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ABSTRACT 

A matched asymptotic expansion type of solut ion i s  developed for  
I !  

t h e  case of an  i r r o t a t i o n a l  f r e e - f a l l i n g  jet emanating from a s l i t  a t  a  
, I 

bottom of a l a r g e  tank.  The terms i n  t h e  asymptotic expansion which 
I 

represent  t h e  f low upstream a r e  obtained a s  s e r i e s  solut ions of potential 

problems wi th  ass igned  boundary values. The coeff ic ients  i n  the ser ies  

are  governed by a s e t  of i n f i n i t e  a lgebra ic  equations which are solved by 

inver t ing  t h e  associat .ed matrix.  The r e s u l t i n g  solut ion f o r  the flow 

' y i e l d s  a formula which r e l a t e s  the  volumetric flow r a t e  t o  the  re la t ive  

s t r eng th  of  g r a v i t y .  



1. INTRODUCTION 

A l a r g e  c l a s s  of two dimensional p o t e n t i a l  flows can be eas i ly  

solved when t h e  so-cal led  Helmholtz condition holds on t h e  f r e e  stream- 

l i n e s .    ow ever , with non zero g rav i ty ,  t h e  boundary condition t h a t  is 

imposed t h e r e  is h igh ly  non-linear. This non-l ineari ty i s  troublesone 

when t h e  f l u i d  p a r t i c l e s  on t h e  f r e e  surface undergo a f i n i t e  ve r t i ca l  

drop. The s i t u a t i o n  is  ever  s o  more d i f f i c u l t  when t h a t  v e r t i c a l  drop is  

i n f i n i t e  and t h e  f l u i d  speed increases  indef in i t e ly ,  even i f  gravity is 

comparatively i n e f f e c t i v e .  It is noted t h a t  t h e  flow pat tern  f o r  a free 

f a l l i n g  j e t  i s  i n  no way similar t o  t h a t  which prevails  i n  the absence 

.of g rav i ty .  Modificat ion of the  c l a s s i c a l  mapping sequence technique or 

per turbat ion around a Helmholtz type flow i s  therefore not expected t o  
I 

succeed i f  t h e  f low downstream is gravi ty  control led.  I t  thus seems tha t  I 
I 

the only way t o  d e a l  wi th  such problems i s  t o  recognize t h e  distinctness 

of such domain, develop an appropriate expression f o r  t h e  solut ion there, 

and match it wi th  t h e  s o l u t i o n  character iz ing t h e  i n e r t i a  or  pressure 1 I 
control led  flow.   his' approach was suggested by Clarke (1965), who applied . 
it t o  what is known a s  t h e  w a t e r f a l l  problem. Ackerberg (1968) follows 

s u i t .  I n  t h i s  work t h e  author  adheres t o  t h i s  general philosophy. However i 
a s l i g h t l y  more complicated case i s  considered and a somewhat l e s s  familiar 

. analys is  is employed. 
I 

Both Clarke and Ackerberg consider cases i n  which the  flow pattern 

upstream is (very  nea r ly )  uniform and of constant-width. The volumetric 

flow r a t e  and a x i a l  f l u x  of momentum a r e  therefore  predetermined, and the 



1 2 

t 
a-pr io r i  knowledge of these  quan t i t i es  makes the  analyses e a s i e r .  Indeed, 

the  f a c t  t h a t  these  quan t i t i e s  should be equal i n  terms of t h e  upstream 
I I and downstream expansions s impl i f ies  t he  matching procedure considerably. 

' 
I , 

I 

I Typically; Clarke evaluates t h e  f l ux  of momentum using t h e  f a r  upstrean 

i conditions and employs t h i s  quanti ty as  a parameter i n  t h e  downstream ! , 

asymptotic expansion. I t  therefore  seems appropriate t o  consider a case 

i n  which g r av i t y  not only a f f e c t s  the  geometry of t h e  f r e e  f a l l i n g  j e t  

downstream, but  a l so  influences the  volumetric flow r a t e  throughout. One 

such ca se  i s  t h a t  of a j e t  emerging from a s l i t  a t  t h e  hor izon ta l  bottom 
t 

o f  a l a r g e  tank ( see  Fig. 1). This case is  solved here .  
I 

Both i n  t he  works c i t e d  and i n  the  present paper t h e  terms i n  t he  

upstream expansion a r e  t he  solut ions  of a sequence 'of po t en t i a l  problems. 

The usua l  way t o  solve these  i s  i n  terms of i n t eg ra l s  over t h e  surface ,  o r  

par-ts o f  it. I n  t h e  sequence under discussion t h e  boundary values f o r  the  

higher order  solut ions  a r e  sums of products of t h e  lower order ones. There- 

fore ,  although i n  p r inc ip l e  a solution of almost any order can be obtained 

by ca r ry ing  out repeatedly in tegrat ions  over t he  boundary,the r e s u l t s  

obtained by such process a r e  of ten d i f f i c u l t  t o  evaluate .  Since i n  t he  

matching procedure coef f ic ien t s  i n  t h e  asymptotic expansions have t o  be 

evaluated numerically t h i s  computational d i f f i c u l t y  can become a ser ious  

shortcoming. Therefore, r a the r  than obtain so lu t ions  f o r  t h e  po t en t i a l  

problems i n  terms of i n t eg ra l s ,  these w i l l  be solved by t h e  s e r i e s  method 

which w a s  used by t h e  author (1963) i n  the  treatment o f  Levi Civ i tas '  

problem. The adap tab i l i ty  of t h i s  l a t t e r  technique t o  t h e  complicated 

boundary condit ions encountered here w i l l  soon become apparent. 



2. MATHEMATICAL FORMULATION OF THE PROBLEM 

The complex v a r i a b l e  z associated with t h e  physica l  plane (Fig.  1) 

is chosen s o  t h a t  g r a v i t y  acts along t h v s i t i v e  r e a l  a x i s .  The complex 
I 

! .  p o t e n t i a l '  w-plane i s  shown i n  Fig. 2 ,  and it i s  assumed t h a t  t h e r e  e x i s t s  

1 an a n a l y t i c  func t ion  w ( z )  which maps t h e  e n t i r e  flow i n t o  an i n f i n i t e  

s t r i p  of width f i% . The o r ig in  of the  w p lane  is chosen s o  t h a t  plane 

of symmetry i n  t h e  z .  plane ,  t h e  Re(z) a x i s ,  coincides  with 

yf = h (u) 5 o . The curve 9 = R^(rcr) = o is 

assumed t o  pass  through t h e  edges of t h e  s l i t .  

The problem under discussion i s  solved by l e t t i n g  (9, Y) 
play t h e  r o l e  of independent va r iab les  while ( (?a, d ) , which a r e  defined 

as  fo l lows , 

are taken t o  be t h e  dependent var iables .  Hence ( - r J  ) is  t h e  logarithm 

of t h e  flow-speed while d is t h e  angle between t h e  d i r e c t i o n  of flow ! 
l 

and t h e  p o s i t i v e  RQ (I) ax i s .  If <bP) is a n a l y t i c  t h e  following 
- 

! 
I 

Cauchy Riemann equations hold,  

I 
whence and P a r e  harmonic i n  t h e  domain - M K ~  L Y C (~l?r/L, 

- W L $ p 4 0 3  . On t h e  boundaries t h e s e  q u a n t i t i e s  s a t i s f y  t h e  

condit ions 



- 

Here, t h e  f irst  condi t ion ' represents  t h e  s o l i d  boundaries, o r  t h e  bottom of 

t h e  tank,  while t h e  la t ter  i s  t h e  Bernoull is '  equation when t h e  pressure 

along t h e  f r e e  s t reamlines  is  constant .  The parameter E is t h e  inverse  

of t h e  Froude number def ined thus:  

where 3 i s  t h e  g r a v i t a t i o n a l  accelera t ion. .  A l l  va r i ab les  a r e  non- 

dimensionalized with r e s p e c t  t o  ha l f  t h e  width of t h e  s l i t - a n d  t h e  flow-speed 

a t  t h e  po in t s  where t h e  free streamlines emerge from t h e  s l i t .  
1 
I It fol lows from t h e  choice of c h a r a c t e r i s t i c  speed, , t h a t  t h e  

following condi t ion  should hold 

The choice of c h a r a c t e r i s t i c  length gives . 

Since t h e  l a s t  two r e l a t i o n s h i p s  should be s a t i s f i e d  by expansions, every 

term i n  these  w i l l  be made t o  s a t i s f y  equation ( 5 ) .  However, equation ( 6 )  

cannot be as e a s i l y  s a t i s f i e d .  M w i l l  t h e r e f o r e  be l e f t  a s  an unknown 
,- 



u n t i l  t h e  s o l u t i o n  , o r  a s u i t a b l e  approximation f o r  it, i s  

o u l  holg 
obtained. F i n a l l y ,  by r e q u i r i n g  t h a t  equation (89 ,/ fl w l  1 be obtained. 

This procedure r e f l e c t s  t h e  f a c t  t h a t  t h e  volumetric discharge cannot be 

evaluated without  s o l v i n g f o r  t h e  flow pa t t e rn .  
. . 

3. SOLUTION BY MATCHED EXPANSIONS 

The asymptotic expansions w i l l  now be developed i n  terms of t h e  

I 
I appropr ia te ly  sca led  independent var iables .  These a r e  taken t o  be 

upstream and downstream, respec t ive ly .  The r o l e  of t h e  scale f a c t o r  E 

I i n  t h e  d e f i n i t i o n  of t h e s e  va r iab les  has been amply discussed.  The 
t 

1 in t roduct ion of  t h e  f a c t o r  M is convenient b u t  not e s s e n t i a l .  

I 
The fol lowing expansions a r e  assumed t o  hold downstream 

b 

as i n d i c a t e d  by t h e  bracketed superscr ip t  d .  When these  expressions 

i 
are  s u b s t i t u t e d  i n t o  t h e  Cauchy-Riemann equations and l i k e  powers of & 

are  equated,  t h e  fol lowing r e l a t i o n s h i p s  a r e  obtained: 



I It follows from ( 7  ) and the antisymmetry of with respect to y= o 
0 

d) 
that d ,  vanishes. When use is made of that result, the Bernoullis 

equation yields 

etc. The first of these equations together with equation (80) yields 

where C1 is a constant. Then, by considering equations (7') ( 9 . )  and 
b 

8 in this order, for i = 1 and i = 2 one obtains 
(A 

4 = - h?V (c, + 3 "3 ) , - I  
/ 

This process can be continued, but within the framework of this study only 

three terms in each expansion will be evaluated. The constants of 



I 
I 

in tegra t ions  C;  are obtained by matching with t h e  upstream expansion. 
1 

A s  i n d i c a t e d  by t h e  bracketed supersc r ip t  t h e  assumed upstream 

expansion is -- 

This form is combined with t h e  Bernoull is '  equation t o  y i e l d  

.c 

For t h e  s o l i d  p a r t  of t h e  boundary equation (3) y i e l d s  

where is t h e  Kronecker d e l t a .  Ins ide  t h e  domain -5 4 3? 4 
J R 2 I ' 

- 00 4 4 4 m, t h e  Cauchy-Riemann equations hold. One notes  t h a t  i n  

t h e  d e f i n i t i o n  o f  t h e  independent var iables  associa ted  with t h e  upstream ! 

domain t h e  s c a l e  f a c t o r  E is absent. Therefore, (py' , 4:' ) I I 

unlike ( dci) ) form complex conjugate p a i r s .  Hence 1 



l 

and ' and harmonic i n  ($ , Y) ' . 
! 

It follows from equations ( lo0)  (120) and ( 5 )  t h a t  t h e  zeroth 

I complex p a i r  'is t h e  so-called Helmholtz solut ion,  given by 

where 

S: p;'(p, r f i / ~ )  (A) ,- By expressing i n  terms of and ( g ,  r-T/) 

in terms of 56 , expanding and comparing terms of 0 ( E' ) one obtains 

t h e  (known) r e s u l t  

("I) ' 
Use i s  then made of t he  f a c t  t h a t  s ince  f *  vanishes t he  following holds 

so t ha t  equation (11;) can be r e m i t t e n  thus 

This can be in tegra ted ,  subject  t o  condition (51 ,  t o  y i e l d  

I 

The l a s t  r e l a t i onsh ip ,  together  with equation (121) cons t i t u t e  t he  boundary 



i'bl 1 (h/ 

I condit ions which determine 
( p I . However, without solving f o r  

I 
these  one can match along t h e  f r e e  streamlines with 

I . This  y i e l d s  t h e  following r e s u l t  

A s  mentioned above <*' and a r e  solved f o r  by a 
A", 

s e r i e s  technique.  This can be explained by not ing t h a t  
I 1;. can 
i 
I 
t be expanded a s  fol lows:  

T- VM 3 - - L ( - V  A,,, x x / ( : ( 2 m + l ) % ) .  

I and t h k t  t h i s  form could have been deduced from t h e  fol lowing considerat ions.  

I 
I Far upstream t h e  flow p a t t e r n  i s  t h a t  of s ink  of (unknown) s t r eng th  M so  

I t h a t  t h e  following r e l a t i o n s h i p  holds the re  

! . .  

W =  - f i h z  - + i ~ g  g T  - W  - L M ,  
2 

I 

The con t r ibu t ion  t o  < which represents  t h e  dev ia t ion  from a sink- 

type flow must vanish f o r  $ --& . Moreover, t h e  imaginary p a r t  of 

I, t h a t  con t r ibu t ion  s h o u l d v a n i s h  on 'y r 2 #$/A , where t h e  s ink  flow 

s a t i s f i e s  t h e  condi t ions  imposed on dYd . The most genera l  a n a l y t i c  

funct ion s a t i s f y i n g  t h e s e  two requirements is t h e  even s e r i e s  with a r b i t r a r y  

c o e f f i c i e n t s  8: . Similar ly ,  t h e  odd s e r i e s  with t h e  a r b i t r a r y  



I . .  coeff ic ients  A: i s  t h e  most general form f o r  an ana ly t i c  function which 

I is f i n i t e  f o r  4 -> and has a vanishing r e a l  pa r t  along yz m/.z . , 

j 
I 

A similar consideration leads . -  one t o  choose t he  following form of 
. 

! solution f o r  

I 

L 

The odd and even s e r i e s  have vanishing r e a l  and imaginary par t s  where 

equation (14) and (12 ), respect ively ,  should hold. Furthermore, these 
1 

I are f i n i t e  f o r  $I -2 -oo and 4 --t 4 . The contribution t o  t he  

i expression f o r  ' , which has known coef f ic ien t s  s a t i s f i e s  t he  

inhomogeneous equation (14) .  To complete t he  solut ion f o r  i(f' , one 
I 

I 

i is thus  l e f t  with t h e  t a s k  of evaluating t h e  coef f ic ien t s  A: and 
1 

i 8: . This is achieved by requir ing t ha t  ~ " 1 )  and > ] $ ' / a $  - 
/ 1 

(or e l s e  ~ ( ( f '  , and i ts  $ der ivat ive)  should be continuous along 

= 0 . A s  explained i n  an e a r l i e r  work by t h e  author (1963) these - 
requirements y i e l d  two e q u a l i t i e s  between Fourier cosine (o r  s ine)  s e r i e s  

I of d i f f e r e n t  types.  When these  equa l i t i e s  a r e  mul t ip l ied by cos(2 ' ~ l  Tr) 
I 

and in tegra ted  with respec t  t o  Tf from y = - 8  t o  ? y - 4  m h  
& 

L 

one g e t s  



These relationships provide as many algebraic equations as unknowns. However, 

solution by straightforward transaction is unreliable because the coefficients 

t in equations (18,), h '3 o .  I ,  .. . do not decrease for hl -P GO . I I 

1 
Therefore, both this system, as well as that encountered in the solution for 

require a more sophisticated treatment, which is explained in 

I 
$ . the next section. First a solution for the next term in the expansion, 



In  order t o  evaluate  and Cg t he  boundary value of 

along t h e  f r e e  streamline is obtained by in tegra t ing  equation (11 ) . 
1 2 

When use is  made of equations (11 1, (16),  and the  i den t i t y  2 

the following r e s u l t  is obtained: 

ix' 2 - 1 \ (211-2 1. 9 1 / i r R y  )/ .  (19) \ (2*-')! i j i e X d ( - f h $ ~  + ~ ( L J - I ) ~  
L rzfl p !)' 
hzr h Z d  2'" c!)' 

This r e s u l t  is used i n  t he  wel l  known matching process. Retaining terms 

L 
of 0 ( 6 ) i n  both the  upstream and downstream expansions one gets 



Therefore, C 3  is given by I 

i 
It follows from arguments similar to those expounded earlier that 

( / f l L  ) can be expressed by the following form 



I 

1 Here t h e  c o e f f i c i e o t s  i n  t h e  odd and even s e r i e s ,  and /$ 
. '  C, i a r e  still unknown, while t h e  cons tants  . are given by: 

I 

The requirement t h a t  ' a n d  its 2, d e r i v a t i v e  should be 

continuous along $= 0 y i e l d s  t h e  a lgebra ic  r e l a t i o n s h i p s  governing t h e  

unknowns. These read  



Ic =o 

The coef f ic ien ts  i n  t h i s  system of  equations and i n  t he  system consist ing of 

equations (17p ) and (18n) a re  ident ical .  Moreover, it is  the sane s e t  of 

coeff ic ients  which form t h e  matrix associated with the  solution f o r  $': , 
,3': ... e t c .  

ir 

4. Solution f o r  the  Unknowns A ,  and 8: 
The system of equations gove-ing the  unknowns ( A :, 8: can be 

I reduced t o  t h e  following form, 



! Equation (24,) i s  simply another way of wr i t ing  equations (18 ) and (23 ). 
i o o 

Equations (24,), n > 0 , a r e  derived by l i n e a r l y  combining equation 

(17% with (18,) o r  (22,) with (23,). - M - i s  process t h e  constants 

Oi, V )  0 ,  are el iminated.  O f  course, once t h e  s e t  (24,) is solved 
. I  . 

and t h e  A ', a r e  known, t h e  constants  I!?:, can be evaluated by using 

equations (17* 3 and (22,, 1, k = 0, l j L  . + .  . The inhomogeneous terms D: 
are  known f o r  i= / , z .  and can be obtained, without t o o  much d i f f i c u l t y ,  

f o r  t h e  s e t  governing t h e  c o e f f i c i e n t s  i n  t h e  higher terms of the  upstream 

asymptotic expansion. I t  is  noted t h a t  t h e  reduction t o  t h e  form (24,) i s  

poss ib le  f o r  a l l  func t ions  <(w) which a r e  express ib le  i n  t h e  form 

containing odd and even expansions f o r  6 2 o and $40 , respectively.  

The correspondence between such functions and t h e  s e t s  (24J plays an important 

I r o l e  i n  t h e  invers ion  of t h e  matrix associated with t h e  l a t t e r .  Furthermore, 

once achieved, t h e  invers ion  of t h i s  tnatrix allows t h e  refinement of t h e  

present  s o l u t i o n  by t h e  evaluat ion of ( A', , 8; ) i > L  

The s o l u t i o n  f o r  <?V) contains a clue leading t o  the  inversion 

scheme proposed here.  . One f i n d s  from equation (13) t h a t  t h e  coef f i c ien t s  i n  

the odd power s e r i e s  r epresen t ing  C : ~ W )  a r e  given by 

On t h e  o ther  hand these  constants  s a t i s f y  equations (2Qh) when t h e  inhomog- 
. 

eneous terms are 



i. e. t h e  first is t h e  only non- t r iv ia l  one. I n  o t h e r  words t h e  terms on 

1 the r i g h t  hind s i d e  of  equation (25) a r e  . (  ) times t h e  members of 
I *  
I the first column i n  t h e  inver ted  matrix sought. This  leads  one t o  seek the  

genera l  ( i  column i n  t h e  inverted matrix by constructing the  appro- 

p r i a t e  sequence of func t ions  , [ =  , , - . These must be analyt ic  

i n  - s .Y $ c ; -2~h T L R/L , exEress ib le  by a form containing 

an odd s e r i e s  i n  t h e  domain . r$ > o , with c o e f f i c i e n t s  sa t i s fy ing  

iqua t ions  ( 24,) i n  which a l l  but  t h e  f f ) inhomogeneous t e r m  vanish. One 

such c l a s s  of func t ions  is given by 
t 

L 
Indeed, it can e a s i l y  be shown t h a t  t h e  constants  0, s a t i s f y  t h e  

kquations under d iscuss ion:  

and t h a t  t h e  t e r m s  on t h e i r  i e f t  hand s i d e  have t h e  des i red  proper t ies .  

Furthermore, it i s  p o s s i b l e  t o  obta in  a closed-form expression f o r  2; 
I 

from which t h e  constants  0% can be ca lcu la ted ;  these  a r e  proport ional  

1 
I 

t o  t h e  elements i n  t h e  ([+I) column of t h e  inver ted  matrix. The function 

&(@) is uniquely determined f r o m t h e  boundary condit ions implied by t h e  



r igh t  hand'side of equation (26)  

I 

Without going i n t o  t h e  uninteres t ing deta i led so lu t ion  of t he  boundary value 

problem a t  hand, one can ve r i fy  t h a t  it i s  given by 
I 

# 

From t h e  f i n i t e  summation i n  t h e  above equation together with equations (24,) 

and ( 2 5 )  one can determine each and every term i n  t h e  inverted matrix. I t s  

I upper l e f t  corner i s  tabulated below 

T a b l e  I. ($h) times upper l e f t  par t  of t h e  inverse of the  matrix with 

elements ( 2  )M -+ I ) ( 2 h - 4 ,  - m)-' I ( 't.. , n .  ) = o / / , t . .  . 
. . 



The constants  A': can be obtained by mult iplying t h e  inverse matrix 

1 .  I ' with t h e  vector  formed by t h e  sequence of i lements 0, , h . The ' / 

l a t t e r  a r e  e a s i l y  obtained f o r  = 1 . However, t h e  i n f i n i t e  s e r i e s  appear- 

ing on t h e  i e f t  hand s i d e s  of equation (22%) and (23* ) makes t h e  evaluation of 

0: a somewhat more complicated process. The summation contained i n  t h e  

expression f o r  u.' is given by 

from which it fol lows t h a t  vanishes. The i n f i n i t e  summations 

1 contained i n  t h e  expression f o r  0: 3 1 .  o , can be s i m i l a r l y  calculated 

I 
I 

by considering a f i n i t e  i n t e g r a l  which contains - 
( I  - x> 

4 r a t h e r  

than (1  - XL)"' . The values  of t h e  first four  constants  f o r  i = 1,2 a re  

l i s ted  below 



5. RESULTS AETD CONCLUSION 

The p roper t i e s  of t h e  flow under d iscuss ion can be studied e i t h e r  

by examining t h e  upstream and downstream expressions separa te ly ,  o r  e l s e  

by forming a composite so lu t ion .  Many of these  t y p i c a l  f ea tu res  a r e  known. 
a 

However, property which is  of i n t e r e s t  and which cannot be obtained from 
/i 

1 .  o t h e r  so lu t ions  f o r  f low under g rav i ty  obtained t o  date ,  is  the  influence 

of t h a t  e f f e c t  on t h e  volumetric discharge. This i s  obtained by approx- 

imating t h e  integrand of  equation ( 6 )  i n  t h e  following manner: 

I In tegra t ion  and rearrangement y i e l d  

which i s  cor rec t  t o  wi th in  an e r r o r  of 0(c2). This shows t h a t ,  as  could 
1 

have been expected, t h e  r a t e  of volumetric discharge increases with gravi ty .  

One notes  t h a t  t h e  matrix with elements 'm r 9 / 2  k.+ r - z*)-' i s  

encountered not  only he re ,  but  a l s o  i n  t h e  au thor ' s  previous work (1963). 

I 
There however, t h e  matr ix  was first truncated and then inverted - and t h i s  

2 



I .  
is r e f l e c t e d  i n  t h e  accuracy of t h e  numerical r e s u l t s .  These can now be 

improved by making use of t h e  r e s u l t s  contained i n  Table 1. I n  addi t ion ,  

of boundary value  problems. Correspondence of t h i s  type,  should it be 

found, w i l l  n o t  only make t h e  two-series technique a more a t t r a c t i v e  method 

f o r  so lv ing  boundary value  problems but  perhaps w i l l  a l s o  contribute t o  an 

* 

understanding of  i n f i n i t e  matrix inversion.  It the re fo re  seems advisable. 

by adopting t h e  procedure of  Section 4 one can probably f i n d  correspondence. 
s -- 

between oTher i n f i n i t e  matr ices  and known, o r  e a s i l y  ava i l ab le ,  so lut ions  

t o  record  i n  t h e  Appendix t h e  i n t e r r e l a t i o n s h i p  between known r e s u l t s  i n  t h a t  
I 

f i e l d  of s tudy and those  obtained here.  

I 
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APPENDIX 

, 
Consiaer the form 

I h= 8 

i which is a somewhat more general version of that used repeatedly above. 

Again k and (,Y are real coefficients which can be related by imposing 
P 9 

. the requirements that & (c) and its - 5 derivative should be continuous 

along $ t o  . However, there are two ways to satisfy these. 
1 One can multiply the equalities expressing these requirements by ~ 3 : ( 2 % ~ )  

and thus get uo, ( y,, + I( ), (U + 1( ) in terms of the constants V . 
-1 H 1- 'LC F 

This .yields 

-p 

where p is even and q is odd. This procedure is the one used to derive 

equations. (2LCH). In fact the latter system can be deduced from the more 
1 

general form ( A 2 ) .  However, it is also possible to multiply the equalities 

by cos( y) and integrate. This would yield relationships expressing each 4 



I 

of t he  constants i n  terms of t h e  . ' l b  When use i s  made of the 
I ! 

r e l a t i o n s h i p  

'the following inverse  o f  ( A 2 1  is obtained: 

. - 1 This r e s u l t  was obta ined by Duffin (1956). Equation ( A 3 1  implies tha t  

I /?$ (6 ) i s  continuous a t  t h e  end points  ?y, 2 9 / 2 - if J . Indeed, 

I 
this must be s o  if t h i s  func t ion  and i ts  # derivative are continuous 

i n  t h e  open range -$ LY L . 
t- 2 
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