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Overview:  Micro-scale spatial variations in surface temperature, air temperature, and 

precipitation arise from local topography, urban development, and land cover differences, among 

other factors.  These microclimates may influence spatial variations in vegetation productivity, 

soil types and profiles, species habitats, and geomorphology [e.g., Finney et al., 1962; Burnett et 

al., 2008; Bennie et al., 2010].  Establishing microclimate boundaries may be useful in a variety 

of ecological, agricultural and environmental applications.  Methods of spatially defining 

microclimates, however, are sparsely covered in the literature.  This work uses a 5-year record of 

satellite imagery to identify spatial variations in interannual surface temperatures on Long Island.  

Daytime surface temperatures are a climate-related parameter; however, it is difficult to isolate 

the influence of climate from that of surface reflectivity and thermal conductivity on surface 

temperatures.  Thus future work will also explore the application of these techniques to 

remotely-measured boundary layer temperatures as well as nighttime surface temperatures.  

These techniques may be applied to any region of interest. 

 

Methods:  Surface temperatures were obtained from the Moderate Resolution Infrared 

Spectrometer (MODIS) instrument aboard NASA’s Earth Observing System (EOS) Terra 

spacecraft.  EOS Terra is in a ~10:30 am/pm equator-crossing orbit with a repeat coverage time 

of ~1 day for any region.  MODIS radiance data is collected in 36 channels between 0.4 and 14.5 

µm.  Radiance from channels 31-32 (10.7-12.2 µm) are converted to surface temperature using 

an estimate of emissivity derived from the MODIS Land Cover Product [Strahler et al., 1999].  

Surface temperatures have an accuracy of better than 1°C for surface temperatures between -10-

50°C [Wan et al., 2004].  In addition to individual image products, the MODIS instrument team 

generates 8-day surface temperature composite images for any given region, at a spatial 

resolution of 1 km per pixel [Wan, 2009] (Figure 1).  The advantage of composites is that cloud-

covered pixels are excluded from the average.   

 

 

Figure 1.  Example of MODIS land surface temperature composite image, acquired June 2000.  

Temperature range is 7°C to 29°C (black to white). 
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Over 200 8-day composite images of daytime surface temperature spanning the time period of 

January 2005-2010 were obtained.  Images were projected and compiled into a 3-dimensional 

data cube, where the x and y dimensions are longitude and latitude, and z dimension is time.   

Arranged in this manner, each pixel contains a “spectrum” of surface temperature vs. time.  In 

this work, we searched for pixels with similar interannual temperature spectra.  To find locations 

with similar temperature spectra, the ISODATA (iterative self-organizing data analysis 

technique) unsupervised spectral classification method was used.  This technique relies on 

minimum distance cluster analysis and works within user-defined constraints, including a target 

number of clusters, minimum number of pixels assigned to a class, and a minimum distance 

threshold whereby clusters are split or merged [Ball and Hall, 1965; Anderberg, 1973].  For the 

technique to produce meaningful results, constraints on the number of allowable classes must be 

determined by the analyst.  Here, the appropriate number of classes is established by two criteria.  

First, the average temperature spectrum of each class must lie outside of one standard deviation 

from the global mean.  Second, we used principal components analysis (PCA) to estimate the 

number of independently varying components in the scene.  Determining the appropriate number 

of classes relies on an iterative approach, where the target number of classes is incrementally 

increased and the surface temperature distributions and average temperature spectra are 

evaluated against the criteria described above.  Too few classes will not produce average spectra 

that are distinct from the global mean, while too many classes will force the separation of regions 

that differ insignificantly from each other.    

 

Preliminary Results:   Results from PCA transforms suggest that the appropriate number of 

classes should range between 6 to 9.  With PCA, each principal component band identifies a 

progressively less significant independently-varying component.  Thus the first few PC bands 

should show some degree of spatial coherence, whereas the lower PC bands tend to exhibit high 

spatial frequency with little control from regional surface trends.  For the data analyzed in this 

work, PC bands 1-9 show reliable spatial coherence, particularly in the first 6 bands (Figure 2). 

 

The ISODATA classification method was run allowing a maximum of 9 clusters.  For this scene, 

water bodies form one of the clusters; thus land surfaces are limited to 8 classes (Figure 3).  As 

expected, most of the class distributions are strongly controlled by urban development associated 

with New York City.  However, at least one of the classes appears to relate to sea-side 

geographic location, either due to thermal conductivity or reflectance properties of sand, or to 

seaside climate.    

 

Average spectra from each class in Figure 3 were examined in order to understand the 

interannual or seasonal temperature differences that led to the spatial classification.  From these 

plots (Figure 4), it appears that the most significant difference between Long Island regions is in  

summertime surface temperatures.  Winter temperatures for all classes are largely similar.  Class 

3, which is restricted to urban areas, exhibits the highest summer temperatures, whereas Class 1, 

also restricted to urban areas, exhibits the lowest summer temperatures.  The differences between 

class 1 and 3 may be related to the difference in shadow-producing structures like tall buildings, 

or to differences in vegetative cover.  Higher spatial resolution images such as those from the 

Landsat Thematic Mapper are needed to investigate these differences.  The average spectra for 

Classes 4, 5 and 7, which fall in eastern Long Island and Connecticut, are not statistically 

separable from one another, and should be recombined.  Classes 1, 3 and 8, which largely fall in 
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Manhattan but also include seaside surfaces, exhibit more short-term temporal variability than 

the other classes.  The cause for this variability is unclear.  

 

 

Figure 2. Principal component (PC) bands 1-9 and band 229 for comparison.  High spatial 

frequency, as exhibited in band 229, suggests that the principal component identified is not a real 

surface component.  Bands above ~PC6-9 start to exhibit this behavior.   
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Figure 3.  Classification map derived from interannual surface temperatures. 

 

 

Figure 4.  Average temperature spectra from the eight clusters identified using unsupervised 

classification.    

 

Conclusions and Future Work: 

The preliminary work presented here suggests that the classification and principal component 

techniques, which are usually applied to spectral reflectance data, may also be useful for defining 

microclimate regimes based on seasonal or interannual temperature records.   Future work will 
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include analysis of Landsat temperature records, which have a 60-90 m/pixel spatial resolution 

and span a longer time period, as well as analysis of remotely derived near surface air 

temperatures.  Spatial distributions of microclimates derived from this work can be compared 

with spatial trends in vegetation productivity (derived from remotely measured spectral 

information) and soil cover.  Comparisons with land use/land cover maps may also help to 

isolate the primary controls (e.g., land cover, meteorological phenomena) on microclimates in 

this region.     
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