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TRANSFINITE GRAPHS WHOSE NODES OF HIGHEST
RANK ARE PRISTINE

A. H. Zemanian

Abstract — Eccentricities, blocks, and centers are examined for those transfinite con-
nected graphs whose nodes of highest rank are “pristine” in the sense that those nodes do
not embrace nodes of lower ranks. When there are only finitely many such nodes of highest
rank, the infinitely many nodes of all ranks have eccentricities of the form w” - p, where w is
the first transfinite ordinal, ~ is the rank of the nodes of highest rank, and p lies in a finite
set of natural numbers. Furthermore, two known theorems concerning finite conventional
graphs are extended transfinitely as follows: The center is contained in a single block of
highest rank. Also, when every loop of the transfinite graph is confined within a section
of highest rank, the center either is a single node of highest rank, or is the set of internal
nodes of a section of rank one less than the highest rank, or is the union of the latter two
kinds of centers.

Key Words: Graphical eccentricities, graphical blocks, graphical centers, transfinite

graphs, distances in graphs.

1 Introduction

In a prior work [5] it was established that an ordinal-valued metric d: M ~» R; can be
assigned to a set M of nodes in a transfinite connected graph G* of rank v. M contains
all the nonsingleton nodes of G¥ (that is, those nodes containing two or more extremi-
ties of subgraphs) and may contain some—but not necessarily all—the singleton nodes, as
well. To each pair of nodes in M, d assigns a countable ordinal representing a finite or

transfinite “distance” between those nodes. That work also examined the generalizations



of eccentricities and centers for transfinite graphs, as well as other related concepts.

The present work is a continuation of that study [5]. It establishes a finite range of
possible transfinite ordinals for the eccentricities of the nodes of G”. It also extends trans-
finitely two standard results for finite graphs, namely, the center of a finite graph lies within
a block, and, when the graph is a finite tree, the center is either a single node or two adja-
cent nodes. The transfinite extensions of these results allow loops within G“. However, an
additional tree-like structure is required for the last result—but only at the highest rank.
To obtain all this, we employ some restrictions on G”; these are stated in the next Section.
The open problems arising when these restrictions are relaxed appear to be formidable.

Please note that we use the natural sum of ordinals {1, page 355] whenever ordinals are

added, as was the case in [5], too.

2 Some Assumed Conditions

The following assuinptions will always be imposed upon the transfinite »-graph G¥ through-
out this paper.

Assumptions 2.1.
(a) The rank v is restricted to 1 < v <w, v £ 4.
(b) G¥ is v-connected.
(¢) All v-nodes are pristine.

(d) If two tips are nondisconnectable, they are either shorted together or at least one of

them is open.
(e) There are only finitely many boundary v-nodes.

Let us now explain each of these assumptions.

Assumption 2(a): The ranks of transfinite graphs and of their subgraphs and nodes are
of two kinds: ordinals (which may be either natural numbers or countable ordinals) and
arrow ranks. Each limit-ordinal rank A is preceded by an arrow rank X, which in turn is

larger than every ordinal rank less than A. See [5, Sec. 5] for a definition of an arrow rank.



Since we are restricting v to 0 < v < w, the only arrow rank we need consider is &, where
w is the first transfinite ordinal. We disallow &-graphs, but &-paths occur by definition in
w-graphs [4, pages 42-43].

The extension of our results to ranks higher than w simply repeats the arguments needed
for the ranks no larger than v, at least to the extent that v-graphs can be constructed {4,
Sec. 2.5].

Furthermore, we shall restrict our attention to the “maximal” nodes in G¥. Let us
explain: A transfinite a-node z® of rank o (0 < a < v) is a set containing one or more
“(a — 1)-tips” plus possibly a 3-node y® of rank B < a. We say that y® is “embraced” by
z®. The $-node may contain a y-node of rank v < 3, and so forth through finitely many
ranks. An (a — 1)-tip is an equivalence class of one-way infinite paths (called one-ended
paths) that represents an infinite extremity of an (e —1)-graph. When a = 0, an (@ —1)-tip
is one tip of a branch. (See[4, pages 9, 30, 37, and 42] for a thorough discussion of this
structure.) On the other hand, an a-node z* might be embraced by a node of higher rank.
When such is not the case, we say that z* is maximal. Qur discussion will concentrate on
the maximal nodes, and we will not keep repeating the adjective “maximal.” If a considered
node is not maximal, we will say so.

Assumption 2(b): Two nodes (resp. two branches) are said to be v-connected if there
is a path of rank » or less that terminates at those nodes (resp. terminates at 0-nodes of
those branches). If this is the case for all pairs of nodes in G¥, GV is said to be v-connected.
(See[4, pages 10, 33, and 43] for the definitions of such transfinite paths.)

Assumption 2.1(c): The nodes of highest rank in G” are the v-nodes. In this work, those
nodes are not allowed to embrace nodes of lower rank. We refer to this condition by saying
that all the »-nodes are pristine. Since by definition every &-node embraces nodes of lower
rank [4, page 37], &-nodes are disallowed by this assumption.

Assumption 2.1(d): v-connectedness between nodes (or branches) is a binary relation-
ship that is reflexive and symmetric, but unfortunately not always transitive. For instance,
node z may be v-connected to node gy, which in turn is v-connected to node z, but then

z need not be v-connected to z. See [4, Examples 3.1-5 and 3.1-6] for illustrations of



this phenomenon. This leads to some formidable difficulties. The latter however, can be
avoided if we impose Assumption 2(d), which asserts that two tips having representative
paths that meet infinitely often as the tips are approached (i.e., are “nondisconnectable”)
are embraced by the same node (i.e., are “shorted together”)—except possibly when at
least one of those tips is “open” (i.e., when that tip is the sole member of a singleton node).
Under Assumption 2(d), transitivity of v-connectedness will hold for all nonsingleton nodes
[4, Theorem 3.5-2] and possibly for some singleton nodes! as well. M will denote the set
of all such nodes. There are different ways of choosing M depending upon which singleton
nodes are added to the set of nonsingleton nodes. Henceforth, it is understood that M has
been selected and fized with all nonsingleton nodes being in M and that the nodes we refer
to are in M.

The following lemma has been established in [4, Lemma 3.3].

Lemma 2.2. Given any two nodes (in M), there exists at least one path terminating
at those two nodes.

Assumption 2.1(e): To explain this, we first need to consider the idea of a “(v — 1)-
section” S¥~1. This is a subgraph [4, page 32] of G induced by a maximal set of branches
that are pairwise (v — 1)-connected [4, page 49].2 By virtue of Assumption 2.1(d), the
(v — 1)-sections partition G¥, that is, each branch is in one and only one (v — 1)-section [4,
Corollary 3.5-6]. $¥~! contains nodes of all ranks up to an including v. Because all v-nodes
are now assumed to be pristine, the nodes of $¥~! of ranks less than v are “internal nodes”
of $¥~1, and the v-nodes of S*~1 are “bordering nodes” of S*~! [4, page 81]. We can
view the bordering v-nodes as lying at the infinite extremities of $*~! because they can be
reached only along one-ended (v — 1)-paths of $¥~1. All the other nodes (i.e. the internal
nodes) of §¥~1 are of ranks less than » and are not embraced by bordering nodes; hence,
they cannot be found at the infinite extremities of S*~1. The set i(S¥~!) of all internal

nodes of $¥~! will be called the “interior” of SV~ 1.

!The singleton nodes are usually inconsequential because they do not contribute to the connectivity of
G", but there are circumstances where some of them might be of importance.

*This is the first definition of a (v — 1)-section. The second equivalent definition requires a correction; it
is given in the “Errata for Books” in the web page: www.ee.sunysb.edu/ " zeman.




A “boundary node” of $*~! is a bordering node (and hence of rank v) that contains
(v — 1)-tips of §¥~! and also (v — 1)-tips of one or more other (v — 1)-sections of G*. Thus,
a boundary node lies at the infinite extremities of two or more (v — 1)-sections and thereby
connects them. A v-path can pass from the interior of one (v — 1)-section into the interior
of another (v — 1)-section only by passing through a boundary node. Assumption 2.1(e)
asserts that there are only finitely many boundary nodes in G¥. However, G¥ may contain
infinitely many non-boundary bordering nodes.

The idea of a “component” is similar to but different from a (v—1)-section. A component
of a subgraph H of G” is a subgraph of H induced by a maximal set of branches in H that
are v-connected [4, page 49]. Because of Assumption 2.1(b), G¥ has just one component,
namely, itself. However, a proper subgraph H of G may have many components. For
example, if H consists of two (v — 1)-sections that do not share any boundary nodes, then

each of them is a component of H.

3 Eccentricities
A metric d can be defined on all pairs of nodes in M as follows:
d(z,y) = min{|P;,|: 2,y € M} (1)

where |P; 4| is the ordinal-valued length for a path P, , terminating at the nodes z and y
and the minimum is taken over all such paths. That minimum exists because the ordinals
comprise a well-ordered set. In fact, d(z,y) is a countable ordinal. See [5, Sec. 2] for the
definition of the length |P;,| and [5, Sec. 4] for a proof that d is a metric. Because the
minimum is achieved, we can sharpen Lemma 2.2 as follows.

Lemma 3.1. Given any two nodes x and y, there exists a path Q4 for which |Qzy| =
d(z,y).

There may be more than one such path Q(z,y). Each one of them is called an z-to-y
geodesic.

Lemma 3.2. If P is a two-ended v-path, then |P| = w¥ - k, where k is the number of

(v — 1)-tips traversed by P.



Proof. This follows directly from the definition of the length |P| and the fact that all
v-nodes are pristine. O

Lemma 3.3.

(a) Let z¥ be a bordering node of a (v — 1)-section S¥~!, and let z be an internal node of
S¥~1. Then, there exists a one-ended (v — 1)-path PY7' within S¥=1 that terminates
at z and reaches z* with its one and only (v — 1)-tip. Moreover, the length |PY7'| of
Pr7lisw¥. PY7' is a z-to-x geodesic. Finally, all one-ended (v — 1)-paths within

S¥~1 terminating at an internal node of $*~! and reaching a bordering node of §*~?

have the length w".

(b) Let z¥ and y* be two bordering nodes of S¥~1. Then, there ezists an endless (v — 1)-
path P;’y;l within $¥~! that reaches z* and y* through its two (v — 1)-tips. Moreover,
the length |P2;| of P2t isw”-2. Pyl is an z¥-to-y” geodesic. Finally, all endless
(v — 1)-paths in §*~! reaching two bordering nodes of S*~1 have the length w” - 2.

Proof. For part (a), choose any representative one-ended path Q“~! of a (v — 1)-tip of
S$¥~! contained in z¥. Let R® (p < v) be a two-ended path that terminates at z and at a
node of Q¥~1. Then, Q¥~! U R” contains the asserted path P;’;l according to [4, Corollary
3.5-4]. |PZz'| = w¥ because of Lemma 3.2 and the fact that P¥;! has exactly one (v —1)-tip
[5, Sec. 2]. Furthermore, any path that terminates at z and z” must pass through at least
one (v — 1)-tip because z" is pristine; therefore, that path must have a length no less than
w”. Hence, P, . is a geodesic. For the final assertion, just note that any such one-ended
path traverses exactly one (v — 1)-tip.

Part (b) is proven similarly, but now we use two representative one-ended paths, one
for each of z¥ and y¥. O |

Lemma 3.4. Let z¥ be a bordering node of a (v — 1)-section §¥~1, let z be an internal
node of $*~1, and let y be any node of G*. Then, |d(z",y) — d(z,9)| < w’.

Proof. By Lemma 3.3(a), d(z,2”) = w”. Since, d is a metric,

d(z",y) < d(z",2) + d(z,y) = W + d(z,y).



Also,
d(z,y) < d(z,2") + d(z¥,y) = ¥ + d(z",y).

These inequalities yield the conclusion. O

The eccentricity e(z) of a node z € M is defined by
e(z) = sup{d(z,y):y € M}. (2)

When the supremum is achieved at some node § € M, e(z) is a countable ordinal. If the
supremum is never achieved, e(z) is an arrow rank. Three examples of the occurrence of
arrow-rank eccentricities are given in [5, Examples 6.1, 6.4, and 6.5]). Another is shown in
the next example. It may be noted that each of these examples violate either Conditions
2.1(c) or 2.1(e). We will show that, when all of Conditions 2.1 are satisfied, arrow-rank
eccentricities do not occur.

Example 3.5. Fig. 1 shows a 1-graph® with a single non-pristine 1-node y!, which
embraces a (non-maximal, unlabeled) 0-node. There are two 0-sections; the 0-nodes z (k =
1,2,3,...) are the internal nodes of one of them, and the 0-nodes zg,p (k=1,2,3,...;5p=
0,1,...,k) are the internal nodes of the other. The eccentricities are as follows: e(z9) =
w-2, e(y!) = w, e(zkp) = w+ k + p. This 1-graph violates Condition 2.1(c) because y! is
not pristine. O

We will make use of the following lemma, a more general version of which has been
established in [5, Theorem 7.1]. It is a consequence of Assumption 2.1(c).

Lemma 3.6. All the internal nodes of any (v — 1)-section have the same eccentricity.

Theorem 3.7. The eccentricities of all the nodes are contained within the following
finite set of ordinals:

{w’-p:1<p<2m+2} (3)

Here, p and m are natural numbers, and m is the number of boundary v-nodes.
Proof. The eccentricity of any node is at least as large as the distance between any

internal node of a (¥ —1)-section and any bordering v-node of that (¥ —1)-section. Therefore,

3 All our examples examine only 1-graphs. However, any 1-graph can be converted into a v-graph (v > 1)
by replacing each branch by an endless (¥ — 1)-path, and this will yield an example with a higher rank.



Lemma 3.3(a) implies that the eccentricity of any node of G“ is at least w”, whence the
lower bound in (3). The proof of the upper bound requires more effort.

First of all, we can settle two simple cases by inspection. If G” consists of a single
(v — 1)-section with exactly one bordering »-node (in M, of course), then all the nodes of
G¥ have the eccentricity w”. If that one and only (v — 1)-section for G” has two or more
(possibly infinitely many) bordering nodes, the internal nodes have eccentricity w”, and the
bordering nodes have eccentricity w” - 2. In both cases, the conclusion of the theorem is
fulfilled with m = 0.

We now turn to the general case where G has at least one boundary v-node and therefore

at least two (v — 1)-sections. G” will have a two-ended v-path of the following form:
P(;I,k = {zo’P(;I—lvzllj’PII’—l""’xZ—I’PI’cl:llvzk} (4)

(See [4, pages 34 and 44] for a definition of a v-path.) Because all v-nodes are pristine, the
z? (i=1,...,k— 1) are nonsingleton bordering »-nodes (possibly boundary v-nodes), and
the P~ (i = 2,...,k —2) are endless (v — 1)-paths. The same is true of z¢, zx, P{"?, and
P,'c’_"l1 if zo and zj are v-nodes, too. If 2 (resp. zj) is of lower rank, then it is an internal
node, and Py~! (resp. P{~})is a one-ended (v — 1)-path.

Let us first assume that zp and zj are internal nodes. Let Sg~! be the (v — 1)-section
v

containing zo. Let z¥ be the last v-node in (4) that is incident to Syt a

7 will be a

boundary »-node because it is also incident to another (v — 1)-section, say, S¥~'. If need
be, we can replace the subpath of (4) between z¢ and z;, by a w-path {zo,Q47?, z¥ }s
where Q4! is a one-ended (v~ 1)-path and resides in S§™?, to get a shorter overall »-path
terminating at o and zg.

Now, let S¥7! be the next (v — 1)-section after Sy~ through which our (possibly)
reduced path proceeds. Also, let z be the last v-node in that path that is incident to
Sy z, will be a boundary »-node incident to Sj =1 and another (v — 1)-section Sy™.
If need be, we can replace the subpath between z;, and z;, by a v-path {m;’l, Q‘]’_l,zﬁz},
where Q4! is an endless (¥ — 1)-path residing in Sy~!. This will yield a still shorter overall

v-path terminating at z¢ and zy.

Continuing this way, we will find a boundary v-node z}, that is incident to the (v —1)-

8



section SJ‘-’_1 containing zx. Finally, we let Q‘;‘l be a one-ended (v — 1)-path in S;-"'l
terminating at z:-’j and zj. Altogether, we will have the following two-ended v-path, which

is not longer than PY, (actually shorter if the aforementioned replacements were needed).

-1 -1 -1
Q‘(;,k = {xO’QO ,z:'ll,Ql aa::{za"'az:';,Q_‘; ,.’L‘k} (5)

Because all the v-nodes herein are boundary nodes and pristine, the length |Qo x| is obtained
simply by counting the (v — 1)-tips traversed by Qg , and multiplying by w” (see Lemma
3.3). We get [Qg . = w” - (25), where j < m. Finally, we note that any geodesic path
between zo and zx has a length no larger than than |Qf | = w” - (27).

Next, consider the case where zo is a bordering v-node of Sg_l and r, remains an
internal node of S;-"l. PY~! in (4) will be an endless (v — 1)-path residing in some (v — 1)-
section S§~!. We let z¥ be thelast v-node in (4) incident to S¢~1. Otherwise our procedure
is as before, and we can now conclude that |Qg ;| = w* - (2j + 1) because the passage from
zo into Sy~ traverses one (v — 1)-tip.

The same conclusion, namely, |Q5’k| = w"-(2j 4+ 1) holds if z, is a bordering v-node
and zg is an internal node. Finally, if both z¢ and z; are bordering v-nodes, we get
|Qg x| = w” - (25 + 2). For all cases, we can assert that the geodesic between zo and =z has
a length no larger than |Qf .| = w* - (25 + 2).

Now, the eccentricity e(z¢) for zq is the supremum of the lengths of all geodesics starting
at zg and terminating at all other nodes z;. Since j < m where m is the number of boundary
v-nodes in GY, we can conclude that e(zp) < w” - (2m + 2), whatever be the node z¢. O

The last proof has also shown that all geodesics in G¥ will have the form of (5). Moreover,
the lengths of all geodesics will reside in the finite set of values (3). Consequently, for every
node zo of G¥ there will be at least one geodesic of maximum length starting at z¢ and
terminating at some other node z of G”. Such a geodesic is called an eccentric path for z,
and z is called an eccentric node for zo. In general, there are many eccentric paths and
eccentric nodes for a given zg.

Corollary 3.8. Let ¥ be any bordering v-node of a (v — 1)-section §¥~1 with the
eccentricity e(z¥) = w” - k, and let z be an internal node of S~ with the eccentricity

e(z) =w” -p. Then, |[k-p| < 1.



Proof. Let P., be the two-ended v-path obtained by appending z“ to a one-ended
(v — 1)-path in S¥~! that reaches z” and terminates at the internal node 2. By Lemma
3.3(a), P/, is a z-to-z” geodesic, and |P,| = d(z,1") = w”. Now, let w be any node. By

the triangle inequality for the metric d,
d(z,w) < d(z,2") + d(z",w) = W + d(z",w).

Next, let w be an eccentric node for z. We get d(z,w) = e(z) and e(z) < w” + d(z", w).

Moreover, d(z”, w) < e(z"). Therefore,
e(z) < W + e(z"). (6)

By a similar argument with w now being an eccentric node for z*, we get

e(z”) < W + e(z). (7)
So, with (6) we have w” -p < w’ +w” -k =w’ - (k+1),0r p < k+ 1. On the other hand,
with (7) we have in the same way k < p+ 1. Whence our conclusion. O

That & — p can equal 0 is verified by the next example.

Example 3.9. Consider the 1-graph of Fig. 2 consisting of a one-ended 0-path of
0-nodes w9 and an endless 0-path of 0-nodes y) connected in series to two 1-nodes z! and
2! as shown. The eccentricities are as follows: e(wg) =w-3fork=1,2,3,...,e(z') = w-2,
e(y)) =w-2fork=...,~1,0,1,...,and e(z!) = w-3. Thus, e(z!)—e(y?) = 0, as asserted.
O

An immediate consequence of Corollary 3.8 is the following.

Corollary 3.10. The eccentricities of all the nodes form a consecutive set of values in
(3).

We will need two more results. They hold except for the trivial case where G” has only
one (v — 1)-section and only one v-node.

Lemma 3.11. Ezcept for the trivival case just noted, a non-boundary bordering vv-node
z¥ of a (v—1)-section S*~! has an eccentricity that is ezactly w” larger than the eccentricity

of the internal nodes of SV~ 1.

10



Proof. This follows from Lemma 3.6 and the fact that any eccentric path starting at
z¥ and entering S*~! must pass through exactly one (v — 1)-tip. O

An end (v — 1)-sectionis a (v — 1)-section having exactly one boundary v-node.

Lemma 3.12. Ezxcept for the trivial case, the eccentricity of the internal nodes of an
end (v — 1)-section is ezactly w¥ larger than the eccentricity of its boundary v-node.

Proof. Any eccentric path of any node of {(S¥~!) must pass through that boundary

v-node. So, the argument of the preceding proof works again. O

4 The Center Lies in a v-Block

This is a known result for finite graphs [2, Theorem 2.2], [3, Theorem 2.9], which we now
extend transfinitely. The center of G¥ is the set of nodes having the minimum eccentricity.
To define a “v-block,” we first define the removal of a pristine nonsingleton v-node z¥ to be
the following procedure: z” is replaced by two or more singleton v-nodes, each containing
exactly one of the (» — 1)-tips of ¥ and with every (v — 1)-tip of z¥ being so assigned. We
denote the resulting v-graph by G — z¥. Then, a subgraph H of G¥ will be called a »-block
of G¥ if H is a maximal v-connected subgraph such that, for every z”, all the branches

of H lie in the same component of G¥ — z¥.

A more explicit way of defining a v-block
is as follows: For any w-node z¥, G¥ — z¥ consists of one or more components. Choose
one of those components. Repeat this for every v-node, choosing one component for each
v-node. Then, take the intersection? of all those chosen components. That intersection
may be empty, but, if it is not empty, it will be a v-block of G¥. Upon taking all possible

¥, and then choosing the

intersections of components, one component from each G — z
nonempty intersections, we will obtain all the v-blocks of G¥.
Furthermore, we define a cut-node as a nonsingleton »-node z* such that G¥ — z* has
two or more components. It follows that the cut v-nodes separate the v-blocks in the sense
that any path that terminates at two branches in different v-blocks must pass through at

least one cut »-node. (Otherwise, the two branches would be in the same component of

GY —z¥ for every z” and therefore in the same v-block.) In summary, we have the following:

*This is the subgraph induced by those branches, each of which lie in all the chosen components.

11



Lemma 4.1. The v-blocks of G¥ partition® G¥, and the cut v-nodes separate the v-
blocks.

Proof. For each z¥, each branch will be in at least one of the components of G¥ — z¥,
and therefore in at least one of the v-blocks. On the other hand, no branch can be in two
different v-blocks because then there would be a cut »-node that separates a branch from
itself—an absurdity. O

Lemma 4.2. Each (v — 1)-section $*~! is contained in a v-block.

Proof. Since every v-node is pristine, any two branches of $¥~! are connected through
a two-ended path of rank no greater than » — 1, and that path will not meet any »-node.
Thus, $*~! will lie entirely within a single component of G — z¥, whatever be the choice
of . By the definition of a »-block, we have the conclusion. O

By definition, all the bordering nodes of a (v—1)-section $*~! will be »-nodes. Moreover,
every (v — 1)-section S¥~! will have at least one bordering node, and all the bordering
nodes of $¥~! will be nodes of $¥~!. Thus, by Lemma 4.2, every v-block H will contain the
bordering v-nodes of its (¥ — 1)-sections, and therefore the rank of H is ». So, henceforth
we denote ‘H by H”. In general, a »-node can belong to more than one (v — 1)-section and
also to more than one ~-block.

Example 4.3. Fig. 3 shows a l-graph in which the P? (k = 1,2,3,4,5) are endless
0-paths and v!, wl, z!, y!, and 2! are 1-nodes. There are two 1-blocks: One of them
consists of the P? along with »! and w', and the other consists of the P? (k = 2,3,4,5)
along with w!, z!, ¥!, and z!. The only cut 1-node is w!. Also, there are five 0-sections,
each consisting of one endless 0-path along with its two bordering 1-nodes. O

Example 4.4. The condition that the »-nodes are pristine is needed for Lemma 4.2 to
hold. For example, Fig. 4 shows a 1-graph with a nonpristine 1-node z!, three 1-blocks,®
and two 0-sections. Branch b; induces one 1-block, branch by indices another 1-block, and
all the branches of the one-ended 0-path P° induce the third 1-block. However, b; and b,

together induce a single 0-section S, and the branches of P° induce another 0-section. S°

®See [4, page 33] for a definition of a partition of G*.
®Here, we are extending the definition of a 1-block by requiring that the elementary tips of =’ also be
placed in singleton nodes.

12



lies in the union of two 1-blocks. O

We are finally ready to verify the title of this section concerning the center of G¥, which
by definition is the set of nodes having the minimum eccentricity. According to Theorem
3.7, such nodes exist. Having set up appropriate definitions and preliminary results for the
transfinite case, we can now use a proof that is much the same as that for finite graphs [2,
Theorem 2.2], [3, Theorem 2.9].

Theorem 4.5. The center of G¥ lies in a v-block.

Proof. Suppose the center of G” lies in two or more v-blocks. Let H{ and Hj be two
of them. By Lemma 4.1, there is a cut v-node z” separating them. Let u be an eccentric
node for ¥, and let P, be an z”-to-u geodesic. Thus, |P;,] = e(z¥). Py, cannot contain
any node different from z” in at least one of H} and H%, say, H}. Let w be a center node
in ‘HY other than z¥, and let P, ; be a w-to-z” geodesic. Then, P, U P, is a path whose
length satisfies | Py z U Py y| = |Puwz| +|Peul > 1+ €(z). This shows that the eccentricity of
w is greater than the minimum eccentricity, that is, w is not a center node—a contradiction

that proves the theorem. O.

5 The Centers of Cycle-Free v-Graphs

We now specialize our study to a certain kind of »-graph that encompasses the class of
transfinite trees as a special case. (A transfinite v-tree is a v-connected v-graph having no
loops.) The kind of »-graph we now deal with is one having no v-loop that passes through
more than one (v — 1)-section. All other loops are allowed. Let us be more specific.
Because all the v-nodes are pristine, every loop of rank less than » must lie within a single
(v—1)-section $¥~1, that is, all its nodes are internal nodes of $*~1. Such loops are allowed.
Moreover, a v-loop might also lie in a single (¥ — 1)-section S¥~! in the sense that all its
nodes of ranks less than v are internal nodes of $¥~! and all its v-nodes are bordering nodes
of §¥~1; thus, all its branches lie in $*~!. Such a loop will pass through a closed sequence
{z¥,24,...,2}_;, 2%} of bordering v-nodes of $*~! alternating with endless (v — 1)-paths
within §¥~1. The possibility of such endless (v — 1)-paths within $*~! is implied by Lemma
3.3(b). Such v-loops within §¥~! are also allowed. On the other hand, it is possible in
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general for a v-loop to pass through two or more (v — 1)-sections. For the sake of a succinct
terminology, we shall call the latter kind of v-loop a cycle. We will henceforth assume that
GY is so structured that it does not have any cycle and will say that G¥ is cycle-free.

In conformity with our definition of an end (v — 1)-section as a (v — 1)-section having
exactly one boundary v-node, we now define a non-end (v — 1)-section as a (v — 1)-section
having two or more boundary v-nodes. Note that, when G” is cycle-free, two (v — 1)-
sections cannot share more than one boundary »-node, for otherwise G would contain a
cycle. However, still more is implied by the cycle-free condition.

Lemma 5.1. Assume that G¥ is cycle-free. Then, G¥ has only finitely many non-end
(v — 1)-sections.

Proof. If there are no non-end (» — 1)-sections, the conclusion is trivially satisfied. So,
assume otherwise, and choose any non-end (v — 1)-section. Label it and all its boundary

“v-nodes by “1.” Label by “2” all the non-end (# — 1)-sections that share boundary v-nodes
with that 1-labeled (» — 1)-section (if such exist), and label their unlabeled boundary v-
nodes by “2,” as well. Each 2-labeled section shares exactly one boundary v-node with the
1-labeled (v — 1)-section and does not share any 2-labeled v-node with any other 2-labeled
(v —1)-section, for otherwise G* would contain a cycle. It follows that the number of labeled
v-nodes is no less than the number of labeled (¥ — 1)-sections. Next, label by “3” all the
non-end (» — 1)-sections that share boundary v-nodes with the 2-labeled sections (if such
exist), and label their unlabeled boundary v-nodes by “3,” as well. Again, each 3-labeled
(v — 1)-section shares exactly one boundary r-node with exactly one 2-labeled (v — 1)-
section and does not share any 3-labeled v-node with any other 3-labeled (» — 1)-section,
for otherwise G would contain a cycle. Here, too, it follows that the number of labeled
v-nodes is no less than the number of labeled (v — 1)-sections. Continue this way until all
the non-end (» — 1)-sections have been labeled along with their boundary »-nodes. At the
end, the number of labeled v-nodes will be no less than the number of (¥ — 1)-sections.
Since there are only finitely many boundary v-nodes (Condition 2.1(e)) and since these are
the v-nodes that have been labeled, our conclusion follows. O

Our next objective is to replace our cycle-free v-graph G (¥ > 1) by a conventional
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finite tree (i.e., a O-connected 0-graph having no loop and only finitely many branches),
a correspondence that will be exploited in the proof of our final theorem. The nodal
eccentricities for 7° will be related to the nodal eccentricities for G” in a simple way (see
Lemma 5.2 below).

In the following, the index k will number the boundary v-nodes of G¥ (one number for
each) as well as sets of non-boundary bordering v-nodes. The index m will number the
interiors of non-end (» — 1)-sections (one number for each interior) as well as sets of the
interiors of end (v — 1)-sections.

Consider, first of all, a non-end (v — 1)-section $¥~1. Each of its boundary v-nodes z¥
is replaced by a 0-node z) having the same index number k. Also, all the nonboundary
bordering v-nodes of §¥~! (if such exist) are replaced by a single 0-node z2,. Finally, the
interior 4(S¥~!) is replaced by a single 0-node y%. A branch is inserted between y% and
each of the z{ and between y°, and z%, as well. Thus, S~ is replaced by a star 0-graph.
We view z§ (resp. z§,, resp. y5) as representing zj (resp. zf,, resp. any internal node of
S¥~1). For any y” € i(S*~!), we have d(y”,z%) = w” (Lemma 3.3(a)) and d(y2,,z%) = 1.

Next, consider all the end (v — 1)-sections that are incident to a single boundary node
z¥,. We represent all of their interiors by a single 0-node y2,, and we insert a branch
between yC, and z%.. If at least one of those end (v — 1)-sections has a non-boundary
bordering v-node z.,, we represent all of them by another single 0-node z%,,, and we insert
another branch between y2, and z%.. So, all of these end (¥ — 1)-sections incident to the
chosen z¥, are represented either by a single branch incident at z{, and ygl, or by two
branches in series incident at xg,,, ygl,, and xg,,,. Here, too, we have replaced the said set of
end (v — 1)-sections by either a one-branch or two-branch (elementary) star 0-graph. Again,
we view z0., (resp. y°,) as representing any z%. (resp. any internal node of the said end
(v — 1)-sections). For any internal node y” in any one of those end (v — 1)-sections, we have
Ay, ) = (Y7, 2hn) = w* and d(y%,20) = d(y,2%m) = 1.

We now connect all these star 0-graphs together at their end 0-nodes in the same way
that the (v — 1)-sections are connected together at their boundary v-nodes. The result is a

finite 0-tree 7°. Indeed, since G” is cycle-free, 7° has no loops. Also, by Assumption 2.1(e)
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and Lemma 5.1, 7° has only finitely many branches.
. Lemma 5.2. 4 node z of any rank in G¥ has an eccentricity e(z) = w¥ - p if and only
if its representative 0-node z° in T° has the eccentricity e(2°) = p.

(Here again, p is a natural number.)

Proof. An eccentric path P” of any node z of any rank in G” passes alternately through
(v — 1)-sections and bordering v-nodes and terminates at z and an eccentric node for z.
Because all v-nodes are pristine, the length |P”| is obtained by counting the (v — 1)-tips
traversed by P and multiplying by w” (Lemma 3.2). Furthermore, corresponding to P”
there is a unique path Q° in 7° whose nodes z% and yJ, alternate in Q° and represent the
bordering nodes z¥ and interiors of (¥ — 1)-sections S%! traversed by P“. Each branch
of Q° corresponds to one traversal of a (v — 1)-tip in P”, and conversely. Thus, we have
|P¥| = w” - p and |Q°| = p, where p is the number of branches in Q°. Also, since P” is an
eccentric path in G¥, Q0 is an eccentric path in Q°. Whence our conclusion. O

Here is our principal result concerning the centers of cycle-free v-graphs.

Theorem 5.3. The center of any cycle-free v-graph G¥ has one of the following forms:
(a) A single v-node z".
(b) The interior i(S*~1) of a single (v — 1)-section S,

(c) The seti(S*~1)u{z"}, where i(S*7) is as in (b) and =¥ is one of the bordering v-nodes

of S¥71.

Proof. In the trivial case where G* has just one (v — 1)-section and just one v-node,
all the nodes have the same eccentricity and form (c) holds. So, consider the case where G¥
has at least two (v — 1)-sections or at least two v-nodes. Because of Lemmas 3.11 and 3.12,
neither a non-boundary bordering v-node nor the interior of an end (»—1)-section can be in
the center because their eccentricities will be larger than the eccentricities of their nearest
boundary »-nodes. Thus, any center node of G” is either a boundary »-node or an internal
node of a non-end (v — 1)-section. Also, the correspondence between boundary v-nodes z¥
and their representative 0-nodes z9 in 70 is a bijection, and so, too, is the correspondence

between the interiors i(S% ') of non-end (v — 1)-sections and their representative 0-nodes
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y2 in 7°. The eccentricities of these entities in G¥ are related to the eccentricities of their
representatives in 7° as stated in Lemma 5.2.

We now invoke an established theorem for finite 0-trees [2, Theorem 2.1]; namely, the
center of such a tree is either a single 0-node of a pair of adjacent 0-nodes. When the center
of 79 is a single 0-node z, form (a) holds. When the center of 7° is a single 0-node y2,,
form (b) holds. Finally, when the center of 7° is a pair of adjacent 0-nodes, one of them

will be a 0-node z and the other will be a 0-node y2,, and thus form (c) holds. O
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