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HYPERREAL TRANSIENTS ON TRANSFINITE
DISTRIBUTED TRANSMISSION LINES AND CABLES

A. H. Zemanian

Abstract — A plrior work showed how nonstandard analysis could be used to derive
hyperreal transients in transfinite electrical networks containing lumped inductors, capac-
itors, resistors, Va/nfdﬂsopru'rqgs.ﬂ In this work hyperreal transients are derived for transfinite
electrical networks whose parameters are distributed. In particular, explicit expressions are
derived for hyperreal transients on uniform transmission lines and cables that “extend be-
vond infinity” transfinitely. This requires a substantially altered technique as compared to
the prior work. The present one uses a different kind of truncation procedure that reduces
the transfinite line or cable to a conventionally infinite one and then expands the latter in

steps to “fill out” the transfinite line or cable.

Key Words: Distributed transmission lines, distributed cables, hyperreal transients,

nonstandard networks.

1 Introduction

This paper is a sequel to [5], which presented for the first time a method for analyzing
a transfinite RLC network.! All prior works on transfinite networks were restricted to
purely resistive ones. The idea in [5] was to represent the transfinite RLC network as
the end result of of an expanding sequence of finite RLC networks that “fill out” the
transfinite network. Since the solutions of finite networks are available, this provides for
each branch of the transfinite network a sequence of time-varying voltages and another

sequence of time-varying currents, which can be identified as a hyperreal branch voltage

! An electrical network containing lumped resistors, inductors, and capacitors.



and a hyperreal branch current depending upon hyperreal time. Essential to that approach
was the requirement that the transfinite network be lumped; that is, the network must
consist of a transfinite graph whose branches consist of lumped electrical elements.

The objective of this work is to devise an analysis for transfinite distributed electrical
transmission lines and cables. In particular, we take it that the transmission line or cable
extends “beyond infinity” in a mannér specified in Sec. 3. We then determine how a
hyperreal traveling wave in the case of a transmission line or a hyperreal diffusion in the case
of a cable can pass “through infinity” to produce hyperreal voltages within the transfinite
extensions of the line or cable. The difficulty that must be overcome in the present case is

that the techniques that worked for unped networks must be modified in a substantial way

in order ’;(; iilake tliem applicable to distributed lines and cables. We now exploit the fact
that the voltages on a conventional, one-way infinite line or cable is known. So, we represent
the transfinite line or cable as the end result of an expanding sequence of conventionally
infinite lines or cables that “fill out” the transfinite line or cable. This is accomplished by
assigning sample points along the transfinite line or cable and then truncating it by removing
infinite parts between some of the sample points to obtain a conventionally infinite line or
cable. Then, upon reducing the removed parts, that is, expanding the remaining parts in
steps, we can obtain a sequence of time-varying voltages at each sample point, which in
turn can be identified as a hyperreal voltage variation at that sample point. We thus obtain
finally hyperreal voltage transients at all the sample points of the transfinite line or cable.

In the same way, we can determine hyperreal current transients at the sample points,
but we skip doing this since the technique is exactly the same.

With regard to the hyperreal numbers, we follow the notation and terminology of [2],
a textbook that explains all the concepts of nonstandard analysis we employ herein.? We
will be using ultrapower constructions of hyperreals. Thus, each sequence of voltages is
a representative sequence of an equivalence class of sequences with respect to a chosen
nonprincipal ultrafilter F, and that class is by definition a hyperreal. IN will denote the

set of natural numbers {0,1,2,...}. and n € IN will always be the index for the sequences

*Sec. 3 of [5] contains a very brief statement of those concepts. This all that will be needed for a
comprehension of this work.



that represent hyperreals. Such a sequence will be denoted by (v, : n € IN) or simply (v,),
and [v,] will denote an equivalence class (modulo F) of such sequences; it is understood
that the v, within [v,] are the elements of one of the representatives of the class.® It is a
fact that altering finitely many of the v, does not change [v,]. Arithmetic and inequalities
for hyperreals are defined componentwise on their representative sequences. We will be
discussing various kinds of hyperreals., such as “infinitesimal,” “limited,” “unlimited,” and
“appreciable” hyperreals and will also mention the “halo” of a real number; all these are
defined in (2] and also in [5, Sec. 3].

IR (resp. *IR) denotes the set of reals (resp. hyperreals).* Also, IRy (resp. IR, ) denotes

“the set of nonnegative reals (resp. nonnegative hyperreals). Hyperreals will be denoted by

boldface notation; thus, v = [v,] € *IR denotes a hyperreal voltage, and t = [t,,] € “IR4
denotes hyperreal time, where now (t,,: n € IV) is one of the sequences in the equivalence

class t of sequences.

2 Conventionally Infinite, Uniform, Transmission Lines and
Cables

During the initial truncation process, we will be reducing the transfinite lines and cables to
conventionally infinite ones and will use the known real transient responses of the conven-
tional lines and cables when constructing the hyperreal transient responses of the transfinite
lines and cables.

A conventionally infinite (transmission) line is illustrated in Fig. 1. A cable is a special
case of a line. For a reason that will become evident later on, we call this an w-line.
We assume throughout that the line is uniform with the distributed series resistance and
inductance being r ohms/meter and / henries/meter and the distrubuted shunt conductance
and capacitance being ¢ siemens/meter and ¢ farads/meter. The distance along the line
from the input in the conventional case is x meters, and the voltage at the distance x

and time t seconds is v(x,1). We will have v(2.t) € IR and z,t € IR,. We also assume

a . . . . .
This notation differs from that used in [5], wherein a sequence was denoted by {vy, }nemw and a hyperreal
by (v.). The present notation seems to be more commonly used and conforms with that of {2].
40 : . s « - S . .
Conventionally, “real” and “hvperreal” are often said in place of “real number” and “hyperreal number.’



throughout that at the input to the line v(0,7) = 1.(¢), where 1, denotes the unit step
function: 1,(f) = 1fort > 0 and 1,4(¢) = 0 for ¢t < 0.
When 7,1, g,c are all positive real numbers, we have the general case of an w-line, and

the Laplace transform V(z,s) of v(x,1) is [3, page 379]

V(z,s) = %exp(—x/ﬁﬂ(s-%&)z—az), Res > 0, (1)
(T, - 1(12)
“2<1+c>"’“2 [7¢) (2)

Taking the inverse Laplace trausform of (1), we get [3, page 383]

where

o o t) = folast) + falwt), o (3)
where
fo(z,1) = (bzVie 14(t — aVic), (4)
and

(x,1) = na\/—/ \/____1_% rr\/;z_—_z—z_lc) dr14(t - aVle). {5)

Here, I; is the modified Bessel function of first kind and order 1 [1, page 374]; it is an

entire function. Furthermore, fo(z,t) is the voltage for the distortionless line occurring

when ¢ = 0 (i.e., r¢c = lg), and f,(z,t) is the added distortion occurring when o # 0. Both
fo(z,t) and f,(z,t) take on nonnegative values only.

As a special case of the distortionless line, we have the lossless line occurring when

r=g=0,1>0,and ¢ > 0. Its transient response is simply
v(z,t) = 1)t - 2Vie). o (6)

A different phenomenon occurs when ¢ = = 0, » > 0, and ¢ > 0. This corresponds to a
cable, for which case the wave respouse (4) is replaced by a diffusion response. Specifically,

the response to the unit-step imput v»(0,1) = 1,(¢) is [3, page 330]

rc
v(r,1) = elfc(2 —t—>

Here, erfc(-) is the complementary error function [1, page 297]

2 [ 2
o> = —— ~C* :
erfcz = ﬁ/: €™ dg. (8)



3 The w?-Line

The first transfinite structure we wish to explore is a transmission line that extends trans-
finitely with infinitely many (more precisely, w-many) w-lines connected in cascade by having
the infinite extremity of each w-line connected to the input of the next w-line. We call this
an w?-line. It is illustrated in Fig. 2. We shall analyze this structure by choosing uniformly
spaced sample points Az meters apart within the entire w?-line, taking the input of each
w-line as one of the sample points. We will then determine hyperreal voltage transients
v(x;,t) at each sample point. The number of sample points within each w-line does not
depend upon the choice of Axz; that number is always w (more precisely, the cardinality of
the set of such points is always w = Ng). Thus, we obtain the sample-point uumberingr at
the input of each w-line és shown in Fig. 2, and we therefore number the infinite extremity
of the entire w?-line as w? (not shown in Fig. 2). Moreover, the indices j of the sample
points within the entire w?-line first traverse the natural numbers within the initial w-line,
then the ordinals from w through all those below w2 in the next w-line, and so forth. In
general, wk < j < w(k + 1) for the kth w-line (k € IN) in Fig. 2.

Two questions may arise when trying to make sense out of the configuration in Fig.
2. First, how can the connection between the infinite extremity of the Ath w-line and the
input of the (k +1)st w-line be defined? One way is to think of the line as being “artificial,”
having discrete series and shunt branches and then to use the definition of 1-nodes [4, page
22]. In this way, the small circles in Fig. 2 represent 1-nodes that connect the 0-tips of the
horizontal paths in any artificial w-line to the input 0-nodes of the next artificial w-line.
Then, the present distributed structure might be viewed as a limiting case arising when
the artificial line smooths out into a distributed one. But. perhaps, such elaboration is not
needed if one is willing to accept the idea that the infinite extremity of each distributed
w-line “is connected to” the input terminals of the next w-line.

The second question concerns the continuous spatial variable . Within the initial w-line
its values are real numbers, but what is its values in the subsequent w-lines? Even at the
sample points we have a problem in interpreting = = “;Az” when j is a transfinite ordinal

and Ax is a real number. This difficulty will be circumvented in the following way: When



setting up a nonstandard model of the w?-line of Fig. 2, we will truncate each w-line within
the w2-line into a finite line and will thereby reduce the w?-line to an w-line. This will allow
us to use the voltage transients cited in Sec. 2 in order to derive hyperreal transients at the

sample points of the w’-line,

4 A Nonstandard Model for an «w*-Line

The general idea for analyzing the w?-line of Fig. 2 is to reduce it to an infinite cascade of
finite lines which together comprise an w-line; then, the finite lines are expanded in steps
to “fill out” the w?-line. Since the response of an w-line to a unit step of voltage is knowu,
we will_obtain at each sample point a sequence of voltages depending upon-time 7, which
can tlien be identified as a hyperreal voltage depending upon hyperreal time t.

So, consider the nth sample point (n € IN) within each w-line of the w?-line. Remove
that part of the w-line beyond that nth sample point and then connect that nth sample
point to the input of the next w-line. What is left is a cascade of finite lines, each having
n sample points (not counting the input node) and together comprising an w-line because
the number of finite lines is w. We shall refer to this structure as the nth truncation of the
w2-line. Now, consider the sequence of such nth truncations as n — 0o. Any fixed sample
point of the w?-line will eventually appear in those nth truncations for all n sufficiently
large and will have a voltage in accordance with (4). That fixed sample point will be absent
in no more than finitely many nth truncations, and in these cases we can set the voltage
equal to 0 without disturbing the hyperreal voltage that will arise as n — .

To be more specific, consider the jth sample point in the w?-line of Fig. 2. We can set
J = wky + ko (ko, k1 € IN), where ky is the number of w-lines to the left of the w-line in
which the jth sample point appears ( but not counting that w-line) and kg is the number
of sample points to the left of the jth sample point in the .w-line in which the jth sample
point appears. Then, for all n sufficiently large, the jth sample point appears in the nth
truncation, and the distance from the input to the jth sample point in the nth truncation
is

i, = (nky+ ko)Ax € Ry



where Az is the distance between sample points, as before. In this case, the voltage at the

jth sample point is

7)(:1:]',7171‘) = f()(:l:j,vnt) + fcr(:17j,1171')' (9)

As n — oo, we obtain a sequence (x;,: n € IN) of distauces to the fixed jth sample
point, which we take to a representative sequence for a hyperreal distance x; = [2;,] to
the jth sample point. Furthermore, the voltage wave on the original w?-line will require an
infinite amount of time in order to reach the w-lines beyond the initial one. So, in order to
examine this, we will need to use hyperreal time t = [t,,]. Altogether then, by replacing «
by x; and t by t and using (3), (4), and (5), we obtain the following hyperreal voltage as

the response of the w?-line at its jth sample point:
V(X]‘,t) = ['U(-'I"j,n»tn)] = [fO(:I:j,7L71‘1L) + fﬂ(:l"j,uv,’n)] (10)

Because of fhe presence of the unit-step function 14(t — 2v/Ic) in (4) and (5), we see that
v(x;,t) equals 0 for t = [t,] < [VicAz(nk; + ko)] and is positive for t > [VicAz(nk, +ko)).
Moreover, because of the factor exp(—6zv/Ic) in (4), the distortiouless term [fo(%j, )] is
an infinitesimal for unlimited ¢t = [t,] if k; > 0 (i.e., at all sample points at and beyond
j=w).

More generally, the total response v(x;,t) is also an infinitesimal when k;, 7, ¢,l,c are
all positive. (That k; > 0 means that the jth sample point is beyond the initial w-line.) To

show that the total response is infinitesimal, first apply the final-value theorem to (1):
tljm v(z,t) = lilg)1+ exp <—-:1:\/1—C\/($ + 6)% - 02>

exp (—m\/l_é\/ 82 — 0’2>

exp (—:1:\/1'g/lc> . (11)

Now, at the jth sample point, we have x;,, = Az(kin + ko). Because of the unit-step

function, we need only consider the case where t,, > z;,,Vlc. So. the character of v(x;,t) =

[vjn.1x)] can be determined by letting n — oo but keeping j fixed. From (11) we have that

nh—lslgo 77("1"_]',1191'11) = TIIEIL)GX])(*A.’II(IJ]’IL+k0)\/7'g/1(,') = 0.



Whence our assertion; in fact, v(x;,t) is a positive infinitesimal for t > [z;,VIc]. Note
also that, since the distortionless term and the total response are both infinitesimals when
ky > 0, so also is the additional distortion term {f4(;.,1,)] 'occm'ring when o # 0.
However, when ¢ = 0 and r,[,c are positive, the same analysis shows that the limit
in (11)is 1. This means that v(x,,t) is infinitesimally close to | when t > [:lrj_n\/l_('] and
k1 > 0. To say this another way, at any sample point beyond the initial w-line, the hyperreal
voltage v(x;,t) remains equal to 0 for t < [zj,,l\/l_(_',] = xj\/l—c, and then it jumps to within
the halo of 1 and remains therein for t > x;v7c. This is very different from the voltage
response within the first w-line (k; = 0) wherein the transition toward 1 is gradual; see (3,

page 384, Fig. 8.2].

In the still more special case of a lossless line (r = ¢ = 0, > 0,¢ > 0), v(x;t) = 0 for
t < xj\/ZE and is exactly equal to 1 for t > x;v/lc.

Finally, let us point out that we have obtained a hyperreal transient respouse for the
w?-line by specifying a particular way of truncating it into an w-line and then expanding
the w-line in steps to fill out the w?-line. However, there are many ways of doing this by
using, say, nonuniformly spaced sample points and different truncations and subsequent
expansions among the w-line. In this way, we can generate many nonstandard versions of
the w?-line. We have presented the one method for which the hyperreal transient has the

simplest expression.

5 Nonstandard Models for Transfinite Lines of Higher Ranks

By connecting w-many w?-lines in cascade, we will obtain an w3-line. Recursively, we can
construct in this way an w*-line, where g is any natural number; the w*-line consists of w-

#=1lines i de. T Ivze this i tandard w ain choose s 1
many w nes in cascade. To analyze this in a nonstandard way, we again choose sample

points with Az spacing. Then, a tvpical sample point has the index
Jo= W oyt kg Wk + k. (12)

where k,_; is the number of w*~!-lines to the left of the w*~!-line in which the sample

point j appears. k,_» is the number of w*~2-lines within the w*~!line in which the sample



point j appears and to the left of the w*~2-line in which the sample point j appears, and

«+1 line in

so on. In general, for 1 < a < u— 1, kg is the number of w”-lines within the w
which the sample point j appears and to the left of the w®-line in which the sample point j
appears. Finally, kg is the number of sample points within the w-line in which the sample
point appears and to the left of that sample point.

Next, we create the nth truncation (n € IN,n > 1) of this w*-line as follows. Consider
each w*~1line in the w”-line. Remove all the w*~2-lines in the w*~-line beyond the nth
w*~%line, and then connect the output of each so-truncated w*~!-line to the input of the
next truncated w#~!-line. What is left is a cascade of w-many truncated w*~'-lines each
having n w*~2-lines, apd thlglsAw-n_@nyﬂg“‘z-lines» altogether. Next, within each of those
w#=2.lines, remove all the w*™3-lines beyond the nth w*=3-line, and then connect the output
of each so-truncated w*~2-line to the input of the next truncated w#~2-line. What is left
in each truncated w#~2-line is a cascade of n-many w* 3-lines. Altogether, we now have
a cascade of w-many truncated w*~2.lines each being a cascade of n-many w*~3-lines, and
thus w-many w*~3-lines altogether. In general, having recursively made truncations to get
a cascade of w-many truncated wP-lines (3 < p < p — 1) each having n-many w?~'-lines,
remove within each wP~1-line all the w? 2-lines beyond the nth one, and then connect the
output of the so-truncated wP~!-line to the input of the next truncated w”~!. What is
left is a cascade of w-many truncated w?~!-lines each having n-many w?~%lines, and thus
w-many wP~2-lines altogether. Finally, we will have reached a cascade of w-many truncated
w?-lines each having n-many w-lines. In each of those w-lines, remove that part of the line
to the right of the nth sample point, and connect the output of the so-truncated w-line to
the input of the next truncated w-line. The final result will be a cascade of w-many finite

lines each having n#~!

sample points (not counting the input node of the original w*-line).®
That result is simply an w-line, whose sclution was displayed in Sec. 2. We call this the
nth truncation of the wH-line. As n — oo, that truncation shrinks, and the w-line expands

to ultimately fill out the original w*-line.

5 . . . . . .
For an w?-line, we get w-many finite lines of n sample points each. For an w®-line, we get w-many finite
. 2 . . . . 3 . N .
lines of n*® sample points each. For an w?-line, we get w-many finite lines of »® sample points each. Continue
this way.



Now any fixed sample point of index j on the w#-line will eventually appear as a sample
point of the nth truncation of the w#-line for all n sufficiently large. When this happeuns,

the distance z;, from the input of that truncated w*-line to the jth sample poiut will be
Tjn = Am(n“'lkﬂ_l + n“"'zk“_z + ...+ nky + ko) (13)

where the natural numbers &, (p = 0,%.., 1t — 1) have the same meanings as before in (12).
Since the nth truncation of the w*-line is an w-line, we can invoke (3), (4), and (5) to obtain
the voltage at x;,. This gives us a sequence (v(x;,,1): n € IN) of voltage values at the
jth sample point for any given time {. In order to obtain a hyperreal time t = [t,,] when
analyzing the original w*-line, we choose a sequence (1, : n € IV) of time values in place of
t. All this );ields ;7hy]r)rer~.‘1:rea;voltage v(x;,t) = [v(2;n,1,)] on this nonstandard version of

the w*-line. More specifically, we have

")(:I:j,119t11) = fO(:Ifj,nﬁin) + fcr(-";j,nyf'n) (14)

where z;,, is given by (13). Here, too, v(x;,t) = 0 for 0 < t = [t,] < x;VIc = [2;.]VIe
and v(x;,t) is a positive hyperreal for t > x;v/lc.

As in the case of an w?-line, the presence of the factor e=AeVie iy (4) in the distortionless
case (i.e., ¢ = 0) and the expression (13) for z;, insures that the distortionless term
[fo(zjn,t,)] is infinitesimal when the jth sample point is beyond the initial w-line (that is,
when at least one of the k,, p = 1,..., 0 — 1, is positive. Also, the argument employing the
final-value theorem as in the preceding section shows that the total response [v(2; .1, )]
at any sample point beyond the initial w-line is also infinitesimal whenever 7, ¢,!, ¢ are all
positive. Therefore, so also is the added distortionless term [fo(a; ,,,1,)]. On the other hand,
when g = 0 and 7,1, c are positive, v(x;,t)] is infinitesimally close to 1 for all t > [z;.,.V/7c]
at every sample point after the initial w-line. Altogether then, the response of the w*-line
is much the same as that of the w-line.

The next rank for transfinite transmission lines beyond those of the natural-number
ranks is the w*-line. This can be viewed as a cascade of an w-line, followed by an w?-line.
followed by an w?-line, and so forth indefinitely. We can reduce the w*-line to an w-line

through a somewhat different set of truncations than those for w#-lines. Specificallv. we

10



reduce the initial w-line to a finite line of n sample points by truncating that line beyond
the nth sample point. We then reduce the w?-line to a finite line of n? sample points by first
truncating the w?-line beyond the nth w-line and then truncating each of the remaining w-
lines beyond their nth sample points (not counting their input nodes). In a similar way, the
next wi-line is first truncated down to its initial » w?-lines, which in turn are each truncated
down to their initial n w-lines, which again are each truncated down to n sample points—to
obtain finally n? sample points for that w3-line. Continuing in this way indefinitely, we
obtain n sample points followed by n? sample points, followed in turn by =* sample points,
and so on indefinitely to get w-many sample points on an w-line. We call this the nth

truncation of the w*-line.

No@; tl;e’!wstalrl'(‘lard formulas of Sec. 2 can be applied once more to get a nonstandard
analysis of an w®-line. To be specific, let the jth sample point of the w*-line (again counting
the input as the Oth sample point) be in the w#-line of the cascade of w”-lines (a = 1,2,3,...)
defining the w“-line. In the nth truncation of the w*-line, the number of sample points
before that w¥-line is

n+nt+nd 4.+t {15)
Within the truncation of that w#-line, the number of sample points to the left of the jth
sample point of the w“-line can be written as

n,“']ku—l + 7l“°2ku—2 + ootk + ko

where the k,_1,k,-2,..., ko are defined exactly asin (12). (Remember that input nodes are
indexed by 0.) So altogether, the number N;(n) of sample points within the nth truncation
of the w¥-line at and to the left of the jth sample point for the w*-line (not counting the

input node) is
Nij(n) = N+ k) 0471+ Ry2)4+ ...+ n(l+ k1) + ko (16)

Here, it is understood that p depends upon j as stated: That is, the jth sample point of
the w¥-line lies in the w*-line of the cascade of transfinite lines defining the «+-line. So.

with x; = [2;,,] = [AaN(n)], t = [t.], v(x,,t) == [v(2,.1.)]. and v(x;,.1,,) defined

11



again by (14), we have the hyperreal voltage response v(x;,t) of the w*-line at its jth
sample point. Again, we can identify v(x;,t) as being either exactly equal to 0 or equal to
a positive infintesimal or infinitesimally close to 1 just as before at any sample poiut beyond
the initial w-line.

Having treated all the w¥-lines (yx = 1,2,3,...) and then the w“-line, we can now treat
the w**#.lines (u = 1,2,3,...) and then the w*?line in much the same way. So also can

the ww2tu

-lines and the w*3-lines be treated similarly—and so on.

For example, consider the w**!.line. It is a cascade of w-many w*-lines. This time, let
us truncate each of the w-many w*-lines by deleting all the w”-lines (r = n+ 1,04+ 2,...)
beyond the w"-line in each w*-line and then connecting the output of that w™-line to the
inpﬁt of the next so-truncated w“-line. Then, we truncate each w-line (o = 1,2,...,10)
as before to get n sample points followed by n?-sample points, ..., and finally n" sample
points. Thus, we will have n 4+ n? +...4 n" sample points in each of the w-many truncated
w“-line. Altogether, we will have w-many sample points in an w-line. We will call this the
nth truncation of the w“*!-line. Next, consider the jth sample point in the w**!.line. Let
k. be the finite number of w*-lines to the left of the w*-line in which the jth sample point
appears. Assume 7 is so large that the jth sample point appears within the nth truncation
of the w**1. Thus, the number of sample points in the nth truncation of the w+*!-line up

to the jth sample point is
M;(n) = ko(n+n?+...+0") + Nj(n) (17)

where N;(n) is given by (16), namely, it is the number of sample points in the truncated
w“-line in which the jth sample point appears at and to the left of the jth sample point.

So, with x; = [z,,] = [AzM;(n)] and t = [t,], we have as before

V(xjﬂt) = [fO(-Tj,n’in)] + [ftr("vj.n-tn‘)]- (18)

We can identify what kind of hyperreal v(x;,t) is again as before.
Finally, we point out again that many other nonstandard models can be constructed by

varying the ways we have taken truncations and subsequent expansions.

12



6 Nonstandard Models for Transfinite Cables

For a cable we have ¢ =1 = 0, 7 > 0, ¢ > 0, and the standard voltage response v(x,7)
on an w-cable due to a unit step of voltage at the input to the cable is given by (7). This
represents a diffusion phenomenon.

For a transfinite cable of rank greater than w, we truncate it down to an w-cable, with
the truncations depending upon the natural number n, and then let n — oo to obtain
a representative sequence for the hyperreal voltage response. Thus, for an w#-cable with
i€ IN,u > 1, we choose the nth truncation exactly as in Sec. 5. In particular, the jth
sample point on the w¥-cable is given by (12), and for all n sufficiently large the distance
x;, of the jth sample point from the input of the nth truncation of the Q“:c;l;lérisréi;/el-l by
(13). Then, with x; = [z;,] being hyperreal distance and t = [t,,] being hyperreal time as
before, we have the hyperreal voltage v(x;,t) on the w#-cable due to a unit step of voltage
at the input as

v(x;,t) = [erfc%’2 ;ﬁ] (19)

We can invoke the properties of the complementary error function erfc(-) to assert the
following. In the initial w-cable of the w#-cable (x > 1), v(x;,t) is infinitesimal (resp.
appreciable, resp. unilimited) when t is infinitesimal (resp. appreciable, resp. unlimited).
However, for subsequent w-cables within the w*-cable, the following properties hold. As
t increases through all limited and then through some initial unlimited values, v(x;,t)
increases through some but not all infinitesimal values. Then. as t increases through larger
unlimited values, v(x;,t) continues to increase first through larger infinitesimal values. then
through appreciable values, and eventually gets infinitesimally close to 1 but never reaches
1. This variation of v(x;,t) is strictly monotonic.

At the next rank of transfiniteness, we have the w¥-cable. This time we construct the
nth-truncation of the w*-cable exactly as we constructed the nth-truncation of the w*-line.
Then, at the jth sample point of the w“-cable, we have the number N;(n) of sample points
within the nth-truncation up to that jth sample point. N;(n) is given by (16) as before.
Finally, we have v(x;,t) given by (19) with 2;, = AzN,(n) now.

Continuing on to the next higher raunk of transfiniteness. we have the »<*1-cable. This
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time we truncate as we did the w¥*}-line to get the following exparessions for the hyperreal
voltage at the jth sample point in the w**!-cable. Let M;(n) be given by (17). Once again,
v(x;,t) is given by (19) but with z;, = AzM;(n).

This analysis can be continued to still higher ranks of transfinite cables. The voltage
v(x;,t) behaves monotonically as before with respect to increasing hyperreal t, but now a

diffusion replaces a wave.
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Figure Captions

Fig. 1. An w-line or w-cable.

Fig. 2. An w?line or w?-cable.
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