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Abstract

We present a localization technique based on RSS measurement. We apply iterative maximum (ML) likelihood method to

the problem where ML estimator can not be computed directly. The location of a object can be estimated by “least squares”

method in determining the node locations in ad-hoc sensor networks or a cellular location system where received signal strength

(RSS) measurement model is employed. Furthermore We can use that initialized estimate as the “initial guess” in the iterative

ML method. We show the iterative ML method outperforms least squares, and compare the performance to Cramer-Rao bound.

I. I NTRODUCTION

In certain specific problems regarding locating system, network-based localization solution using received signal strength

(RSS) is quite pertinent. As the prevalent examples, we can meet the problems as in determining the node locations in ad-hoc

sensor networks [1], cellular locating system by networked base stations [2], and so forth. In the problem of ad-hoc wireless

sensor networks, locating sensor node is an actively studied issue, and locating cellular phone using networked base stations

is also actively studied in various aspects of methods. In the U.S., the Federal Communications Commission (FCC) mandated

wireless service providers to locate mobile phones of emergency 911 dialers (the enhanced 911, E-911) in 1996. Several

methods for locating object have been proposed and discussed recent years such as time of arrival (TOA) [3], time difference

of arrival (TDOA) [4], angle of arrival (AOA) [5], and so on. All methods estimate the location of object (node or cellular

handset) relating the “object” and “networked sensors or base stations”. Least squares method is always a good choice of the

solution for these methods because it does not require the knowledge of noise distribution and relatively simple and easy to

apply, and also it works well unless the problem is non-linear structured problem. Therefore, linear least squares method is

generally a good solution. Recently, other than location estimation methods mentioned above, received signal strength (RSS)

measurement-based locating method attracts attention of researchers. This article also focuses on locating system based on

RSS measurement model. RSS measurement already has been used in mobile assisted handoff procedure (IS-136, IS-54B). In

this article, we provide an accurate solution for locating method based on RSS measurement. Other than RSS based locating

method, every method requires more complicated process to estimate parameters such as the time delay or angle at the step

before estimating distance or location of source target (sensor node or mobile station). RSS model is relatively quite simple to

estimate the distance of source target compared to the other methods before we take the LS method step. We assume the one to

one mapping between target source and sensor node or base station in order to apply RSS model which is achievable by a grid

spacing of the field [6]. Once we are provided with LS method solution, we apply numerical ML method (Newton-Raphson

method) to achieve a finer accuracy of estimate.

ML estimator is always popular practical estimator especially when we are not sure if minimum variance unbiased (MVU)
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estimator exist or not, or when it is impossible to find it even if it exists. However, sometimes it is not easy or possible to apply

ML method because maximum likelihood function is difficult to compute or by some other reason. Least squares method is a

very good choice for TOA, TDOA, AOA, and RSS method. However, ML method is not pertinent to all but RSS because the

location of source target is not directly related with the measurement we receive in all methods except for RSS method. After

estimating pre-parameter estimation of delay, direction, or distance, we can easily apply least squares method to all, but we can

not apply ML method to all except for RSS method. RSS measurement model has direct relation between “location of source

target” and “measurement” as it can be seen from (1) in Section II. Therefore, we take advantage of RSS measurement model

to apply the most popular estimator. However, sometimes we need to use numerical ML method because it is not possible

to compute maximum likelihood function directly as in the case of (1). Another problem of iterative ML method is finding

the initial guess of the estimate, and that is the most important factor in iterative ML method. We can acquire a good “initial

guess” by LS method (see Section III) to apply numerical ML method (see Section IV) so that combining LS and iterative

ML results in very accurate locating estimate of the source target. We show the accuracy of the result of combining those two

popular methods comparing with Cramer-Rao bound (see Section V) in this article.

II. RSS MEASUREMENTMODEL

Consider the situations either a mobile station observesN control channels transmitted fromN base stations or distributed

nodes with some “anchor” nodes of which positions with respect to a certain global coordinate system are known. Our

approach of locating system can be applicable to these kind of problems. Anchor sensor nodes or Mobile station receive RSS

measurement from the target sensor node or base stations. From here on, we consider and focus only one situation of locating

mobile station, but the solution can be applicable to locating sensor nodes too in wireless sensor networks. We assume that

one to one mapping between measurement and the base station is performed without error to apply our solution. Received

signal strength is described in non-linear model as follows according to [7]:

yn = 10 log10

(
Ψdα

0

|rn − l|α
)

+ vn, n = 1, 2, . . . , N (1)

wherel is the location of a source target (here, mobile station),n is the base station index of which location is known,Ψ is the

received power between the source and mobile station at the reference distanced0, r is the location of base station,α is the

attenuation factor (α ≥ 1), v is background zero-mean Gaussian noise, andN is the total number of base stations surrounding

the mobile station. Therefore, the received signal strength depends on the distance between the mobile station (MS) and the

base station (BS). We may solve this equation by maximum likelihood (ML) method, but it can not be solved directly. Even

if we try to apply least squares method, the equation has to be modified to apply linear LS method (see Section III). We can
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still have option to apply ML method using iterative method such as “Newton-Raphson” method. In applying Newton-Raphson

method, it can never be over-emphasized, the importance of the selection of the initial guess. Therefore, we use the solution

of least squares (LS) method as the initial guess of iterative ML method for further improvement of locating system in this

article.

From the received measurement, we can estimate or compute the distance (required for LS method) between MS and BS

as follows when we assumed0 is 1 m andα is 2:

|rn − l|2 = Ψ10−( yn
10 ) (2)

The strength of RSS measurement drops very quickly as the distance increases according to (1). Because of that, we do not

use information from the BSs that are located relatively far from the MS and does not transmit very good information because

it takes big perturbation even by the small noise. We use 3 best measurement, which means 3 strongest received power when

we apply LS method. Note that if (1) is linear and background noise is Gaussian, then LS method is the same as ML method

[8].

III. L EAST SQUARESMETHOD

We adoptleast squaresmethod to obtain initial guess of the ML iterative (Newton-Raphson) method for locating system.

Least Squares method is widely used and produce a very good estimate close to optimum in many respects [9]. Least squares

method is frequently applied in the literature regarding locating system for a long time [1], [10], [11]. We adopt it and apply it

for initial guess of the ML iterative method with improved performance. We present details of LS method in locating mobile

station using RSS measurement in this section.

A. Least Squares

From (2), theoretically, we need exactly 3 distance information between the MS and the BSs, and 3 circles that are found

from the 3 distances are supposed to cross at one point each other without considering noise. However, we receive measurement

with noise, and we apply least squares (LS) method to estimate the true location of MS and LS can be applied regardless of

knowing noise information. We estimate 3 distances first from the noisy measurement according to (2), and they are denoted

by rA, rB , andrC respectively. If we denote the known locations of 3 base stations byA(a1, a2), B(b1, b2), andC(c1, c2)

respectively, least squares method is performed as follows.
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In X andY , cartesian coordinate, three circles are expressed as,

(x− a1)2 + (y − a2)2 − rA
2 = x2 + y2 + 2a1x + 2a2y + a1

2 + a2
2 − rA

2 = 0

(x− b1)2 + (y − b2)2 − rB
2 = x2 + y2 + 2b1x + 2a2y + b1

2 + b2
2 − rB

2 = 0

(x− c1)2 + (y − c2)2 − rC
2 = x2 + y2 + 2c1x + 2c2y + c1

2 + c2
2 − rC

2 = 0

After manipulating three equations, we have two linear equations as,

a1
2 − c1

2 − 2(a1 − c1)x + a2
2 − c2

2 − 2(a2 − c2)y = rA
2 − rc

2

b1
2 − c1

2 − 2(b1 − c1)x + b2
2 − c2

2 − 2(b2 − c2)y = rB
2 − rc

2

Linear least squares [9] solves these linear equations as follows:

Hx = d, then x̂ = (H>H)−1H>d. (3)

where

H =




2(a1 − c1) 2(a2 − c2)

2(b1 − c1) 2(b2 − c2)


, d =




a1
2 − c1

2 + a2
2 − c2

2 + rC
2 − rA

2

b1
2 − c1

2 + b2
2 − c2

2 + rC
2 − rB

2


, andx = [x y]>.

When the distances are estimated from the measurement data, least squares find the point which gives the least sum of

differences between the function of data and function of estimated point. WhenH is a singular matrix, there is not a solution

or the solution will be imaginary. We may use more data measurement to solve more dimensional linear equations. However,

in our RSS measurement model, the received power at the MS that are very far from the BS is not that good quality of

measurement. Therefore we use only 3 best measurement, which means we use 3 strongest measurement received for this

initial guess of the iterative ML method.

IV. M AXIMUM L IKELIHOOD APPROACH

Maximum likelihood estimator (MLE) is the most popular practical estimator as a alternative to the minimum variance

unbiased (MVU) estimator regardless of its existence or not for a given problem. However, sometimes it is very difficult to

find the MLE from the maximum likelihood (ML) function, or sometimes it is even more difficult to find the ML function itself

depending on the complexity of the problems. In those situations, we can approach in the way of numerical determination of

MLE, e.g., Newton-Raphson or scoring method when we can find at least ML function, and expectation-maximization (EM)

algorithm is appropriate when it is very difficult even to find ML function itself. From (1), we find that we can not find
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the solution which maximizes likelihood function directly. Therefore, we have to use numerical approach to perform the ML

method. We derive Newton-Raphson [12] method to apply ML estimator following.

A. Newton-Raphson Method Initialized by Least Squares Method

From (1), the received measurement from the BSn is

yn = 10 log10

(
Ψdα

0

|rn − l|α
)

+ vn (4)

To reduce the complexity of derivation, we setΨdα
0 = C, α = 2, and |rn − l|α = Dn. Then, the log likelihood function will

be

ln py(y; l) = ln

{
1

(2πσ2)N/2
exp

{
− 1

2σ2

∑ [
yn − 10 log 10

(
C

Dn

)]2
}}

(5)

wherey = {y1, y2, y3} because we use only 3 measurement, and it can be rewritten as

K − 1
2σ2

∑ [
yn − 10 log10

(
C

Dn

)]2

(6)

whereK is a constant which does not depend on the parameter we want to estimate, and we can rewrite it as

g(y) +
1
σ2

∑{
yn10 log

(
C

Dn
− 1

2

[
10 log10

(
C

Dn

)])}
(7)

whereg(y) is a function ofy, and parameter does not depend on it. Therefore,

ln py(y; l) = g(y) +
1
σ2

∑
(A) (8)

whereA is defined as

∑
(A) , d>y − 1

2
d>d (9)

, and

d =
[
10 log10

(
C

D1

)
10 log10

(
C

D2

)
10 log10

(
C

D3

)]>
(10)

Therefore,

ln py(y; l) = g(y) +
1
σ2

∑(
d>y − 1

2
d>d

)
(11)

and maximizing likelihood function is the same as maximizingd>y − 1
2d>d. In order to solve

∂ ln p(y; l)
∂l

= 0, ⇒ ∂

∂l

(
d>y − 1

2
d>d

)
= 0, (12)

We need to apply iterative method to findl that satisfies (12) as follows,

lk+1 = lk −
[

∂2

∂l2

(
d>y − 1

2
d>d

)]−1
∂

∂l

(
d>y − 1

2
d>d

) ∣∣∣∣
l=lk

. (13)
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Before we proceed, let us make some abbreviations as follows,

1
|rn − l|2 =

1
(rnx − lx)2 + (rny − ly)2

=
1

Dn
= Rn (14)

Xn = rnx − lx, Yn = rny − ly (15)

Q , d>y − 1
2
d>d (16)

Then,d>y − 1
2d>d can be modified as follows,

Q =
∑

yn10 log10

(
C

Dn

)
− 1

2

∑ [
10 log10

(
C

Dn

)]2

(17)

=
∑

yn10 log10(RnC)− 1
2

∑
[10 log10(RnC)]2 (18)

Then, the first and second derivatives ofQ can be computed as follows,

∂Q

∂lx
=

∑ (
yn

∂Rn

∂lx

1
Rn

)
−

∑[
10 log10 (RnC)

∂Rn

∂lx

1
Rn

]
(19)

= 2
∑

(ynXnRn)− 20
∑

[log10 (RnC) ·XnRn] . (20)

Similarly, we can compute first derivative with respect toy coordinate,

∂Q

∂ly
= 2

∑
(ynYnRn)− 20

∑
[log10 (RnC) · YnRn] . (21)

Next, the second derivative can be computed as follows,

∂Q

∂lx
2 =

∂

∂lx

{
2

∑
(XnRnyn)− 20

∑
[XnRn · log10 (RnC)]

}
(22)

= 2
∑ [

∂

∂lx
(XnRnyn)

]
− 20

∑ {
∂

∂lx
[XnRn · log10 (RnC)]

}
(23)

The first and second term can be computed as follows respectively,

∂

∂lx
(XnRnyn) =

∂Xn

∂lx
(Rnyn) + Xn

(
yn

∂Rn

∂lx

)
(24)

= −Rnyn + Xn · 2XnRn
2yn = Rnyn

(
2Xn

2Rn − 1
)

(25)

and the second term can be computed as,

∂

∂lx
[XnRn · log10 (RnC)] =

∂

∂lx
(XnRn) · [log10 (RnC)] + (XnRn)

∂Rn

∂lx

1
Rn

= Rn

(
2Xn

2Rn − 1
) · [log10 (RnC)] + 2Xn

2Rn
2.

Therefore,

∂Q

∂lx
2 = 2

∑ [
Rnyn

(
2Xn

2Rn − 1
)]− 20

∑ {
Rn

(
2Xn

2Rn − 1
) · [log10 (RnC)] + 2Xn

2Rn
2
}

. (26)
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Similarly,

∂Q

∂ly
2 = 2

∑[
Rnyn

(
2Yn

2Rn − 1
)]− 20

∑ {
Rn

(
2Yn

2Rn − 1
) · [log10 (RnC)] + 2Yn

2Rn
2
}

(27)

where we used

∂Rn

∂lx
=

2(rnx − lx)
[(rnx − lx)2 + (rny − ly)2]2

= 2XnRn
2, (28)

∂Rn

∂ly
=

2(rny − ly)
[(rnx − lx)2 + (rny − ly)2]2

= 2YnRn
2. (29)

We use the the initial guess ofl1 from the solution of “least squares method” using 3 measurement (see Section III).

V. SIMULATIONS

In this section, we show a simple simulation where we apply LS method at the first step, and apply ML method using the

solution of LS method. The Cramer-Rao bound (CRB) is derived in the appendix and we compare the bound with the two

methods. When we apply iterative method, we have to be very careful because it can diverge sometimes and it can be fatal

error especially when the second derivative of the log-liklihood function is small [13]. Therefore, in the simulation, we set

the threshold for the second derivative so that when inverse of derivative is larger than the threshold, it stops the iteration and

plug in the estimate the same as the LS estimate. We chose 10 as the iteration number. The 2-dimension locating system field

is depicted in Fig. 1. The reference power is selected as10, 000 [J/s], the source target (MS or sensor node) is located at (20,
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Fig. 1. 2-dimensional field of locating system.

20), the number of networked sensor nodes or BSs is 5× 5, the number of simulation runs is 1000, and background noises
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are chosen as 3 different values (0.01, 0.1, and 0.2). If we compare each pair of the result in Fig. 2, 3, and 4, ML method
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Fig. 2. Estimated positions of the target when noise power is 0.01 dB

compresses the distribution of LS estimates. Note some ML iterative estimates that have relatively larger errors. Because the

ML iterative estimates diverge sometimes, we stop the iteration and give the LS estimate in that case. As the noise power
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Fig. 3. Estimated positions of the target when noise power is 0.1 dB

increases, the results show that, even though ML iterative method provides better performance clearly, the worst estimates in

both methods do not seem to be very different, so the overall sizes of the both field occupied by estimates are almost the

same. Fig. 5 shows the mean of distance error by two methods. As it shows, ML iterative methods well outperforms LS

method. In Fig. 6 and 7, the performances of two methods are compared to Cramer-Rao bound. When the noise power is

low (0.01 dB), ML iterative method performs almost the same as CRB. The exact value can be seen in Table I where ML

iterative outperforms the lower bound of unbiased estimator. Nevertheless, as the noise power increases, the performances of

two methods are by more falling down compared to the CRB.
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Fig. 4. Estimated positions of the target when noise power is 0.2 dB

Noise

Power

[dB]

MED-LS

[m]

MED-ML

[m]

CRB-X

[m2]

CRB-Y

[m2]

Var-LS-X

[m2]

Var-LS-Y

[m2]

Var-ML-X

[m2]

Var-ML-Y

[m2]

SNR [dB]

0.01 1.38 0.44 0.16 0.16 1.19 1.25 0.13 0.14 38.38

0.1 4.52 1.45 1.58 1.58 12.79 12.88 2.12 1.66 28.38

0.2 14.19 10.57 16.77 16.76 138.21 131.39 111.14 99.70 18.29

TABLE I

THE RESULT OF SIMULATION, MED: MEAN ERROR DISTANCE, CRB: CRAMER-RAO BOUND, X: X COORDINATE, Y: Y COORDINATE, LS: LEAST

SQUARES, ML: MAXIMUM LIKELIHOOD .

VI. CONCLUSIONS

In this article, we showed the combined technique of least squares method and iterative maximum likelihood method for

locating any source target in RSS measurement based system. The technique can be applied to the prevalent examples of

applications such as “locating mobile station in wireless cellular system” or “locating sensor node in ad-hoc wireless sensor

networks”. RSS measurement model has an advantage for us to apply maximum likelihood method because its measurement

model has direct relationship between location and measurement contrary to other methods, e.g., TOA, TDOA, and AOA.

The practical RSS measurement models usually does not allow for us to apply direct maximum likelihood method because it

is impossible to compute the maximum likelihood function from the model. That is why we combine two popular statistical

estimators so that least squares method works for the initial guess of the Newton-Raphson method in order to apply numerical

ML method. Contrary to other methods, RSS measurement model requires simple and quick step for the process to acquire the

estimated parameter before we apply least squares method. Therefore, adding up additional process of numerical ML method
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Fig. 5. Mean of distance error by two methods.

does not degrade the overall expense of the process in using RSS measurement system for localizing a source target. We

compared the the result of “LS method-only” to “iterative ML method beyond LS method” along with Cramer-Rao bound.

When background noise power is very small, ML method outperforms even CRB shown in the simulation result. This article

presented only general idea and in rather theoretical respect of locating technique. In the future, the method presented in this

paper can be implemented into direct practical stage.

In multi-target tracking system, initializing the location of target is a crucial issue. The locating technique presented in this

article can be applied to the initialization of the target. However, iterative ML method beyond LS method may not be effective

if particle filtering is employed in the tracking system [14].

APPENDIX

We derive the CRB of the estimator of the parameter, the location of a “source target” when we use only 3 measurement

that forms right triangle in this section. The parameter is denoted byθ = l = [x y]>. From (1), the likelihood function is

p(y;θ) =
(

1√
2πσ2

)3

exp

{
− 1

2σ2

3∑
n=1

[yn − fn(θ)]
}

where

fn(θ) = 10 log10

[
Ψ

gn(θ)

]
(30)
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Fig. 6. Comparison between CRB and variances by two methods - X coordinate.

and

gn(θ) = gn(x, y) = |sn − l|α = (snx − x)2 + (sny − y)2. (31)

The log-likelihood function is,

ln p(y; θ) = ln
(

1√
2πσ2

)3

+

[
− 1

2σ2

3∑
n=1

(yn − fn)

]
(32)

from which the derivative ofx coordinate follows as

∂ ln p

∂x
=

∂

∂x

[
− 1

2σ2

3∑
n=1

(yn − fn)2
]

= − 1
2σ2

3∑
n=1

{
∂

∂x

[
(yn − fn)2

] }

︸ ︷︷ ︸
A

. (33)

FromA,

A =
∂

∂x

[
(yn − fn)2

]
= 2 [yn − fn(θ)]

[
−∂fn(x, y)

∂x

]

︸ ︷︷ ︸
B

. (34)

FromB,

B =
∂fn(x, y)

∂x
=

∂

∂x

{
10 log10

[
Ψ

gn(x, y)

] }
(35)

=
∂

∂x
[10 log10 Ψ− 10 log10 gn(x, y)] =

∂

∂x
[10 log10 gn(x, y)] (36)

= −10
∂

∂x
[log10 gn(x, y)] = − 10

ln 10
[∂gn(x, y)/∂x]

gn(x, y)
(37)

=
20

ln 10
(snx − x)

gn

(
∵ ∂gn

∂x
= −2(snx − x)

)
. (38)
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Fig. 7. Comparison between CRB and variances by two methods - Y coordinate.

If we plug B into A ,

A = 2[yn − fn(θ)]
[
− 20

ln 10
(snx − x)

gn

]
. (39)

PluggingA into (33),

∂ ln p

∂x
= − 1

2σ2

3∑
n=1

{
2[yn − fn(θ)]

[
− 20

ln 10
(snx − x)
gn(x, y)

]}
(40)

=
20

σ2 ln 10

∑ {
[yn − fn(θ)]

[
(snx − x)
gn(x, y)

] }
(41)

=
20

σ2 ln 10

∑ {
[yn − fn(θ)](snx − x)

gn(x, y)

}
. (42)

Similarly, we can derive derivative ofy coordinate as

∂ ln p

∂y
=

20
σ2 ln 10

∑ {
[yn − fn(θ)](sny − y)

gn(x, y)

}
. (43)

The second derivative ofx coordinate follows as

∂2 ln p

∂x2
=

∂

∂x

{
20

σ2 ln 10

∑[
(yn − fn)(snx − x)

gn(x, y)

]}
(44)

=
20

σ2 ln 10

∑ ∂

∂x

[
(yn − fn)(snx − x)

gn(x, y)

]
. (45)

If we define

Px(x, y) , (snx − x)(yn − fn) (46)
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we have

∂2 ln p

∂x2
=

20
σ2 ln 10

∑ [
∂

∂x

(
Px

gn

)]

︸ ︷︷ ︸
G

. (47)

From G,

G =
∂

∂x

(
Px

gn

)
=

Px
′gn − Pxgn

′

gn
2

(48)

where

Px
′ = −(yn − fn)− (snx

− x)fn
′ (49)

fn
′ =

20
ln 10

(snx − x)
gn

from B, (50)

gn
′ = −2(snx

− x) (51)

then

Px
′ = −(yn − fn)− (snx − x)

(
20

ln 10
· (snx − x)

gn

)
(52)

= −(yn − fn)− 20
ln 10

· (snx − x)2

gn
. (53)

PluggingPx
′ into G,

G =
−(yn − fn) · gn − 20

ln 10 · (snx − x)2 + 2(sn − x)(yn − fn)(snx − x)
gn

2
(54)

=
2(sn − x)2(yn − fn)− (yn − fn) · gn − 20

ln 10 · (snx − x)2

gn
2

. (55)

PluggingG into (47),

∂2 ln p

∂x2
=

20
σ2 ln 10

∑ [
2(sn − x)2(yn − fn)− (yn − fn) · gn − 20

ln 10 · (snx − x)2

gn
2

]
. (56)

Similarly, we can drive

∂2 ln p

∂y2
=

20
σ2 ln 10

∑[
2(sn − y)2(yn − fn)− (yn − fn) · gn − 20

ln 10 · (sny − y)2

gn
2

]
. (57)

To completely find the elements of the Fisher information matrix, we have to find

∂2 ln p

∂y∂x
=

∂

∂y

{
20

σ2 ln 10

∑ [
(yn − fn)(snx − x)

gn

] }
(58)

=
20

σ2 ln 10

∑{
∂

∂y

[
(yn − fn)(snx − x)

gn

] }
(59)

=
20

σ2 ln 10

∑[
∂

∂y

(
Px

gn

)]

︸ ︷︷ ︸
Qn

. (60)
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∂Qn

∂y
=

Px
′gn − Pxgn

′

gn
2

=
2(snx

− x)(sny
− y)(yn − fn)

gn
2

−
20

ln 10 (snx
− x)(sny

− y)
gn

2
(61)

where ∂gn

∂y = −2(sny
− y), ∂fn

∂y = 20
ln 10

(snx−x)(sny−y)

gn
2 . Therefore

∂2 ln p

∂y∂x
=

20
σ2 ln 10

∑[
2(snx

− x)(sny
− y)(yn − fn)− 20

ln 10 (snx
− x)(sny − y)

gn
2

]
. (62)

Similarly,

∂2 ln p

∂x∂y
=

20
σ2 ln 10

∑[
2(snx

− x)(sny
− y)(yn − fn)− 20

ln 10 (snx
− x)(sny − y)

gn
2

]
. (63)

To find the Fisher information matrix,

I(θ) =



−E

(
∂2 ln p
∂x2

)
−E

(
∂2 ln p
∂x∂y

)

−E
(

∂2 ln p
∂y∂x

)
−E

(
∂2 ln p
∂y2

)


 (64)

note [expectation offn] = yn, and from (56) and (62), we can compute

E

(
∂2 ln p

∂x∂y

)
=

20
σ2 ln 10

∑[− 20
ln 10 · (snx − x)(sny − y)

gn
2

]

= −
(

20
σ ln 10

)2 ∑[
(snx − x)(sny − y)

gn
2

]
. (65)

Similarly,

E

(
∂2 ln p

∂y∂x

)
= −

(
20

σ ln 10

)2 ∑[
(sny − y)(snx − x)

gn
2

]
. (66)

E

(
∂2 ln p

∂x2

)
=

20
σ2 ln 10

∑ [− 20
ln 10 · (snx − x)2

gn
2

]
= −

(
20

σ ln 10

)2 ∑ [
(snx − x)2

gn
2

]
. (67)

Similarly,

E

(
∂2 ln p

∂y2

)
=

20
σ2 ln 10

∑[− 20
ln 10 · (sny − y)2

gn
2

]
= −

(
20

σ ln 10

)2 ∑ [
(sny − y)2

gn
2

]
. (68)

Therefore,

I(θ) =
(

20
σ ln 10

)2

·




∑ [
(snx−x)2

gn
2

] ∑[
(snx−x)(sny−y)

gn
2

]

∑[
(snx−x)(sny−y)

gn
2

] ∑[
(sny−y)2

gn
2

]


 ,

(
20

σ ln 10

)2




a b

c d


 (69)

then

I−1(θ) =
(

20
σ ln 10

)2

× 1
ad− bc




d −b

−c a


 . (70)

Since

var
(
θ̂i

)
≥ [

I−1 (θ)
]
ii

(71)

var(x̂) ≥
(

σ ln 10
20

)2 ·∑
[

(sny−y)2

gn
2

]

∑[
(snx−x)2

gn
2

] ∑[
(sny−y)2

gn
2

]
−

{ ∑ [
(snx−x)(sny−y)

gn
2

]}2 (72)
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var(ŷ) ≥
(

σ ln 10
20

)2 ·∑
[

(snx−x)2

gn
2

]

∑[
(snx−x)2

gn
2

]∑ [
(sny−y)2

gn
2

]
−

{ ∑[
(snx−x)(sny−y)

gn
2

]}2 2 (73)
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