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ABSTRACT

A matched asymptotic expansion type of solution is developed for
fhe case of an irrotational free-failing jet emanating fro’mva slit at a
bottom of a large tank. The terms in the asymptotic expansion which
represent the flow upstream are obtained as series solutions of potential
problems with assigned boundary values. The coefficients in the series
are governed by a set of infinite algebraic equations which are solved by
inverting the associated matrix. The resulting solution for the flow

yields a formula which relates the volumetric flow rate to the relative

strength of gravity.




1. INTRODUCTION

A large class of two dimensional potential flows can be easily
solved when the so-called Helmholtz condition holds on the free stream-
lines. However, with non zero gravity, the boundary condition that is
imposed there is highly non-linear. This non-linearity is troublesome

when the fluid particles on the free surface undergo a finite vertical

" drop. The situation is ever so more difficult when that vertical drop is

infinite and the fluid speed increases indefinitely, even if gravity is
comparatively ineffective. It i$ noted that the flow pattern for a free

falling jet is in no way similar to that which prevails in the absence -

of gravity. Modification of the classical mapping sequence technique or

perturbation around a Helmholtz type flow 1s therefore not expected to
succee? if the flow downstream is gravity controlled. It thus seems that
the oniy way to deal with such problems is to recognize the distinctness
of such domain, develop an appropriate expression for the solution there,
and match it with the solution characterizing the inertia or pressure
controlled flow. This approach was suggested by Clarke (1965), who applied
it to what is known as the waterfall problem. Ackerberg (1968) follows
suit. In this work the author adheres to this general philosophy. However
a slightly more complicated case is considered and a somewhat less familiar
analysis is employed. ‘

Both Clarke and Ackerberg consider cases in which the flow pattern

upstream is (very nearly) uniform and of constant-width. The volumetric

flow rate and axial flux of momentum are therefore predetermined, and the




a-priori knowledge of these quantities makes the analyses easier. Indeed,
the fact thét these quantities should be equal in terms of the upstream
and downstream expansions simplifies the matching procedure considerably.
Typicaily; Clarke evaluates the flux of momentum using the far upstream
conditions and employs this quantity as a parameter in the downstream
asymptotic expansion. It therefore seems appropriate to consider a case
in which gravity not only affects the geometry of the free falling jet
downstream, but also influences the volumetric flow rate throughout. One
such case is that of a jet emerging from a slit at the horizontal bottom
'

of a large tank (see Fig. 1). This case is solved here.

Both in the works cited and in the present paper the terms in the
ﬁpstream expansion are the solutioné of a sequence of potential problems.

The usual way to solve these is in terms of integrals over the surface, or

parts of it. 1In the sequence under discussion the boundary values for the

higher order solutions are sums of products of the lower order ones. There-

fore, although in principle a solution of almost any order can be obtained
by carrying out repeatedly integrations over the boundary, the results
obtained by such process are often difficult to evaluate. Since in the
matching procedure coefficients in the asymptotic expansions have to be
evaluated numerically this computational difficulty can become a serious
shortcoming. Therefore, rather than obtain solutions for the potential
problems in terms of intégrals, these will be solved by the series method
which was used by the author (1963) in the treatment of Levi Civitas'

problem. The adaptability of this latter technique to the complicated

boundary conditions encountered here will soon become apparent.
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2. MATHEMATICAL FORMULATION OF THE PROBLEM

The complex variable 2z associated with the physical plane (Fig. 1)
is chosen so that gfavity acts along theé positive real axis. The corﬁplex ‘
po’cential‘/ w-plane is shown in Fig. 2, and it is assumed that there exists
an analytic function w(z) which maps the entire flow into an infinite
strip of width M . The origin of the w plane is chosen so that plane
of symmetry in the =z . plane, the Re(z) axis, coincides 'with
‘\}/’ = Jm (LO’) - o . The curve q) = QQ(((J) = O is
assumed to pass through the edges of the slit.

Thé problem under discussion is solved by letting (k/J, y/)
play the role of independent variables while ( {/3‘ K ), which are defined

as follows,

]

A po s : b (o= /dur)

are taken to be the dependent variables. Hence («f':: ) is the logarithm
of the flow-speed while X is the angle between the direction of flow
and the positive Ro (Z,) axis. If g(&."’) is analytic the following

Cauchy Riemann equations hold,
1/3 /3(70 = )c('/a'y/) %(s/b}r = - Bxﬁ}ﬂ, (1) (2)

whence A and /)’ are harmonic in the domain - Ma/2z< < Mm’/z_ ,
- 00 sz < o0 . On the boundaries these quantities satisfy the

“conditions
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Here, the first condition represents the solid boundaries, or the bottom of
the tank, while the latter is the Bernoullis' equation when the pressure
along the free streamlines is constant. The parameter ¢ is the inverse

of the Froude number defined thus:
£ = gg/VL

where 6 is the gravitational acceleration.. All variables are non-
dimensionalized with respect to half the width of the slit and the flow-speed

at the points where the free streamlines emerge from the slit.

It follows from the choice of characteristic speed, V , that the

following condition should hold

(5(01*5_’“0"/7’) = 0, (5)
The choice of characteristic length ,Z gives

M/,

f - . .
[ xplzlow)diy) = a ®
Mm%/

Since the last two relationships should be satisfied by expansions, every
term in these will be made to satisfy equation (5). However, equation (6)

cannot be as easily satisfied. M will therefore be left as an unknown

E—
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until the solution TZ/(/QJa) , Or a suitable approximation for it, is
obtained. Finally, by requiring that equation (%5?“1 ha%il be obtained.
This procedure reflects the fact that the volumetric discharge cannot be

evaluated without solving  for the flow pattern.

3. SOLUTION BY MATCHED EXPANSIONS

The asymptotic expansions will now be developed in terms of the

appropriately scaled independent variables. These are taken to be

(. ) = (g/n . ~y/)
(q:;//g/-) = [eL/?/M P ’NF/M)

upstream and downstream, respectively. The role of the scale factor g
in the definition of these variables has been amply discussed. The
introduction of the factor M isAcqnvenient but not essential.

The following expansions are assumed to hold downstream

/§r£) 5/ Y) B fo /3(5‘1:) E[ N o((cb(é jrg/‘) = fa(“f) eJ

‘-‘

as indicated by the bracketed superscript 'd'. When these expressions
are substituted into the Cauchy-Riemann equations and like powers of §

are equated, the following relationships are obtained:
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(4‘()

ozb/af\lf = bfat_, /2)? ) 3[3 /D”&f =0 o /a? (7)(8)

It follows from (70) and the antisymmetry of & with respect to ¥'=o

)
that o(o vanishes. When use 1s made of that result, the Bernoullis'

equation yields

oJ
ol
~
\—
o
>
—~——
o
w
h“’
N
N~
i
B

(90)
_ (’ﬂ‘;l)zx/) (- 3/3‘2’”)) = N , (9,)
2 (367 - A bt sps) = - L ey

etc. The first of these equations together with equation (80) yields

/3(5) = - 1/5 LM(C; + 3M§)

where c, is a constant. Then, by considering equations (7°) (gd) and

(8£), in this order, for i1 =1 and i = 2 one obtains

3 el =z -
chl)_._. Cz. (C‘ 5 3 M @)—t ) /f') - /“'\I/(C‘ +3M_’P))l

d -
oé) = - 3ame, V(e +3md)?

PN (10)

SR XCE S CRER JRYACELTE )

This process can be continued, but within the framework of this study only

three terms in each expansion will be evaluated. The constants of



integrations C; are obtained by matching with the upstream expansion.
As indicated by the bracketed superscript the assumed upstream

expansion is

(“)"

(3,9) =Z f(_")e" : o{”(é,’if)zfo{”e"

g

This form is combined with the Bernoullis' equation to yield

%5' 21/)< 3/5 = o, (110)
Do) - Mo

3% ((13 Q‘&”)‘ - BY) eapks /s“ )) = - M o\”Sw@é} a1

For the solid part of the boundary equation (3) yields

(_'\A) — T - + -7
d; = 1 So-.' 31/2) ,\y T J‘/)' J é‘<0 ) (12‘:)
where gjn is the Kronecker delta. Inside the domain -2.54 N < ?II,

- o0 <»é < 9,  the Cauchy-Riemann equations hold. One notes that in

the definition of the independent variables associated with the upstream

. . - {u) )
domain the scale factor £ is absent. Therefore, ( [3; , -

( () ',.{) ) . . fw)

»unlike /3 . A : form complex conjugate pairs. Hence F;

e e

——
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and 9( -

3

and harmonic in (EP , /\if) L.
It follows from equations (lOo) (120) and (5) that the zeroth

complex pair is the so-called Helmholtz solution, given by

£ felen + (o e o

where
W = Ep + ’\,7/ .
. rw/_ . ~ (f)
By expressing /Bo (9,2 57%) in terms of ¢  and /3 ((f)- x4 )
in terms of 55 , expanding ahd comparing terms of O ( €°) one obtains

the (known) result

Wy

Use is then made of the fact that since ﬂ"( vanishes the following holds
. (u) {in) .+ K v
Rgf,exlé(/z l = cosX, Y-17, % >0,

so that equation (ll‘) can be rewritten thus

(f! zx (..1)> - M (- fl,é (--Zéf?))i./2 (11,)

This can be integrated, subject to condition (5), to yield

67 = m [ S ".fﬁ/é( f;))“f o (1= explag) f a

The last relationship, together with equation (121) constitute the boundary




7u) (in)
conditions which determine ( /5 c o, X However, without solving for
. (n) fw)

these one can match along the free streamlines /30 + g/%’ with
(d) ) . . : .
F" +4 E-/So . This yields the following result

c, = m(1 - b2 )

uw u)
As mentioned above (i and 4 are solved for by a
(1)

series technique. This can be explained by noting that Z can
. Q

be expanded as follows:

fud o9 . o
A Y A R S o ¢
> ™ a : . -
= YU AL explimen) ¢ 7o, FyeE
=9

and thf‘:tt this form could have been deduced from the following considerations.
Far upstream the flow pattern is that of sink of (unknown) strength M so

that the following relationship holds there

W= - Mz +ms Z - W - lam
2 ‘
{w)
The contribution to g o which represents the deviation from a sink-

type flow must vanish for @ —»-00 . Moreover, the imaginary part of
that contribution should-vanish on =t "Jf/l , where the sink flow

)
satisfies the conditions imposed on 0{0 . The most general analytic

function satisfying these two requirements is the even series with arbitrary

A0
coefficients B.,‘ . Similarly, the odd series with the arbitrary
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D
coefficients A is the most general form for an analytic function which

bial

is finite for fi) - o and has a vanishing real part along s j/.jt’/z_ .

A similar consideration leads one to choose the following form of

. w)
solution‘/for Z‘ (W)

fi“) = M { Q' [/"‘l) '.W - {—O-Q—M-;z-)i —’)hzx(4<‘—lz4w/‘).

T e e e

m——

L_ Zh |2
Y= l (M)
ot : . :
s e hes l(—amw)‘y/)j ;o $ro L Eevew,
M=o E
= MACUBeapnl) , dco Ze<Z L oy

———

VThe odd and even series have vanishj".ng real and imdginary parts where
equation (14) and (121), respectiveiy, should hold. Furthermore, these 14
are finite for § —> -00 and 45 —-><>° . The contribution to the

expression for é':u , which has knowﬁ coefficients satisfies the

(=
inhomogeneous equation (14). To complete the solution for Z‘ s one

is thus left with the task of evaluating the coefficients A’h and

» ) (ny -

B, . This is achieved by requiring that /3’ ) and '3/'3, /3 P .
(7)) -

(or else X . , and its 35 derivative) should be continuous along

éﬁ = O . As explained in an earlier work by the author (1963) these

requirements yield two equalities between Fourier cosine (or sine) series
of different types. When these equalities are multiplied by cos(2m /)
and integrated with respect to from = -%‘ to = -+ ﬂT/z

one gets
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: 7 -
) ‘ ; Tt -
Boo‘( = (I - Lnl)&‘i’ “+ lL\_.AW (zznfn) ; (17)
. : Mo .
@
O = - 52’ - 2 2_ Am ) | (180)
. n =qo
n! xSy
"o 1n=2) ™ _ EA (2m+1)
= + = = 2 (17_)
8.2 P A TIVEETTYS.
. x o 2
BT - (2n-p)! @ -2y A \2pti) - s
e T A T ’

These relationships provide as many algebraic equations as unknowns. However,
solution by straightforward transaction is unreliable because the coefficients

in equations (18n), hwo, 1,2 ... do not decrease for Mm - O

Therefore, both this system, as well as that encountered in the solution for
(w)

C require a more sophisticated treatment, which is explained in
2 .
the next section. First a solution for the next term in the expansion,
1C)! (1)
Z will be developed, assuming that Z and hence the
2 : f
| i
coefficients A and B are known.
" n
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(ia)
In order to evaluate 7/’ and C3. the boundary value of
(i) : ' B ) g
/3,1 along the free streamline is obtained by integrating equation (112).

When use is made of equations (112), (16), and the identity
i fin)
) ;. ) - R {M)'\ - / . - L o
IM —el%{m Zo ) - S ha (9(0 ) = % exf(— é)) VA .L/Z N

the following result is obtained:

/3(:) = /\/‘z{i/z _S_-_GM“)/A - "?f"/’( é—”"“”)ﬁf’ («/L)f\t‘ex‘i\/—ﬁ))

(3//2)(1—011)2 + (3/2)51,)x 4+ 3((’"2.”) é

3 NT Gn-aka2ll (2 h-g). APPY.
2_(> n-202 }1 g’ J.LZ Uzi))’z ( 2 )

3 _(_%.Ll_}_. Q)Qx/;( 27,4)) + 3([’12 1)4 (Zn_z) «QX#LZWf) (19)

h=t 21” Vl’)

This result is used in the well known matching process. Retaining terms

hzi

bR
of 0 (€ ) in both the upstream and downstream expansions one gets
b1 ™ P
/30 + 9/5, + E/gl ~ - &M(L“Z‘_!)

A

o0 -
- MO E?/.‘\LQ/L)Z_(M“)’ A, ¢ (&/c) ¢ M

~

-

4(3/1) 'tt/(’il(/ —énl)z + (5/1) M3 +

) ~ i
+ 3¢ M ('L:«z-')i) + O(&? é)_ ‘ (20,)

1

T
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; Lo . ' . e -
Po +’£($i +£./31) ~ - Med + (S/z) ¢t g"

-5/'1(&42—}/‘ + SQL/WL(LHZ -’)43 + ¢ C

3

w6/ (b)) - () )] 06 g

Therefore, C is given by

o= M) e el () Yej AT

\
It follows from arguments similar to those expounded earlier that

({2 / ML ) can be expressed by the following form
- 3 (L2 =)W s s/ (W' e @h)) - waexh- )

+ f(“ ')“ C‘A 11[’(" 2 l6//) + X—‘)&A: Jex/'(ﬂ @m-H/'W)

T Y IR MNP 3> o

th (H ()2.

i

oo .
Z\_(“ ) B,\ ‘QXJL(“ v) ¢<o .

e ————
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‘ 2 ‘ by
Here the coefficients in the odd and even series, A - and B.n

are still unknown, while the constants CM © are given by:

G = (’/Z)Z (‘W‘H)"A; + (é,é)(/-—énz)? v k)

C.- - (//Z)Ao ¢ (3/4) (éy\z - 1)

LY

g%' (wn-2)- 2)’ | (4)2~2)! (/' (zn -2
.2 | 2 L 2n- Lk(()\-h}!)z Zk (kl)z, + 3( 2‘) g)z

R=

C. - -

(i) :
The requirement that Zz. ‘and its 4_) derivative should be

continuous along 4)-:0 yields the églgebraic relationships governing the

unknowns. These read

B, @ = G 4+ () o+ 2
S ew St Y
zk(.l R! (k“)f m (220)
m=0
) 2.
- 3 (412—')08' + 355)— (“ *’) - ZZAM B (23)
. o

B T T T TR
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2

B% (ﬁ“/l/ = C-.‘ @C/zj - <3/;) 71'1(6f/z) - 2 (4n') (/,-n‘-:)""

h(wiobe)” w #
' 13 _f_t’ (2L 2) /
* l

zA k})
( - (k)" .

"
R

l

- ) | i}
v Z—Aw@W“M@“W1~@uﬂ

- (22))

e Bwh) =~ wCh) o+ sl —(en-)!

27 et

T (ks fk“KQT' n ik
_ e (2p-2)! _
33 LRG|

! -(4}‘.)-’ L=k

ey

(23,)

g Nk ¢ w1
/6 h —1) -2 Ak<2“ﬂ+') [(sz-:) ‘{Zh)]
M=o
The coefficients in this system of equations and in the system consisting of

equations (17“) and (18,) are identical. Moreover, it is the same set of
()
coefficients which form the matrix associated with the solution for /S 3,

(h)
¢ - etc.

4., Solution for the Unknowns AM and B n

) L
The system of equations governing the unknowns ( A ", Zh ) can be

reduced to the following form,

. o0 .
@{A) D‘n - Z Aa\(“"*") (2h\+l “2n) ) Mm=0,12... (244‘)
m=o
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Equation (24,) is simply another way of writing equations (186) and (230).
Equations (24,), n > o , are derived by linearly combining equation

(17, ) with (18,) or (22,) with (23,). -Imthis process the constants

B‘;‘ ) % > 0 , are eliminated. Of course, once the set (A21+h) is solved
and 'thé Aih are known, the constants B‘, can be evaluated by using
equations (17)‘) and (22,), n=09,(2--. The inhomogeneous terms D:
are known for (= /2 and can be obtained, without to5 much difficulty,

for the set governing the coefficients in the higher terms of the upstream
asymptotic expansion. It is noted that the reduction to the form (24,) is
poss:L.ble fof all functioms {(W’) which are expressible in the form
containing odd and even expansions for @ > o and 5540 , respectively.
The correspondence between such funcfions and the séts (24,) plays an important
role in the inversion of the matrix a;ssociated with the latter. Furthermore,
once achieved, the inversion of this n;atrix allows the refinement of the
present solution by the evaluation of ( A“m , Bn ) L >2 .

The solution for C:)(W) contains a clue leading to the inversion
scheme proposed here. . One finds from equation (13) that the coefficients in

(n)
the odd power series representing Co (W) are given by

A: = Qm.,,f)“()_ m)’ 274 (w!)—.’. (25)

On the other hand these constants satisfy equations (24") when the inhomog-

eneous terms are

D. Sro

0
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i. e. the first is the only non-trivial one. In other words the terms on
the right hand side of equation (25) are < -%/Z ) times the members of
the first column in the inverted matrix sought. This leads one to seek the

general (/ ~f'-i) column in the inverted matrix by constructing the appro-

priate sequence of functions L /-= /,2,3.- . These must be analytic
in -0« Q < o2 s -‘Jf/z LY < 9‘1’/2, , expressible by a form containing
an odd series in the domain . c{) > 0 , with coefficients satisfying

equations (24,) in which all but the < »H) ~ inhomogeneous term vanish. One

such class of functions is given by

7

{ @ |
f{ _ (-QQI{L(_Z/W) +Za:(-‘)h€1 (-Gme)¥), $ >0
m=o

1}

n=d

S L e, d<o (26)

Indeed, it can easily be shown that the constants a,. satisfy the

equations under discussion:

20

. (9{/2)(1[) <[h = Z

=Q

p ,
Qm(lmw)%J.w\H‘hJ (QL‘:‘)

" and that the terms on their left hand side have the desired properties.
Furthermore, it is possible to obtain a closed-form expression for ZI

N
from which the constants 0,,, can be calculated; these are proportional

to the elements in the (/ +1)  column of the inverted matrix. The function

C&(W ) is uniquely determined from the boundary conditions implied by the
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right hand ' side of equation (26)

R.z(é(> = 41%(—-2/@) , : ¢ >0, ¥ 74 (27)

Im (é) = o P ‘ d<o ’\‘[f=f?(/L (28)

Without going into the uninteresting detailed solution of the boundary value

problem at hand, one can verify that it is given by

'

11}

7z, (w) (oo - 2.0%)

f 2

- ("‘)l (" + exll(.z)&))léz(- ')kz'%%)z{‘)» ‘2"%[‘ (24-1-2}) W’). (29)
| Eoe ! ;

From the finite summation in the above equation together with equations (24 )
and (25) one can determine each and every term in the inverted matrix. Its

upper left corner is tabulated below

1 -1/2 -1/8 -1/16 -5/128 ..;

1/6 /4 -3/16 ~-5/96 -7/256
. 3/40 1/16 g/64 -15/128 -35/1026 .

5/112 1/32 5/128 25/256 -175/4096

35/1152 5/256 21/1024 175/61u44 1225/16384

s s . o0 e e LRI .o

Table 1. (:1{/2) times upper left part of the inverse of the matrix with

elements (2}m+l)(2m4/_2)/\)" ) (™, n- ) = 9, /2. .
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The constants /f‘,.‘. can be obtained by I'nultiplyi‘ng the inverse matrix

with the vector formed by the sequence of ¢lements Dn . k=9 /7... The

latter are easi'ly obtained for ¢=' . However, the infinite series appear-

ing on the left hand sides of equation (22,) and (23, ) makes the evaluation of
2

D,1 a somewhat more complicated process. The summation contained in the
. z - .
expression for Do is given by

H

f ihoy . 26020 de < (1= o)

2R

k= ® '
1
from which it follows that Do vanishes. The infinite summations
1
contained in the expression for [), h > o0 , can be similarly calculated
’ ’/
by considering a finite integral which contains - (l -x) g rather

z
than Q - JCL) . The values of the first four constants for 1 = 1,2 are

listed below‘

o=
n

. . ’
o = 127 A, = .07 A, = .02 Ay = .01
2 _ 2 _ 2 _ ' 2 _

A = 2.69 A7 = 1.18 A, = .87 Ay = .19
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5. RESULTS AND CONCLUSION

The properties of the ‘flow under discussion can bek studied either
by examining the upstream and downstream expressions separately, or else
by forming a composite solution. ‘Many of these typical features are known.
However,fproperty which is of interest and which cannot be obtained from
_other solutions for flow under gravity obtained to date, is the influence

of that effect on the volumetric discharge. This is obtained by approx-

imating the integrand of equatior‘l (6) in the following manner:

Jz:c/a (Zw(m/\?) = [21}&1«@ + (,;u}(-z;gr))'/‘j,
(X( ] Z 1) A aexlé( <?h4+QL1V) - Y+

(/ - énl) - Z ;)(Zh—l) £x (udi’/)} O(&L)

- ZH(

Integration and rearrangement yield

R RSy

which is correct to within an error of 0(¢*). This shows that, as could

have been expected, the rate of volumetric discharge increases with gravity.

-]
One notes that the matrix with elements <2M H) {Zw,t ! —Z“h) is
encountered not only here, but also in the author's previous work (1963),

Ther'e) however, the matrix was first truncated and then inverted - and this
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is reflected in the accuracy of the numerical results. These can now be
improved by making use of the results contained in Table 1. 1In addition,

by adopting the procedure of Section 4 cne can probably find correspondence-

-between o;her infinite matrices and known, or.easily available, solutions

of boundéfy value problems. Correspondence of this typé, should it be

found, will not only make the two-series technique a more attractive me%hod
for solving boundary value problems but perhaps will also contribute to an
understanding of infinite matrix inversion. It therefore seems advisable

to record in the Appendix the interrelationship between known results in that

]
field of study and those obtained here.

ACKNOWLEDGMENT

The author gratefully acknoWledges Dr. Stuart Harris' help in the

preparation of this paper.



22

APPENDIX

Consider the form

Z(- )G M‘f')" ..., eff/7 ( i)W )

1]

4

ot . a
o DS, eap(-an) 5§70,

i

o0 / .
- Z(" ')»‘(1 b1+'j O;»n-u .Q:(} ((2’;““) W) + a«: W

]

oo

‘ < o (A1)
1 z_(")(“) U 11/(2hW} , 9 P
=
which is a somewhat more general version of that used repeatedly above.

Again U_ and [¥ are real coefficients which can be related by imposing

P qa .
the requirements that Ko (C) and its é— derivative should be continuous
along :5 = O . However, there are two ways to satisfy these.
One can multiply the equalities expressing these requirements by coz(_zu?”)
and thus get ugs (U“‘ + (_«_(“), (Lg“+ (xﬁzh>, in terms of the constants (

This yields

oo -
-1 | 2] -t
U = Y G0 (82)

where p 1is even and g 1is odd. This procedure is the one used to derive
equations. (2'+n). In fact the latter system can be deduced from the more
~general form (A2). However, it is also possible to multiply the equalities

by cos(?\]/) and integrate. This would yield relationships expressing each
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of the constants 0% in terms of the Up - When use is made of the
relationship

&

i
0

(2n) wo- U )

N “Xh

TN

(A3)

"the following inverse of (A2) is obtained:

0; = @)Y u, (r - )(c/ /’) (AL;)'
beoso

This result was obtained by Duffin (1956). Equation (A3) implies that
RQ (é ) is continuous at the end points "} = tﬂ(/z _{:O Indeed,
this 'm'l{IS‘t be so if this function and its @ derivative are continuous

in the open range AO'I;K\;/‘AZ; .

—
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FIG.2 COMPLEX POTENTIAL PLANE.




