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ABSTRACT

A new type of analysis is proposed for the cases of heat
transfer in two phase cocurrent and countercurrent exchange syétems.
This is done by splitting the expression for the temperature
distribution in each phase into two components. One represents the
temperature distribution when the partition is insulative, the
other expresses the effect of the he;t transfer across the partition.
The flux across the partition is found to be éoverned by an integral
equation of the Volterra and Fredholm type in respectively, cocurrent
and countercurrent cases. These equations can be easily solved by
Laplace Transform methods. Examples of cocurrent and countercurrent
cases are considered and the results obtained are found to be com-

patible with existing results.




I. INTRODUCTION

Most of the analyses of heat transfer in two phase flows
reported to déte are based on the form suggested by Graetz. Thus,
the .temperature (or mass) distribution in the entire domain is
obtained as an infinite summ of products of eigenfunctions and ex-
ponential functions. The argument in the exponential function is
proportional to the axial distance. The eigenfunctions ére generated by
a Sturm-Licuville system defined over the araﬁge representing the

1)

entire transverse cross seétion. In the cocurrent( case the presence
of two phases gives rise to minor difficulties in the solution of the
Sturm-Liouville system.. Eowever, once the eigenfunctions are known

one can utilize their érthogonality and"completeness'and thus satiéfy
the inlet condition. Conseqﬁently, the classical form is easily
applicable to this case. However, for the countercurrent case the

(2)

classical, but_somewhat modified, form is not very useful altﬂough
it is mathematically valid. Assuming negligible axial conduction,
the inlet temperature must beprescribed wherever the fluid enters the
system, i.e., on parts of two different cross sections. The eigen-

functions,howeverIare complete and orthogonal only over the range

representing the entire cross section of the exchanger and not over its
(3,4)

-

sections, Nunge and Gill attempt to overcome this difficulty, and
evaluate the coefficients in the expansion by reducing the inlet
conditions to an infinite syst;m of algebraiec equations. The latter is
truncated and a finite number of coefficlents havgg;@en evaluated by

a computer. In the éresent work the author proposes a more

sophisticated -analysis which is not based on Graetz's classical form.




The quest for mathematical elegance is not the only motivation behind
this study. There is a slight error in Ref. 3 where the derivation of
the algebraic equations is explained, @lthough in Ref. U the correct
equations are presented and used without derivation. It is pointed
out in this latter work that in the limitting case of zero axial
length exchanger, all but one term in the summation of equation (33)
vanish. Indeed in such exchangef the inlet conditions are prescribed
over the range which represents the entire cross-section and for which
the orthogonality holds. Nevertheless this test is not satisfied by
the corresponding relationship, equation (22) of Ref. 3. Consequently,
the available analysis of the countercurrent case is less than adequate.

(5)

Furthermore, Stein's work indicates that the numerical solution of
the resulting algebraic equations is not always straightforward;

The analysis presented here is based on the assumption that the
temperature distribution in each phase is given by a form containing
two expressions. The first represents the .distribution that would
prevail when the partition acts as an insulator. This is obtained
by applying the standard Graetz procedure to each stream and making use
of the inlet condition. The second term in each of these forms
represents the distribution when the temperature difference across the
partition is some a priori unknown function of the axial distance
z, £(z). The requirement that the temperature should be continuous

across the entire cross-section yields an integral equation for f(&).

This equation is of the Volterra (and Fredholm) type for cocurrent (and

countercurrent) exchanger(s). This distinction has physical significance

which will be explained later. The comparatively short treatment of the

cocurrent. case is included here only to emphasize this distinction, and
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most of this ﬁaper will be devoted to the countercurrent case.

The syétem considered in this work is depicted in Figure 1.
Here y represents the distance across the duct, which is taken to be
very broad in.the X &irection. In the range t <y < élphase;)the
fluid is assumed to flow in the +z direction. In the range

5
b <y < -t, the phase z:?Zow is in the +z and -z directions in
the cocurrent and countercﬁrrent cases, respectively. The range
-t <y < t vrepresents a solid conductive partition.

The solutions are derived without speéifying the velocity
distributions ui(y), (i = 1,2) in phases ; and 2. At the outer
boundaries, v = a and y = -b, the general linear homogeneous
boundary conditons are imposed. Thus, the‘general solution obtained
here is applicable to the variety of two phase exchange systems which
may have the abov¢ mentioned geometry. Moreover, :extenéion of the

proposed technigue to the double pipe case is obvious. We also present

a numerical example so as to explicitly demonstrate the application of

the method under consideration:



II. THEORETICAL DEVELOPMENT

The boundary conditions and differential equation governing’

the non-dimensional temperature éé(y,z) can be written as follows:
2 2 ‘

f’;b 51'/3‘5) = a;(g)(aﬁ;/BZ), (1)

- M Q(-b‘,l) + N‘%%(;G’Z) z o, o<cz< { ) (2)

'MA 34 (a’z) + N:%%‘(Q/Z) = O) E)<’Z</7 (3)

ﬁzgg‘(*ﬂz) + 3%—‘-(@(~f',2,)~6j(z‘,2)); ocz<4, )

k ({ z) 4 z%~(@0f,Lf"§(£Z»,‘ o<zl . (5)

Here the subscript i = 1, 2 indicates the phase. The independent
variables (y, z) as well as the constants N, and p; have the
dimensions of length. The constants Mi and the variables u, are
dimensionless. The-constants k and ki are the conductivities of
the solid and the liquids in phase 1i. In the cocurrent case the

inlet conditions are

(6) (7)

gy, o) - A(S), 6(4°) - AI(S)

In the countercurrent case the inlet conditions are

i -



6

Blyie) = 9.ty) Aln ) - 3 (4). @,
We start by developing a solution for the later case.

Equations (4) and (5) reflect the fact that the temperature
distribution inside the partition is a linear function of vy.
v Thereforg'we can express the physical requirements implied by this

linearity in the following manner

R, %g(*{})= Zéf_})('z) , (10)
h,",‘}% (5,2) = ZéfCZ) P (11)

]Q(z) = b(ez) - 9 (-t2). (12)

This suggests a solution form Qi of the form

2

}: ‘Cn ¢ (3> ’M/’(’ }’ X:,z) ¢ X, P (13)

n=
, \LO ) 1 |
_ exp (-pa - >
@1 - LBM%(L)) 2 [ Z)) ¢ ?Zl , aw
M= :
’ . i A%
where the expansions are the solutions when the ¥aft hand sides of

equations (10) and (11) vanish identically. Accordingly, the

eigenfunctions and corresponding eigenvalues are generated by
*

the following Sturm-Liouville systems

»

| ’(Ph -7 b,: ae(ﬁ) (IDK

\
o

.{43<q

(15)
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Mo(e) + 1@ (o) ()=




and

11
o

N&”’+“ﬁ; ijﬂ\ﬁ4 , -44% <-t,

> (16)
. ) ,
A Y RV A N (-E) w0 J
while the coefficients in the expansions (13) and (14) are given by

G a | -t .t

anu, ‘ﬂzﬁ[b : tJ“'S.‘P;C(b I 5“ [ j“{v(:) an, ae

b

The function ?ec represents the distributions that would prevail in <
-phase i when the heat flux across the interface is }z;%z) 2t and
the inlet temperature for that phase is zero.

It is possible to split the expression for éi in the above
manner because the differential system at hand is-linear. This property
also enables us to construct ;2; as the superpcsition of the
contributions due to the variations in £ at all points upstream

of the position (y,z) in the following form
?2, = 5 O)F") + f@ (z. fpé)ﬁ(é)a/é (19)
2, - bl 3,€)F/é) Gt Wy

Here ai are the temperature distributions which vanish at the inlets
to the phase i and satisfy equations (1), (2), (3), (10) and (ll) when
£(z) is given by

£(z) = H(z -ZD= i=1, f@)=HZ-2z) 1=2

where H denotes Heaviside's step function. One-can easily show



N
that the Gi are given by

A

. i, )
G -daflie enp) -5} G4 )2 plb e ) o
é; 2 )i{ {j(v 4-!Jk,//wz>45] +ZgT’\£6)£x%(~}/él(é-z)XH(g-z)(22)

2R

Sincé the distributions represented by the gi have to be continuous
across Z: = z, the expressions in the curly brackets vanish for this
value of z. From this condition the coefficients Dg and E_ can

be evaluated by making use of the Fourier Theorem. In the case at

hand this Theorem insures‘that ai(z,y;z) should vanish not only

inside the ranges -b <y < -t, t<y < a but also at the end points
y = *t. This feature plays.an Important role in thé ensuing development;
this is discussed below.

The expressions (13) and (14) represent distributions which saf+
isfy the conditions of the problem in each phase. If these are the
solutions for the distribution in the combined system they must also
reflect the fact that the flux and temperature are continuous across
the partition. The first requirement holds automatically, because

kf(z )/Z,f is used as the local value of flux for both phases.
The second requirement yields the relationship from which f(z) can

be determined. Once this is done the solution for 8 in the entire
system is completed, Use is now made of equations (12), (13), (14), (19)

and (20) which after integration by parts vield



| =3 |
(2) = Y Col) el fulz)
o " |
- }__ B (1) (- h gl -2))
. (23)
. 72 B GG pt (- )] )
D

o

e[| EVObp ) b -2 F) 5

Note that since é’i(z,y‘,z) vanish the process of integration leaves

no boundary terms involving f£(z) £(0) or f(d ). The resulting
relationship is known as the Fredholm integral equation of the

- second kind, If there is direct contact between the two phases one
lets t and the left hand side of equation (23) wvanish and fhe limit
of (F /2 f ) is then governed by Fredholm equation of the first
kind.

It can be similarly shown that in the cocurrent case the ;

2 L( n/ﬁ ‘j> Qx/: /Xz) + 9(250){0) [(9(25 é//@{m)
z)‘ Y()) 2"[}7( /7/‘—0’ Z) é(zj/o)f})fﬂ(zpj é//;/v)Jé/(zs)

M=

The coefficients K ~—and L ., are obtained from equations (6) and ($).

The functioné_ (é/l and 61 are identical while ’52 is given by the

right hand side of eguation (22) with (z - g) substituted for (7 -z).
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In this césé f(z) is governed by
) : o0
P(z) = ZM%({)M,A(..MZ) - sz%(d‘)mf(*/’z/ﬂ:z)
h=i oy

Z

' i J[3n G0 pyesp (b (- )y

1 Py 7

z

N N e

K, 2t

This is Volterra's integral equation. It is of the first and second

kind for vanishing and finite t , respectively.
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EXAMPLES

There are numerous methods by which integral equations of the
Fredholm and volterra types can be solved. The choice will depend on
the features of the particular case whicﬁ is to be analyzed. In
- practice heat exchangers are deéigned so that the transfer across the
partition is rapid. Therefore, for such systems the ratios (é» /2{)
(aq /2{ ) and k/ky (i =1, 2) are large. Consequently, the
integrals of equations (23) and (26) are large compared with the terms
on the left hand sides. This feature all but rules out Neumann's
meithod of repeated.substitutions and other techniques which draw
heavily on the dominancé of fhe left hand side., In fact, the most
representative cases éeem to be those in which the left hand sides
vanish and equations (23) and (26) become Fredholm and Volterra equations
of the first kind. Examples in which this is so are presented below. It
will become apparent that tHe_method used in these examples is épplicable
also to the case in which t # 0 and the left hénd sides do not vanish.
Consider the cocurrent case in which th;:temperature of each
stream is uniform. Without much loss of generality one can let
hl(y) be AT and let h,(y) vanish identically. It is further

assumed that. the following holds:

i
!
c
1
|_o
2]}
1t
o
]
(9N
\
v‘
-+
"
o
=
"
o

Yy 2

p, = a, p, = 23 . (27)

In view of equations (15) and (16) the eigenfunctions and corres-

ponding eigenvalues are given by
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5

/ o lm -1 ffs) Rp Foam < U()z
- OS (&— 2 Jle . - —
f\71/ = cs( 5— , /SA, =/ o @8

whence

( )n+r : 2 ’ 3
' _ 4 (= a,ﬁ,_ éd ) =0  (29)
K= 87 v Doy b e m) o b,

It is then noted that equation (26) contains a convolution- integral.

Therefore, by Laplace transforming this equation the equation is

- reduced to the product of the transform of the kernel times the

transform of f£(z), %{3) . The latter is therefore given by

, }Z_JILZS) . kz( ) ZG"%L) (Sa + /7((2;1 /)J())
2t k:ﬁ;(Sc« + bg‘_éfi_:_’? }’A(Sa +£( (27—,)1)

ﬁ_'

(30)

This expression has simple pole singularitiés on the negative real s
gf{;-QV'
axis. Its-inverse, the heat flux at the interface, is thereforeAby the

form -

k]p(z}/lt = (4/»?)(!2. AT/'&,)X AJ ~99f/>(~ag z2/a) . (31)
.
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The result is in qualitative agreement with that of Reference 1.
. Here (kl/k2) avdk7§g3%§é5 can attain any finite non-zero
' . i $ ,
value. When th¢sé ratios aze 4 =g ¥ xgupebitively the constants
are given by

A, = 114 A, = ,600 A, = -.220

(32)

=3
1
i
.
N
3
R
n

-2.61.

11

-1.71 - o

Note that if t is non-zero one gets an expression for k%%&)/gf

which differs from that given by equation (30) in that it has unity

added to the denominator . This modification does not change the
order properties of f£f(s) for large s , or the numerical value
of £(z).

An example in which the flow is countercurrent is now
considered, assuming, as before, that t approaches zero, that the
inlet temperatures are uniform and that the various parameters are
~given by equation (27). It therefore follows that equation (28) holds,
and that Dq and é'r are given again by equation (29). In this case,
the Bm vanish whig@ the Cn are equal to Kn' The heat flux

k-sz )/42{' is solved by the following iteration scheme. At
evény stage an approximate value of f(z) is substituted in the
second integral of equation (23) and a new approximation of f(z) is
obtained by solving the resulting Volterra type of equation. The
solution of the latter is car;;ed in the manner explained heréwith;
De§ignating 5y f(u)(z) the value of f(z) obtained in the 'u'th

iteration and letting f(o)(z) vanish identically one gets



1y

b o (@rT Eeo/m (m e

" (33)
2t /) ‘
>Z Sa + (Z)_)ﬁ (4__) >
g
The inverse of this relationship has the form
ol '
41) 4 ko AT) 5 [ eah
- 1p (- > /a (3u)
) ) ) | eapcrz/a)
where
El = 3.154 I‘Q"“= ~0.005 N I‘3 = 3.151 I'u. = -.0020
)\1 = -?9.95. )\2 = -39.80 13 = ~89,55 , )'l% = -159.,2

The second iteration yields the following expression for the transform

(2) _ )

of the correction ( f

R E)P—Z(;;)ZT“E%)) = - U}‘ é) (41{AT)(§

/

od

I\/Q

X
%k +PZ 2"* Ufl

)

\)

g {m B {X(L< M z > % )ﬂ ) Sa—Pz@L attj

e I
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This expression has second order poles at s = -')\k/a and first

order poles at s =k_(2r - l)2w2(?a)—2. Therefore the inverse has

the form

f(z) gZ)/Zf = />(4:é AT /%‘ {fph 11/6)«,, 2/a)
k=

o0

S ey plrr) e SThl bl o
k= .
where
R, = -.965 S, = 6,837 T, is O (10:410) ' (37)

1 -1 : 1

while higher teérms in all three sequencés are numerically insig-
nificant. Note that equations (34) and (36) imply that ( /Zap[z / Z/)
increases sharply as one gets close to the two ends. Nunge and Qlll
have shown that this characterizes the heat flux between the ‘two
counter-current streams. From a mathematical standpoint ( ié f / 2t )
is singular at z =0 and z = ( and this is reflected by the
‘divergence of the series of exponents containing 2z and (f— z) in
their arguments.

In the treatmen;c of the co-current case the ratios (k1/k2)
and (pl/p2) could take any value, but in the present case one has to
be more careful. For example, if these ratios are set to be 4 and 2,
as before, the _result (36) cc:ntains a multiplier 8. This factor |

recurs in the ensuing iterations and this considerably slows the

-convergence of the proposed scheme. However, the situation can be
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improvéd by sétting.the @roblem up so that thg Cn vanish but the

Bm d§ not; ané reversing the roles plaved by two integrals of
equation (23). Under such rearrangement the recurring multiplier is
(k2/kl)¥(pl/ﬁ2) which is only 1/8. It will be shown later that

the role of these integrals are related to the nature of transfer

in the corresponding phases. In the meantime one notes that from a
purely mathematical standp&int the convergence is the slowest when

the multiplier is unity. Since the maximum value of (z/a) exp (—llz/a)
i;?(ell)“l, even in such a limiting case the contribution of the

N (2) _ (1)

correction ( f ) is considerably smaller than that of the

(1)

first approximation f'7°. This suggests that for a fairly large

class of problems an adequate solution can be obtained by going

through two iterations.
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DISCUSSION

The new mathematical procedusre proposed in this work follows.: '
closely the eésen‘cial features of the exchangers under consideration.
The basic assumption implicit in equation (1) is that heat is transferred
either downstream or acfross tﬁe current. Accordingly, the temperature

difference across the partition, at any point z , f(z) , is affected

by the values of the Flux ( b f(?)/l¥ ) at every point upstream.
The sum total of these &ffects is represented by an integral vover the 3
appropriate range. In these integrals (22 Op(z) /Zf) appears in a
linear form because the problem (1) - (15) is linear. The kernels in
these intégrals reflect the down-and cross-stream directed transfer in
the appropriate phase. Thus, howeven, ir; goth cases the transfer
affecting £(z) is through both phases. In the co-current case it is
expressed by the ‘éwo integrals over the range 0 {ZZ z. In the
countercurrent case ?he transfer through the parts of phases 1 and 2
which are upstream of z is expressed by +he integrals over the ranges
0444 z and z < 54 é R respecti';rely.

The last interpretation of equations (23) and (26) serves as a
guide to their solqtion. Neumann's method of repeated substitutions
was not used because its convergence would depend on the dominancy of °
the left-hand sides ‘over the integrals. Ho;fever, as pointed out,
the cases of interest are those in which the temperature drop f 1s
small, yet the total effect of the flux ( kf(z )/f) upstream of the
point in quastion is large. Mathematically this is expressed by the
largeness of ( § /le )} ( é/zf) and ( k/ki)’ and products of these
ratios appear as re;mring multipliers when Neumann's method is employed.

v
Therefore, had this method been used, convergence would have & d¢, at
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best, slow. Similar mathematical and corresponding physical
considerations lead one to let the first integral of equation (23)
play the dominant role when (kl/kQ);w(pQ/pl) is less than unity. As
showy’the product of these ratios has the role of a recurring
multiplier. Therefore, it slows'the convergence in the iterationA
scheme which is used here, if it is large. Physically, fhe smaliness
of (kl/kg) and (pz/pl) implies that the transfer of heat in phase 2
is relativelyv slow alo?i:the stream yet fast across it. Therefore the
relative sméllness of ih;; product is an indication that the -hgat
transferred into phase 1 over the range a<?2:;:Z. stays closer to the
partition and hence affect the value of f more than the heat
transferred into phase 2 over the range "2 452;4 fg . Under such
circumstances the first integral is dominant both physically and

1

mathematically.
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