
49 
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Elevated concentrations of nitrate in ground water are an environmental hazard and a public 
health risk. High concentrations of nitrate interfere with the ability of the blood to transport 
oxygen which leads to chronic illness in adults and death in young infants. Therefore, the United 

tates and Canada have set drinking water limits of 45 mgll as nitrate or 10 mg/l as nitrogen 
(Freeze and Cherry , 1979). Sandy, unconfined , coastal plain aquifers such a the Long] land 
Aquifer System are particularly susceptible to nitrate contamination from anthropogenic sources. 
Potential sources of nitratc include: a) agricultural fertili zers, b) turf grass fertilizers c) septic 
tank effluent or leaking sewer lines , d) landfill leachate e) commercial or industrial wastewater 
and f) atmospheric nitrates (primari ly industrial poll utants). The objecti ve of this study wi II be to 
place constraints on the relative contributions of these various sources to nitrate contamination of 
the aquifer. A preliminarty study conducted last summer with the assistance of the Suffolk County 
Department of Health Services indicates that the nitrogen and oxygen isotopic composition of 
ground water nitrates can be used to place constraints on the sources of nitrate in Long J sland 
ground water. 

Eval uating the I sotopic Composition of Ground Water Ni trates: 
Numerous researchers have successfully used nitrogen isotopes to characterize njtrate 

sources (table]) and also to identify processes such as denitrification that may alter the 
concentration of nitrate within the aquifer system (Mariotti et aI. , 1988). Several recent studies 
have taken advantage of the additional constraint that can be provided by the measurement of the 
oxygen isotopic composition of the nitrate (figure 1). Due to the large oxygen isotopic contrast 
between nitrates produced in the atmosphere and those produced by microbial processes in the soil 
(nitrification), the oxygen isotopes in nitrate are particularly useful for the identification of fertilizcr 
nitrates (Amberger and Schmidt 1987) and atmospheric nitrates (Durka, et aI. , 1994). The ()ISO 
vs ()15N plot also allows one to evaluate mixing more easily because the two-element plot 
separates the nitrate sources into distinct fields . 

Plots of OISO vs 015N will be used to place constraints on the sources of nitrate in Long 
Island ground water. Since there are regional differences in the isotopic composition of nitrates 
due to differences in aquifer materials, land use practices and the isotopic composition of meteoric 
waters, it will be necessary to determine the end-member njtrogen and oxygen isotopic 
composition of nitrate ources on Long Island. Ground water amples will be colJected from 
monitoring wells downgradient from particular land use activities. The nitrogen and oxygen 
i otopic compostion of the nitrate will be determined by stable isotope mass pectrometry at the 
Environmental Isotope Laboratory , University of Waterloo, Ontario. 

For the preliminary study, several samples were collected with the assistance of the Suffolk 
County Department of Health Services (SCDHS). The nitrogen and oxygen isotopic 
compositions of nitrates collected downgradient from an agricultural area, a golf course, and a 
cemetary are plotted in figure 1. The oxygen isotopic compositions of the cemetary and the golf 
course nitrates are elevated with respect to nitrates produced by nitrification in other localities. 
Although this is due at least in part to the heavier isotopic composition of Long Island 
groundwaters, it may also reflect an atmospheric contribution . Ground water samples will be 
collected from shallow wells in an undisturbed area, such as the Pine Barrens, to determine the 
initial isotopic composition of ground water nitrate . Addjtional samples collected from wells 
located in residential area with septic systems and wells downgradient from a landfill will fill in 
the fields for the remaining sources. 
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Table 1: Nitrogen Isotopic Composition of Nitrate Sources 

I Source I b15
N * I Reference %0 

Suburban Lawns, Long Island, NY +1.1 10 +7.1 Flipse, et aL, 1984 

Golf Course, Long fsland, NY +3.8 to +14. Flipse and Bonner, 1985 

Potato Farm, Long Tsland, NY +3.7 to 12.2 Flipse and Bonner, 1985 

Soil Organic Nitrogen +4 10 +9 Heaton, 1986 

Non-fertilized cultivated fields, TX +2 to +8 Kreitler, 1975 

Wet Precipitation, U.s. -7.2 to +2.6 Hoering, ]957 

Wet Precipitation, S. Africa -18 to +7 Heaton, 1986 

Wet Precipitation, Germany +2.6 to +6.3 Durka, et aL, 1994 

Feedlot, Minnesota +5.4 to +43.1 Komor and Anderson, 1993 

Residential w septic, MN + 1.5 to + 11. 7 Komor and Anderson, 1993 

Manure Fertilization, MN +12to +16 Komor and Anderson, 1993 

Grassland, France -6.3 to -4.3 Mariotti, et aL, 1988 

Sewage, Septic wastes France +10 to +13.5 Mariotti, et al., 1988 

N fertilizer -4 to +4 Kreitler, 1979 

Animal Waste +10 to +22 Krei tier, 1975 

Septic Plume +8.110 + 13.9 Aravena, el aI., 1993 

Poultry Manure Fertilization +8 to + 16 Wassenaar, 1995 

*015N reported relative to atmospheric nitrogen standard 

Figure 1: Nitrogen and Oxygen Isotopic Composition of Nitrates 
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Biogeochemical Constraints on the Stability of Nitrate: 
Many reactions within the Long Island Aquifer System including those of the nitrogen 

cycle (figure 2) are biologically mediated redox reactions. Nitrogen can exist in six different 
oxidation states. The equilibrium distribution of the various species depends on the pE and the pH 
of the system (figure 3a), but kinetic factors determine the rate at which equili brium is approached. 
Biological organisms catalyze energetically favorable redox reactions and effectively determine the 
rate of reaction for proccsses such as nitrification and denitrification. Biogeochemical parameters 
such as the availability of oxygen and labile organic carbon (Starr and Gilham , 1993) may 
determine whether or not a reaclion proceeds. Other elements that exist in more than one oxidation 
state also contribute to the redox potential of the aquifer system (figure 3b). 

Under aerobic conditions, nitrate is the stable species. In the well-oxygenated 
environment characteristic of cultivated fields and lawns, ammonium is rapidly converted to nitrate 
through the process of nitrification (Fig. 2 , rxn e) . As long as aerobic conditions persist, nitrate 
will remain the predominant specie becau e denitrification and dissimilatory nitrate reduction take 
place under anaerobic conditions. Within the Upper Glacial Aquifer, "pristine" Long Island 
groundwaters contain concentrations of dissolved oxygen that approach equilibrium with respect to 
atmospheric oxygen (Suffolk County Comprehensive Water Resources Management Plan , 1988). 
This is probably due to the paucity of organic matter within these upper glacial sediments. Nitrate 
can be expected to behave conservatively within the Upper Glacial Aquifer due to the prevalence of 
aerobic conditions. 

Redox conditions within a contaminant plume differ from those of the surrounding aquifer. 
Landfill leachate and septic tank effluent contain elevated concentrations of organic carbon and 
ammonium. Nitrification and aerobic respiration of organic carbon (Fig. 2 , rxn c) result in the 
depletion of oxygen. Under anaerobic conditions nitrate may be reduced to ammonium through 
the process of dissimilatory nitrate reduction (Fig. 2 , rxn g) or eliminated from the system through 
the process of denitrification (Fig. 2 , rxn f). Ammonium that is adsorbed on the sediments can 
subsequently be reintroduced into the ground water flow system as nitrate if more oxygenated 
waters mix with the leachate or pass through the sediments due to pumping activities (Baedecker 
and Back, 1979). 

Denitrification is likely to occur within parts of the Magothy Aquifer. The sediments of the 
Magothy Formation were deposited in a deltaic environment and contain more organic carbon than 
those of the Upper Glacial. In older waters, dissolved oxygen has been completely removed 
tbrough interaction with aquifer materials (Perlmutter and Koch , 1972). Lignite and pyrite, 
potential electron donors in the reduction of nitrate, are present within parts of the Magothy. 
Furthermore, in ground water systems, the reduction of nitrate precedes that of iron, manganese, 
and sulfate (Korom, 1992) and reduction of the latter species has been documented within the 
Magothy Formation (Vecchioli et aI., 1974). 

Biogeochemical parameters will b monitored so that I can place constraints on processes 
that alter the concentration and isotopic composition of ground water nitrates. I will measure 
temperature, conductivity, dissolved oxygen , pH, alkalinity , and dissolved organic carbon. 
Temperature, dissolved oxygen , conductivity and pH will be determined in the field using the 
appropriate meters and probes. Dissolved oxygen concentrations will be verified by Winkler 
titration. Alkalinity will be determined by titration. The concentrations of redox sensitive species, 
sllch as ammonium , iron , and manganese will be determined by spectrophotometry using Hach 
methods. 

In addition, the carbon isotopic composition of dissolved inorganic carbon (OIC) will be 
measured. Redox processes that consume dissolved organic carbon and produce carbon dioxide 
lead to the formation of an isotopically light DIC pool (Wassenaar et al., 1991). Conversely, 
methanogenesis, an important reaction in landfill environments, produces an i otopically heavy 
residual carbon pool (Baedecker and Back, 1979). Carbon isotopes can be Llsed to distinguish 
between DIe derived from the dissolution of carbonates and that derived from biological processes 
in the soil (Pawellek and Veizer, 1994). The isotopic composition of DIC will be determined by 
table i olope mass spectrometry at the University of Waterloo. 1 mg of carbOll is required for the 

analysis and the precision is reported to be 0.2%0. 

3 



52 
Figure 2: The Nitrogen Cycle in Terrestrial Ecosystems 
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Figure 3a: pE vs pH for Nitrogen at T = 12 C 
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Figure 3b: Important Redox Reactions within the Long Island Aquifer System 
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Major and Trace Element Geochemical Tracers: 
The major-ion composition of the variou contaminant sources will be characterized to aid 

in the interpretation of the nitrogen and oxygen isotopic data. Ternary plots of the major cations 
and the major anions present in ground water (constructed from water quality data in the Land Use 
Monitoring Study, Suffolk County Comprehensive Water Resources Management Plan, 1988) 
illustrate that the major ion composition of ground water varies depending on the associated land 
use activity (figure 4). For example, agricultural waters contain elevated proportions of calcium, 
magnesium, sulfate, and nitrate while septic plumes are high in bicarbonate, sodium and 
potassium. The reducing environment associated with septic plumes and landfill leachate also 
produces elevated concentrations of iron and manganese due to the dissolution of iron and 
manganese ox.ide coatings from aquifer materials (figure 3b). 

Perturbations due to particular activi ties wi II not nece saril y persist withi n the aquifer 
ystem. For example, potassium which has been displaced by ammonium may be readsorbed 

downgradient and iron and manganese oxides may reprecipitate when redox conditions change. 
Therefore, I will also evaluate whether the isotope ratios of boron, an element which is believed to 
behave conservatively within the ground waterflow system, can be used to place additional 
constraints on the possible sources of nitrate contamination. 

Boron is a conservative tracer Ln most groundwater environments although fractionation 
may occur if the flowpath passes through clay layers in which adsorption is an important process 
(Davidson and Bassett, 1993). Elevated concentrations of boron detected in Long Island ground 
waters have been correlated with agricultural land use and the degree of residential development 
(Eckhardt and Stackelberg, 1995), however, the isotopic composition of boron in Long Island 
ground water has not been measured. Anthropogenic sources of boron include agricultural 
fertilizer for row crops (Eckhardt and Stackelberg, 1995), municipal wastewater (Buszka et aI. , 
1991) detergents in landfills (Barth et aI. , 1996) , and fly ash leachate from landfills (Davidson 
and Basset, 1993). Boron isotopes have been successfully employed by other workers to 
distinguish between ground water contaminated by agricultural activities and sewage (Buszka et 
aI. , 1991; Gellenbeck, 1994). The boron i otopic composition of ground water will be measured 
by negative thermal ionization mass spectrometry building on techniques developed by Hemming 
and Hanson (1994). 

Summary of Approach: 
Samples will be collected from shallow monitoring wells downgradient from particular 

sources in order to determine the nitrogen and oxygen isotopic composition of end-member nitrate 
sources. Ternary plots of major ion data will be used to verify that the geochemistry of the sample 
obtained is consistent with that of the intended source. Biogeochemical data will be used to place 
constraints on reactions that may alter the concentration or isotopic composition of nitrate. Plots of 
0180 vs 015N will be constructed to determine tbe range of nitrogen and oxygen isotopic 
compositions to be expected for each nitrate source. 

Samples will be collected from public supply wells to determine the average concentration 
and isotopic composition of nitrates within a cross-section of the aquifer. The isotopic 
composition of these samples will be compared to the isotopic composition of the end-member 
nitrate sources in order to place constraints on the relative contributions of each nitrate source to 
nitrate contamination within the aquifer. The carbon isotopic composition of DIC and the boron 
isotopic compo ition of ground water will be used to place additional constraints on mixing end­
members. 

Since supply wells are screened at various depths within the aquifer and are located in 
varying proximity to point sources of contamination it is anticipated that there will be some 
variability in the combination of sources that contribute to the contamination of different ections of 
the aquifer. Geochemical , hydrological , stratigraphical and land use data will be compiled on a 
GLS in order to facilitate the relation of nitrate contami nation within the aguifcr system to land usc 
at the surface. The results of this study will help water supply managers to evaluate actions that 
could be taken to reduce nitrate contamination of tbe aquifer. 

6 



55 

Figure 4: Major Cations and Anions In Long Island Ground Waters According to Land Use 
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