonsingleton I-nodes in Figure 2 that are incident to the

same O-section are I-connected, and therefore the above condition is fulfilled. For example,

consider the two nonsingleton I-nodes incident to Sr; they are connected by a I-path that

passes along R~, then through sg, and finally through sg. Moreover, the branches of all

the SJ and all the RJ induce a I-section WI, and the branches of all the SJ and all the TjO

induce another I-section ZI. However, there is no I-path connecting any branch of RJ to any

branch of any T?; the "forked ends" of the SJ block such I-paths. Thus, I-connectedness is

not transitive for the branches in this I-graph; moreover, WI and ZI overlap but are not the

same. A necessary and sufficient condition for the transitivity of branch I-connectedness

remains to be found.

4 About Tips and Nodes

A p-path can be represented as a (p + 1)-path, and also as a (p + 2)-path, and so forth. For

example, consider the one-ended O-path

pO = {ng,bo,n~,bI,...}

embedded in a k-graph gk. Let nI be a I-node that embraces the O-tip to for which pO is

a representative. Then, we have the I-path

pI = {ng,po,nI}.

Moreover, pI can be rewritten as paths of higher ranks:

P 2
{

° P I 1
}= no, ,n ,
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p3 - {no p2 nI }- °, , ,

and so forth. Since pI contains nI, it embraces more than pO embraces. However, p2 and

p3 are the same as pI - just written differently. We wish to identify 1 as the minimum

rank one can associate with pI, p2 and p3 and will call 1 the "essential rank" of those

paths.

To this end, note that every path embraces all the tips embraced by all the nodes

embraced by that path. For example, pO embraces all the elementary tips [3, Section 1.3]

of all its branches plus the elementary tips of all the other branches in gk that are incident

to the n? Also, pI embraces all those elementary tips plus the O-tip for which pO is a

representative plus all the other tips that nI embraces. On the other hand, p2 and p3 do

not embrace any tips other than those embraced by pI.

We also need the idea of a "traversed tip" for a path. A tip of rank 0 or higher is

said to be traversed by a path if the path embraces a representative of the tip, that is, the

path embraces all the members of that representative. Also, an elementary tip is said to be

traversed by a path if the path embraces the branch having that elementary tip. A tip may

be embraced but not traversed by a path; for example, pI embraces all the O-tips of nI but

traverses only that O-tip to for which pO is a representative. Also, a tip may be traversed

but not embraced by a path; indeed, pO traverses to but does not embrace it.

Let us denote the rank of an elementary tip by O. Let R be the totally ordered set of all

ranks. Thus, R is obtained from the set of all countable ordinals by inserting the symbol iJ

just before the countable limit ordinal v and 0before O. Thus,

R = {O,O,1,2,...,w,w,w+l,...,w-:'2,w.2,w.2+1,...}

(All ranks of the form iJwill be called arrowed ranks.) R is a well-ordered set; that is, it is

totally ordered and each nonvoid subset has a least member.

Given any path P, let R( P) denote the set of all the ranks for all the tips that are both

embraced and traversed by P. If R(P) contains a rank fL, it will also contain all ranks

less than fL [2, Section 7]. Let p be the smallest rank that is larger than every member of

R(P). Then, p is defined to be the essential rank of P and is denoted by p = essrank(PO).
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Thus, for the examples of paths given above, essrank(PO) = 0, whereas essrank(Pf.L) = 1

for f.L= 1,2,3. Note also that for no path can the essential rank be IT.

As another example, consider the one-ended path

P = {ng, Pg, ni, pi, n~,P;, . . .}

where, for each natural number m, P;:""is a one-ended path of essential rank m that starts at

n~~ and meets n:t~ with an m-tip. P embraces and traverses tips of all the natural-number

ranks. On the other hand, P traverses an w-tip but does not embrace any w-tip. In fact,

R(P) is exactly the set of all natural numbers and IT as well. Thus, essrank(P) = w.

Lemma 4.1. A finite path embraces every tip that it traverses.

Proof. Assume that the path P traverses a tip t without embracing t. This means that

P embraces a representative of t without embracing any node that embraces t. Since that

representative is a one-ended path, P cannot terminate; that is, P is not finite. ...

As always, p denotes a natural number.

Lemma 4.2. Let

ml,m2,m3,... (3)

be an infinite sequence of nodes in a p-graph gP and let P be a finite p-path in gP that meets

those nodes in the order given. (P may meet other nodes as well.) Then, P embraces a

one-ended p-path R, where P < p, such that R meets all of the ml except possibly finitely

many of them, R is a representative of a p-tip tP traversed and embraced by P, and the ml

approach tp.

Proof. For any two consecutive nodes ml and ml+l, P embraces a finite path QI that

terminates at ml and m/+l' Let PI = essrankQ I. Let p be the largest of the values PI for

which there are an infinity of QI with that essential rank p. We must have that p < p;

indeed, since P is a finite p-path, it can embrace only finitely many nodes of rank p, and

therefore only finitely many of the QI can be of essential rank p. Furthermore, there will

be only finitely many paths Q I whose essential ranks are larger than p. So, by choosing 10

large enough, we can ensure that all QI with 1 2: 10 have PI = essrankQI::; p. Infinitely

many of the Q, with 1 2: lo will have PI = p.
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The path R induced by all the branches embraced by all the QI with 1 2: 10is the one-

ended p-path that we seek. Indeed, R clearly meets all except perhaps finitely many of the

Tnl. Also, its essential rank is p. Since P embraces R, it traverses the p-tip tP that has R as

a representative. Also, since P is a finite path, we can invoke Lemma 4.1 to conclude that

P embraces tp. Finally, the Tnlobviously approach tp. "-

Lemma 4.3. Let (3) be an infinite sequence of nodes in an UJ-graphgw and let P be a

finite f.1-path in gw that meets those nodes in the order given, where either f.1 is a natural

number or f.1 = UJ. Then, P embraces a one-ended path R such that R meets all of the

Tnl except possibly finitely many of them, R is a representative of a p-tip tP traversed and

embracedby P whereP < f.1,and the ml approach tp.

Proof. Let QI and PI be as in the preceding proof. All except perhaps finitely many of

the QI will have natural numbers as their essential ranks PI, for otherwise P would traverse

an infinity of tips of rank C) and therefore would embrace an infinity of UJ-nodes according

to Lemma 4.1, in which case P would not be a finite f.1-path with f.1::; UJ.

Now, if all but finitely many of the PI are bounded by some fixed natural number, we

can proceed as in the preceding proof to find a representative R of a p-tip, as asserted in

the conclusion, where now P is a natural number less than f.1.

So, assume that the PI that are natural numbers are not bounded by any fixed natural

number. We can now choose 10 so large that all QI with 1 2: 10 will have natural numbers

as their essential ranks PI. We can find a representative R of an C)-tip embraced by P as

follows: Let Ril be a path embraced by P, starting at mia, proceeding toward the Tnl of

higher indices 1 > 10, and embracing a Qil such that Pia < PI1. Ril exists because of the

unboundedness of the PI. Inductively, for i = 2,3,4,..., let Rli be a path embraced by P,

starting at mli-I' proceeding toward the Tnl of higher indices 1> li-I, and embracing a Qli

such that Pli-l < Pli' Rli exists for the same reason. R = U~lRli is a one-ended C)-path,

which uniquely determines an w-tip tW. R meets all of the ml except possibly finitely many

of them. P traverses tW and also embraces it because P is finite (Lemma 4.1). Finally, the

Tnl obviously approach tP, as before. ..

Lemma 4.4. A finite path cannot have w as its essential rank.
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Proof. Let the path P have w as its essential rank. Consequently, P embraces and

traverses tips of all ranks that are natural numbers, but no tips of rank w or higher. It

follows that P embraces finite paths whose essential ranks comprise all the natural numbers.

We now proceed as in the last paragraph of the proof of Lemma 4.3 to construct a one-ended

w-path R traversed by P. Were P to embrace a node that embraces the w-tip for which

R is a representative, P's essential rank would be w or higher. Hence, the latter does not

happen, which implies that P does not terminate and therefore is not a finite path. ...

(A similar argument shows that no finite path can have any arrowed rank p.)

5 k-sequences

The nodes of a path of rank 1 or higher in a k-graph have a particular structure - a

hierarchy of sequences of sequences, which we need to explicate. We will refer to the

elements at the lowest level of this hierarchy as "nodes" and interpret them as maximal

nodes in some k-graph, but this interpretation is not at all essential.

O-sequences:

A 0-sequence

sO = {...,nm,nm+l,"'} (4)

is an ordinary sequence, that is, a nonvoid set whose elements are indexed by some or all of

the integers m and are ordered according to those integers. A O-sequence may be finite, one-

ended, or endless. The trivial O-sequence is a singleton {n}. For every nontrivial O-sequence

SO, one can construct a nontrivial O-path pO [2, Section 2] by inserting a branch between

every pair of adjacent nodes in so. Conversely, the nodes of pO comprise a O-sequence.

A O-sequence is said to terminate on the left (right) when there is a leftmost (respectively,

rightmost) node in (4), and it is said to extend infinitely leftward (rightward) when there is

no such leftmost (respectively, rightmost) node. We say that sO embraces itself and all its

nodes.

X\Y will denote the set of elements in the set X that are not in the set y. Let S be

a totally ordered set of nodes and let sO be a O-sequence of some of the nodes of S with

a compatible ordering. 8° is called maximal with respect to S (or simply maximal when S
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is understood) if there does not exist any node no in S\ SO such that {no} U sO with the

ordering induced by S is a O-sequence.

l-sequences:

A I-sequence

1
{

0 0
}s = "',sm,sm+1"" (5)

is a a-sequence of O-sequences s~ such that the following holds: For every two adjacent

members S~t and S~+l in Sl, either S~t extends infinitely rightward and S~+l terminates on

the left, or s~ terminates on the right and s~+l extends infinitely leftward.

Thus, S~t and S~+l do not extend infinitely toward each other, nor do they terminate

next to each other. To save words, we shall say that infinite extensions are separated by

nodes, that the terminal node no between s~ and S~+l abuts an infinite extension, and

that no separates S~t and S~+l' We also say that sl embraces itself, all its O-sequences, and

all the nodes of its a-sequences.

Any a-sequence sO can be treated as a singleton I-sequence sl = {sO}; in this case, we

say that the minimum rank of Sl = {SO} is O. Furthermore, if sO is also a singleton {n}, we

have the trivial I-sequence Sl = {{n}}.

Let £( sl) denote the set of all nodes in all the O-sequences in sl, and endow £( sl) with

the total ordering induced by the orderings of Sl and its a-sequences. £( sl) will be called

the elementary set of Sl. Note also that each O-sequence S~t in (5) is maximal with respect

to £( Sl). If s~ is not a first or last maximal O-sequence in sl and is not a singleton, then

there are exactly two nodes that separate S~t from all other maximal a-sequences in sl.

Example. A finite I-sequence having four members is

Sl {
0 0 0 O

}sl,s2,s3,S4

{{ n1, n2, n3,' . .}, {na, nb, nc,' . .}, {nx}, {- . ., nc,,"n/3, n'Y' . . .}}

Here, s~ = {nx} is a trivial O-sequence. Note that na and nx are the nodes that abut infinite

extensions and separate s~ from the other s?n. The elementary set for sl is

£(Sl) = {n1, n2, n3,..., na, nb, nc,"', nx,"', nc,"n/3, n'Y'" .}.
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Also note that each s? is maximal with respect to £( sl); that is, we cannot contiguously

extend any s? within £( sl) as a O-sequence. ..

For any given 1-sequence sl, let us imagine that a branch has been inserted between

every two adjacent nodes embraced by £( sl). This yields a 1-path pI [2, Section 3]. Indeed,

it is a routine matter to check that all the conditions in the definition of a 1-path are fulfilled.

The nodes of £( Sl) that abut infinite extensions take the roles of the 1-nodes in pI, and all

other nodes of £( sl) become the O-nodes embraced by pl. Also, distinct nodes in £( sl) are

taken to be totally disjoint nodes in pI.

Conversely, given any 1-path pI in a k-graph gk, the maximal nodes in gk that pI

nodally meets comprise the elementary set £( sl) of a 1-sequence sl. This fact follows from

[2, Proposition 4.2]. Moreover, we can uniquely specify pI by specifying the said maximal

nodes in gk - s? long as a 1-path is truly obtained thereby.

Lem ma 5.1. Let A be an infinite subset of the elementary set £ (SI) of a given 1-

sequence sl. With A endowed with the ordering induced by £( sl), assume that, for every

strictly increasing (strictly decreasing), ordinary, infinite sequence {ad c A, the set

{s E A : s > ai Vi} has a minimum member a (respectively, {s E A : s < ai Vi} has a

maximum member a). Then, A is the elementary set of a 1-sequence (whose minimum

rank may be 0).

Note. The hypothesis concerning a can be restated as follows: Given {ad as stated,

there exists an a E A with ai < a ~ s for all i and for all sEA such that s > ai for all

i (respectively, there exists an a E A with s ~ a < ai for all i and for all sEA such that

8 < ai for all i). Note also that {ad need not be one of the members of 81.

Proof. A has the structure of a O-sequence of O-sequences (perhaps just a single 0-

sequence alone) because £( Sl) has that structure. We have to show that in A infinite

extensions are separated by nodes. Let A~, and A~+1 be any two adjacent maximal 0-

sequences in A. Assume that A~, extends infinitely rightward. Let {ad be a strictly

increasing, infinite subsequence of A~. By hypothesis, there exists an a E A such that

ai < a ~ s for all i and for all 8 E A~+I' It follows that a rt A~ and that a is a member

of A~n+l lying to the left of all other members of A~+I' Hence, A~'+1 does not extend
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infinitely leftward. Its leftmost node a is the node we seek. A similar argument works when

A~'+l extends infinitely leftward. ...

As before, let S be a totally ordered set of nodes and let Sl be a I-sequence such that

[( s1) C S. sl is called maximal with respect to S (or simply maximal when it is clear what

S is) if there does not exist any node no in S\[( s1) such that {no} U[( s1) with the ordering

induced by S is the elementary set of a I-sequence.

p-sequences:

A "2-sequence" can be defined as a O-sequence of I-sequences such that infinite ex-

tensions are separated by nodes. In fact, our definitions can be extended recursively to

obtain a "p-sequence" for any natural number p. To this end, let us now assume that q-

sequences have been defined for q = 0,1,.. ',p - 1, where p 2: 2. Consider a O-sequenceof

(p - 1)-sequences S~-1.

P { p-1 p-1 .. .}s = ""Sm ,sm+1' (6)

(We allow sP to be a singleton.) By recursion each s~-1 is a O-sequence of (p - 2 )-sequences,

which in turn are O-sequences of (p - 3)-sequences, and so forth down to O-sequences of

nodes. We shall say that sP embraces itself, all its members, all members of its members,

and so on down to the said nodes. Let [( sP) be the set of all nodes embraced by sp. We

call [(sP) the elementary set of sp. [(sP) has the total ordering endowed by this recursive

sequences-of-sequences structure.

Let S be a superset of s~-1, where S has a total ordering that is compatible with that of

s~;:-l. For example, S may be [(sP). S~-1 is called maximal with respect to S if there does

not exist any node no in S\[( sp-1) such that {no} U [( sp-1) with the ordering induced by

S is the elementary set of a (p - I)-sequence. (So far, this definition has been explicated

for p - 1 = 0,1, and it will become explicitly defined for p - 1 > 1 when we complete our

recursive definitions.)

Furthermore, we shall say that s~-1 extends infinitely leftward (rightward) if S~;:-1extends

in that direction through an infinity of (p - 2)-sequences that are maximal with respect to

[(s~;:-1). On the other hand, we shall say that s~-l terminates on the left (right) at a

node no if there exists a node no E [( sP) such that no is embraced by s~1 and no other
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node embraced by s~-1 lies to the left (right) of no. This occurs when and only when s~-1

contains a leftmost (rightmost) maximal (p - 2)-sequence, which in turn contains a leftmost

(rightmost) maximal (p - 3)-sequence, and so on down to a leftmost (rightmost) maximal

O-sequence, which terminates on the left (right) at a node no. no is called a terminal node of

s~; 1. As a particular case, all these leftmost (rightmost) sequences may be trivial sequences

of the form {-. '{no}" .}.

Consider again sP as given by (6), where p 2: 2. A p-sequencesP is a O-sequenceof

(p - 1)-sequences such that the following conditions hold for every two adjacent members

p-1 d p-1 f P
8m an sm+1 0 s :

Conditions 5.2. Either S~-1 extends infinitely rightward and S~-;1 terminate8 on the

left at a node, or s~-1 terminates on the right at a node and s~-1 extends infinitely leftward.

This definition insures that each 8~-1 is truly maximal as a (p -1 )-sequence with respect

to E(8P), which in turn insures that the representation (6) of 8Pis unique under Conditions

5.2.

The statement that infinite extensions embraced by sP are separated by nodes will mean

that Conditions 5.2 hold not only for sP but also for all maximal q-sequences embraced by

sP, where q = 1,. . ., p - 1. Moreover, any node that separates an infinite extension from its

adjacent sequence of whatever rank will be said to abut an infinite extension and to separate

adjacent maximal sequences.

Example. An illustration of this structure for a 3-sequence is indicted in Figure 3. So

as not to clutter the diagram too much, we have deleted many of the subscripts. In that

diagram, si is a singleton 2-sequence {sD. Both si and s} terminate on the right at the

node no, which is the sole member of the singleton O-sequence s~; no separates si and s~, as

well as other maximal sequences of lower rank. For instance, according to our terminology,

no separates {no} from all the other maximal O-sequences. On the other hand, s~ extends

infinitely leftward. E( s3) consists of the nodes at the lowest level of this diagram. Note that

every infinite extension at that level has an abutting node. "-

When a p-sequence sP is a singleton {sp-1}, its single member sp-1 may in fact represent
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a single q-sequence where q < p - 1; for example,

sp = {sp-I} = {{sP-Z}}= ... = {-. .{sq}...}

= {... {. .. sq-I sq-I .. .} . . .}, m , m+I' .

The minimum natural number q, for which either sq has two or more members or q = 0,

will be call~d the minimum rank of sp. When q = 0 and in addition sO is a singleton (i.e.,

sP = {-.. {no} . ..}), we have the trivial p-sequence.

Given any p-sequence sP, let us imagine again that a branch has been inserted between

every two adjacent nodes embraced by sp. It is easy to check that the result is a p-path

pP [2, Section 4]. The embraced nodes of sP that abut infinite extensions take the role of

the embraced q-nodes (0 < q :S p) of pP. Conversely, given any p-path pP in a k-graph

gk, the maximal nodes in gk that pP meets nodally comprise the elementary set £( sP) of

a p-sequence sP; this too is a consequence of [2, Proposition 4.2]. Moreover, a p-path in gk

can be specified by identifying the p-sequence of maximal nodes that the p-path nodally

meets so long as a p-path is in fact obtained that way.

Example. In some k-graph let the following be a finite 3-path.

P 3
{

Z
p, z 3 P z 3 P z 3 P z 3

}= no, O,nI, I,nZ' Z,n3, 3,n4

where

p;S = {n6,pJ, ni, pl,' . .}

is a one-ended 2-path with n6 embracing a 1-tip of pJ and nr embracing the 2-tip of p;S,

pi = {n~,Pl,nn

is a finite 2-path with nr embracing n~ and n~ embracing n~,

pi = {...,n;,P~,n~,PJ,"'}

is an endless 2-path with n§ embracing a 2-tip of Pi and n~ embracing the other 2-tip of

Pi, and finally

p,2 {
2 P I 2 P z

}3 = ''',nx, x,ny, y,'"
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is an endless 2-path whose 2-tips are embraced by n~ and n~. The set of maximal nodes

that p3 meets with embrace nodes is the elementary set of a 3-sequence

3
{

2 2 2 2 2 2
}S = sO,s1,s2,s3,S4,S5

where each £( sT) consists of the maximal nodes met nodally by the following paths: For s6

we have pJ. For si we have P12;note that nr and n; are embraced by the same maximal

node, and similarly for n~ and nt. For s~ we have Pi. For s~ we have the trivial sequence

consisting only of the maximal node that embraces n~. For s~ we have pl. Finally, for sg

we have a trivial sequence again embracing n~ alone.

Note also that we can reverse this discussion. Starting with s3 we can insert branches

between adjacent nodes in £(s3) to obtain p3. "-

Lemma 5.3. Let A be an infinite subset of the elementary set £( sP) of a given

p-sequence sp. With A endowed with the ordering induced by £(sP), assume that, for every

strictly increasing (strictly decreasing), ordinary, infinite sequence {ad c A, the set

{s E A : s > ai Vi} has a minimum member a (respectively, {s E A : s < ai Vi} has a

maximum member a). Then, A is the elementary set of a p-sequence (whose minimum

rank may be less than p).

Proof. A will have the structure of a hierarchy of embraced sequences because £( sP)

has that structure. The rank of that hierarchy (that is, the number of levels within it minus

one - see Figure 3) cannot be larger than p. We have to show that in A infinite extensions

are separated by nodes. We can do so inductively. Arguing as in the proof of Lemma 5.1,

we show that this is true for the maximal O-sequences in A. Next, for q :::;p, assume that

this is true for all maximal v-sequences where 1/ = 0,..., q - 1. Let A~-1 and A;"-~1 be

two adjacent maximal (q - 1)-sequences in A. For definiteness, assume that A~~1 extends

infinitely rightward. Thus,

Aq-1 = {... Aq-2 Aq-2 ... }m , 1 '.1+1' ,

where the integers i,i+ 1,... extend infinitely rightward. Choose ai E £(Af-2) for all i.

Thus, {ad is a strictly increasing O-sequence in A. Let a be the node specified in the

hypothesis. We can conclude that a is not embraced by A~~l. Moreover, since a :::;s for all
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8 E A;'~~1'A;:~1 terminates on the left at a. This shows that the infinite extensions of the

(q - 1)-sequences in A are separated by nodes. By induction this is so for all q = 0, . . ., p.

(It may happen that, for some q < p, there will be only one q-sequence, in which case there

will be nothing to prove for ranks higher than q.) ...

w-seq uences:

Consider the following one-ended O-sequence

SW - {sPO SPI SP2 .. .}- 0' 1 , 2 , (7)

of Pm-sequences s~m of varying ranks Pm. The words and notations: "embraces", "elemen-

tary set £( SW)", "s~m extends infinitely leftward (rightward)", "s~m terminates on the left

(right)", and "a node abuts and infinite extension and separates maximal sequences" are

defined exactly as they were for p-sequences except that now p is replaced by w and s~;1

by s~;n. In the same way, we speak of s~m being "maximal with respect to some superset S

of £( s~;n)", it being understood that S has a compatible ordering; for example, S may be

£ (SW).

A rightward w-sequenceis an infinite O-sequenceofthe form (7), wherein max(po,' . ., Pm) --+

00 as m --+00 and every two adjacent members s~m and S~m:11(m ~ 0) satisfy Conditions

52 with sp-1 replaced by spm and sp-1 by sPm+I. m m m+1 m+1 .

A leftward w-sequence is an infinite O-sequence:

SW = {... SP-3 SP-2 SP-I }, -3' -2' -1 (8)

of p-m-sequences, where now max(p_l," ',P-m) --+ 00 as m --+ 00 and every two adjacent

members s~~;; and s~~,';':l (m ~ 2) satisfy Conditions 5.2 with S~-1 replaced by s~-;;; and
p-1 b P-m+I

8m+1 Y s-m+1 .

Finally, an endless w-sequence is the conjunction of a leftward w-sequence and a right-

ward w-sequence:

SW - {... SP-I sPo SPI .. .}- , -1 , 0 , 1 ,

Here, the leftward part (7) and rightward part (8) of this O-sequence satisfy the correspond-

ing conditions given above. Moreover, s~11 and s~o satisfy Conditions 5.2 with s~;1 replaced

b P-l d p-1 b Po
y 8-1 an 8m+1 Y So .
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Altogether then, an w-sequence is one of these three kinds of sequences. Note that an

w-sequence is always an infinite O-sequence of sequences - never a finite one. As a result, no

p-sequence can be represented as a singleton w-sequence; there are no singleton w-sequences.

Lemma 5.4. Let A be an infinite subset of the elementary set £ (SW) of a given

w-sequence sW. With A endowed with the ordering induced by £( SW), assume that, for every

strictly increasing (strictly decreasing), ordinary, infinite sequence {ai} C A, the set

{s E A : s > ai Vi} has a minimum member a (respectively, {s E A : s < ai Vi} has a

maximum member a). Then, A is the elementary set of a p-sequence, where P is either a

natural number or w.

The hypothesis of this lemma reads exactly like that of Lemma 5.3 except that p is

replaced by w. Its proof is also the same as that of Lemma 5.3 except for some obvious

modifications.

Here too, we can relate w-sequences to the maximal nodes in a k-graph that an w-path [2,

Section 5] meets nodally. For instance, an w-sequence becomes an w-path when branches are

connected between adjacent nodes in the w-sequence. (There is an unimportant variation

between the definitions of w-sequences and Q-paths: For w-paths, the ranks Pm are required

to be strictly monotone for m ~ 0 and also for m < O. However, by combining contiguous

sequences in SWappropriately, we get the needed monotonicities in the ranks.)

w-sequences:

Finally, consider a (finite, one-ended, or endless) O-sequence of the form

SW = { ... sPm sPm+l .. .}, m , m+l' (9)

where each s~~ is a Pm-sequence whose rank Pm is either a natural number or w. Again

the definitions of "embrace", "elementary set £( SW)", "maximal member s~m with respect

to E(SW)", "sf;> terminates on the left (right) at a node", and "a node abuts an infinite

extension and separates maximal sequences" read exactly as they do for p-sequences except

for changes in notation. For instance, p is replaced by wand p - 1 by Pm. On the other

hand, when Pm= W,"s~mextends infinitely leftward (rightward)" will now mean that sfnm

is either a leftward (rightward) w-sequence or an endless w-sequence.

An w-sequence is a O-sequence of the form (9) such that every two adjacent members
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"
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.
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special case, an w-sequence may be a singleton whose minimum rank is a natural number.

As before, an w-sequence can be related to the set of maximal nodes in a k-graph that

an w-path [2, Section 5] meets nodally.

The same proof as that for Lemmas 5.3 and 5.4 yields

Lemma 5.5. Invoke the hypothesis of Lemma 5.4 with 0 replaced by w. Then, A is the

elementary set of a p-sequence, where P is either a natural number or 0 or w.

Lemma 5.6. Let pP be a finite p-path and let QIt be a finite J-l-pathin a k-graph gk.

Let tPl denote any arbitrary tip embraced and traversed by pP (thus, PI < p) and let tltl

denote any arbitrary tip embraced and traversed by QIt (thus, J-ll < J-l). Assume that tPl

and tltl are shorted together whenever they are nondisconnectable. Let {nihEl be the set

of maximal nodes that pP and QIt both meet nodally and let {ni} have the total ordering

induced by pP. Then, {ni} is the elementary set of a v-sequence, where v :::;p.

Proof. If {ni} is a finite set, it is the elementary set of a O-sequence. So, assume

that {ni} is an infinite set. Choose any ordinary, strictly increasing sequence {niJ~1 in

{ni}. Set ml = nil, Now, starting at nil' trace along QIt. In at least one of the two

possible directions of tracing QIt from nil, QIt will meet an infinity of the ni.. Choose suchJ .

a direction. In accordance with that direction of tracing, let m2 be the first node in {nij}~1

after ml that QIt meets. More generally, for each integer I > 1, let mz be the first node

in {niJ }~1 after mZ-l that QIt meets when tracing along QIt Then, {mz}~1 is a strictly

increasing sequence in {nihEI such that both pP and QIt meet the mz in the order given.

Also, since pP and QIt are finite (as a p-path and as a J-l-path), neither p nor J-lcan be 0

(Lemma 4.4). By Lemmas 4.2 and 4.3, pP traverses and embraces a PI-tip tPl (PI < p)

with a representative that meets all but possibly finitely many of the mZ;moreover, the mz

approach tPl. By the same lemmas, QIt traverses and embraces a /hI-tip rltl (J-ll < J-l) with

a representative that meets all but possibly finitely many of the mz; also, the mZ approach

rltl. Thus, tPl and rltl are nondisconnectable. Hence, they are shorted together, and the

maximal node nx that shorts them is met nodally by both pP and QIt according to Lemma

4.1. Thus, we have that niJ < nx for all j and nx :::;s for all sin {ni} such that s > niJ for
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all j. That is, the set {s E {ni}: s > niJ \fj} has a minimum member nx. (The analogous

conclusion would hold had {niJ];l been chosen strictly decreasing.) Finally, recall that

the set of all maximal nodes that pP meets nodally is the elementary set of a p-sequence

(p = p or LV).Thus, the hypothesis of Lemma 5.1 or 5.3 or 5.4 or 5.5 holds with respectively

£(sl) or £(sP) or £(sc;j) or £(sVJ)being the set of all maximal nodes that pP meets nodally,

with A being the set {ni}, with {ad being {niJ, and with nx being a. (The ml were only

used to find nx.) By those lemmas, we can conclude that {ni} is a v-sequence with 1/::; p.

..

6 Transitivity ofk-Connectedness and Partitioning of Trans-
finite Graphs by Sections

In this section we shall show that, under the following Condition 6.1, the p-sections (for a

given rank p ::; k) partition a transfinite graph gk (k ::; LV)because p-connectedness is then

transitive.

We shall say that a tip is open if it is not shorted to any other tip - including any

elementary tip of a branch; in other words, a tip is open if and only if it is embraced by

only one node and that node is a singleton.

Condition 6.1. If two tips (of possibly differing ranks) are nondisconnectable, then

either the two tips are shorted together (i.e., they are both embraced by some node) or at

least one of them is open.

Theorem 6.2. Let gk be a k-graph that satisfies Condition 6.1. Let na, nb, and nc be

distinct O-nodes of gk such that na and nb are p-connected, and nb and nc are p-connected.

Then, na and nc are p-connected.

Proof. There is a finite p-path pP that terminates at na and nb. Also, there is a finite

p-path QP that terminates at nb and nc. Let {ni}iEI be the maximal nodes met nodally by

both pP and QP, but let {nd be totally ordered in accordance with a tracing of pP from nb

to na. The O-node nb is embraced by a maximal node in {ni}, which we shall also denote

by nb.

If {nd is a finite set, there will be a last node nx in it. Then, a tracing of pP from na
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to nx followed by a tracing of QP from nx to nc will be a finite p-path terminating at na

and nc. Hence, na and nc are p-connected.

Now, assume that {ni}iEI is an infinite set. It is no loss of generality to assume that na,

nb, and nc are all nonsingletons, for we can always append a self-loop to anyone of those

nodes to make it a nonsingleton. That self-loop will not affect the connectedness between

na, nb, and nc. Now, no tip traversed by pP (or QP) can be open because that tip will also

be embraced by pP (or respectively QP) according to Lemma 4.1 and every node embraced

by pP (or QP) will be a nonsingleton. Hence, by Condition 6.1, any tip traversed by pP and

any tip traversed by QP that are nondisconnectable will be shorted together. Therefore, by

Lemma 5.6, {nd is the elementary set of a q-sequence (q ~ p).

Thus, either {ni} has a last node nx or it (that is, the said q"sequence) extends infinitely

rightward through an infinite sequence {sn~l of maximal r-sequences s[, where r < q.

(Here, s[ is a singleton O-node if q = O. Also, we have an illustration in Figure 3 for the

case where q = 3 and r = 0.) Suppose {ni} does not have a last member, that is, it extends

infinitely rightward as stated. For each natural number I, choose a node ml that is embraced

by s[. Thus, {ml}{~l is a sequence in {ni}iEI such that no node of {ni} lies to the right

of all the mi. As in the proof of Lemma 5.6, we can choose a subsequence {mIJ'\=l of

{mL} such that QP meets the ml>, in sequence, that is, in the same order that pP meets

the ml>,' So, by Lemma 4.2, pP traverses a tip tP and QP traverses a tip ,11 such that the

ml>, approach both tips. Hence, tP and ,11 are nondisconnectable. We have already noted

that neither of them are open. By Condition 6.1, there is a node nx that embraces both of

them. Moreover, nx E {ni}. Indeed, pP being a finite path, embraces every tip it traverses

(Lemma 4.1) and thus embraces a node that embraces such a tip; similarly for QP.

Finally, nx lies to the right of all the ml>" therefore to the right of all the ml, and therefore

to the right of all the nodes in {ni} according to our supposition that {ni} extends infinitely

rightward. This is a contradiction. It follows that {ni} does have a last member nx. We

can now conclude as before that na and nc are p-connected. ...

Corollary 6.3. Theorem 6.2 remains true when p is replaced either by w or w.

Proof. First replace p by w. By the definition of w-connectedness, there is a p such
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that na and nb are p-connected and so too are nb and nc. By Theorem 6.2, na and nc are

p-connected and therefore w-connected.

When p is replaced by w, the proof that na and nc are w-connected is the same as that

of Theorem 6.2 except for some obvious modifications in wording and notations, the use

of Lemma 4.3 in place of Lemma 4.2, and the following additional alteration: When {nd

is taken to extend infinitely rightward, it may do so either through an infinite sequence

{sn~l of r-sequences sl as before or through an w-sequence SWsuch as (7). In the latter

case, we choose each m[ to be a node embraced by sfl. ..

Corollary 6.4. Let gk be a k-graph (k ::; w) that satisfies Condition 6.1. Let p denote

either p or w or w. Then, the p-sections of gk comprise a partition of gk.

Proof. We need merely show that p-connectedness is an equivalence relation between

the branches of ,gk. Reflexivity and symmetry are obvious. Since two branches are p-

connected if and only if their O-nodes are p-connected, Theorem 6.2 or Corollary 6.3 asserts

the transitivity for p-connectedness. .,.

7 Node Voltages for Transfinite Electrical Networks

We turn now to transfinite electrical networks. In particular, let Nk be a k-network, that is,

an electrical network whose graph is a k-graph gk, as above. The jth branch of Nk consists

of a positive resistance l'j in series with a pure voltage source of real value ej, which may be

O. The branch conductance is gj = l/rj. The branch voltage Vj and branch current ij are

related by Vj = ijrj - ej in accordance with the polarity conventions shown in Figure 4. The

branch's orientation is the direction in which current is measured or voltage is measured,

that is, from left to right in Figure 4. Also, -Vj is called the voltage rise for the branch.

The graph-theoretic definitions given above for gk are transferred directly to Nk.

We assume henceforth that the voltage-current regime in Nk is the one specified by the

fundamental theorem [2, Theorem 10.2], which invokes the hypothesis that the maximum

total power available from all the sources is finite: L eJgj < 00. In that regime, L iJrj < 00;

that is, the total power dissipation is finite as well. Our first task is to define what we mean

by a "node voltage".
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Let m and n be two nonembracing nodes of Nk; their ranks need not be the same.

Also, let P be a path that meets both m and n terminally; that is, P meets m either with

an embraced terminal.node or with a tip, and similarly for n. P is called perceptible if

LjETI rj < 00, where n is the index set for all the branches embraced by P; in this case, n

is said to be perceptiblefrom m alongP. Moreover,if P is a representative of a tip t, then

t itself is called perceptible.

Now, the algebraic sum of the voltage rises along P from m to n is

L =fVj
jETI

(10)

where the minus (plus) sign is used ifthe branch's orientation agrees (respectively, disagrees)

with a tracing of P from m to n. If P is perceptible, (10) converges absolutely. Indeed, for

j restricted to n,

L IVjl = L ITjij - ejl :S LyIrj!ijlylrj + Ly'gjlejlylrj

['" .2'" ]
1/2

['" 2 '" ]
1/2

:S L.. Tj2j L.. Tj + L.. ejgj L.. Tj < 00.

If n is perceptible from m along P, then (10) is defined to be the node voltage of n with

respect to m along P. We also say that n obtains the node voltage (10) with Tespect to m

along P. (On the other hand, if m embraces n or conversely, we have a trivial path between

m and n, and these definitions hold with (10) equal to 0.) Let us emphasize that by our

definition node voltages are assigned only along perceptible paths. For instance, (10) may

converge even when P is not perceptible, but in this case we do not use (10) with that P

to define a node voltage at n with respect to m.

It can happen that (10) may be different for different perceptible paths between m and

n. This will not occur if the ranks of those paths are both zero, but it may occur if at least

one of them has a rank of 1 or higher. For example, consider a network whose graph is

that of Figure 1 and assume that all branches are purely resistive (Le., have zero voltage

sources). Let the resistances of branches aj and bj be 1/2j ohms, where j = 1,2,3,. . ., and

let the resistances for (3aand (3bbe equal to 1 ohm. Finally, append one more branch (3c

incident to n~ and n~, oriented from n~ to n~ and having a 1 ohm resistor in series with
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a 1 volt source. Let NI be the resulting I-network with the appended branch /3c. Every

branch of NI will have zero current. Indeed, no current can flow in any aj or bj because

every such branch resides in only one loop and that loop is purely resistive. Similarly, there

is no loop that passes through the three /3 branches because there is no path connecting n~

and ng through the O-section of the aj and bj branches. Thus, the source in /3c produces a

1 volt rise in voltage from n~ to n~. Now there is a perceptible O-path pO connecting n~ to

n~ and passing through the aj branches only; the node voltage with respect to n~ that n~

obtains along pO is O. Also, there is a perceptible I-path pI that connects n~ to n~, which

passes along the bj branches, through ng, and then along the /3 branches; the node voltage

with respect to n~ that n~ obtains along pI is 1.

Thus, it is pertinent to ask when a node n has a unique node voltage with respect to

some other node m, that is, when that node voltage does not depend upon the choice of

perceptible path between m and n. An answer is given in the next section.

8 Existence and Uniqueness of Node Voltages

We will impose the following Condition 8.1 on all tips in the transfinite electrical network

Nk, where k :S w. It is not required that the two tips mentioned therein be of the same

rank, but it is understood that their ranks are either natural numbers or w.

Throughout this section, we identify each node with the maximal node that embraces

it, and any reference to a node will mean that maximal node.

Condition 8.1. If two tips are perceptible and nondisconnectable, then those tips are

shorted together.

Theorem 8.2. Assume that the tips of ranks no larger than w in the k-network Nk

(k :S w) satisfy Condition 8.1. Let ng and no be two nodes (of possibly different ranks), and

let there be at least one perceptible path connecting ng and no. Then, no has a unique node

voltage with respect to ng; that is, no obtains the same node voltage with respect to ng along

all perceptible paths between ng and no.

Proof. Assume that there are at least two perceptible paths pP and QJ.lterminating at

ng and no. Orient pP and QJ.lfrom ng to no. We want to show that no obtains the same
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node voltage along pP as it does along Q/1.

We can assume that pP and Q/1 are finite paths, for, if either of them meets ng and no

with tips, we can append ng and no to that path to obtain a finite path of higher rank.

Let {ndiEI be the set of (maximal) nodes met by both pP and Q/1and let {ni} have the

total ordering induced by pP. Since pP and Q/1 are both perceptible, every tip embraced and

traversed by either path is also perceptible. Hence, if two such tips are nondisconnectable,

they are shorted together according to Condition 8.1. By Lemma 5.6, {ni} is the elementary

set of a v-sequence Sll, where v ~ p.

Consider any maximal O-sequence sO embraced by Sll (maximal with respect to {ni}),

and let n1 and nz be two adjacent nodes in so. Then, a tracing from n1 to nz along pP

followed by a tracing from nz to n1 along Q/1 will follow a perceptible ry-loop L7J, where

ry ~ max(p, p). By Kirchhoff's voltage law applied to L7J[2, Theorem 11.2], nz obtains the

same node voltage with respect to n1 along pP as it does along Q/1. Since this is true for

all pairs of adjacent nodes in so, it is also true when n1 and nz are any two nonadjacent

nodes in so.

Now, let s1 be a maximal I-sequence embraced by Sll and let SObe one of the maximal

O-sequences embraced by s1. There will be a node na (alternatively, nb) that separates

SOfrom all the maximal O-sequences to the right (left) of sO if there are such sequences;

otherwise, na is identical to no (respectively, ng). Since pP is perceptible, the voltages along

the nodes of sO with respect to any fixed node n1 of sO converge to a node voltage for na

(respectively, nb)' Thus, na (respectively, nb) obtains the same voltage with respect to n1

along pP as it does along Q/1. Hence, the same is true for node voltages at na and nb with

respect to each other if both na and nb exist.

We can continue this argument inductively. Let us assume that for some natural number

p, where p < v, the following is true for every maximal p-sequence sP embraced by Sll.

Inductive assumption: Let na (alternatively, nb) be the node that separates sP from all

the maximal q-sequences (q ~ p) to the right (left) of sP if such sequences exist and let n1

be any node embraced by sP; then, na (or nb) obtains the same node voltage with respect

to n1 along pP as it does along Q/1.
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It follows that, if na and nb both exist, each of them obtains the same node voltage

with respect to the other along pP as it does along QJl. Now, if both na and nb exist, they

are adjacent in the sense that they separate a single maximal p-sequence sP from all other

q-sequences (q S p) not embraced by sp. On the other hand, if na and nb are not adjacent

in this sense, more particularly, if there are finitely many maximal p-sequences between na

and nb and if na and nb separate those sequences from all other q-sequences (q S p) not

embraced by any of those p-sequences, then the same conclusion regarding node voltages

for na and nb with respect to each other can be drawn. Because pP is perceptible, we can

once again take limits to obtain the above inductive assumption with p replaced by p + 1.

Moreover, if there are two nodes na and nb that separate a maximal (p + I)-sequence sp+l

from all q-sequences (q S p + 1) not embraced by sp+l, then each node obtains the same

node voltage with respect to the other along pP as it does along QJl.

This inductive argument can be extended still further to include the cases where na and

nb separate a maximal w-sequence SWfrom all q-sequences (q S w)not embraced by sW, and

then finally for w-sequences sf». The conjunction of all these results implies our theorem. .,.

Corollary 8.3. Assume that the tips of all ranks no larger than w in the k-network

Nk (k s w) satisfy Condition 8.1. Also, assume tht every two nodes of Nk are connected

through at least one perceptible path. Choose a ground node ng in Nk arbitrarily. Then,

every node of Nk has a unique node voltage with respect to ng.
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Figure Numbers

(There are no legends for the figures.)

Figure 1.

Figure 2.

Figure 3.

Figure 4.
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