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ABSTRACT --- 

A new type of ana lys i s  is proposed f o r  the  cases of hea t  

t r a n s f e r  i n  two phase cocurrent and countercurrent exchange systems. 

This i s  done by s p l i t t i n g  t h e  expression f o r  the  temperature 

d i s t r i b u t i o n  i n  each phase i n t o  two components. One represents  t h e  

temperature d i s t r i b u t i o n  when t h e  p a r t i t i o n  i s  insu la t ive ,  t h e  

o t h e r  expresses t h e  e f f e c t  of t h e  heat  t r a n s f e r  across the  p a r t i t i o n .  

The f lux across  t h e  p a r t i t i o n  i s  found t o  be governed by an i n t e g r a l  

equation of  t h e  Vol ter ra  and Fredholm type i n  respect ively ,  cocurrent  

and countercurrent  cases .  These equations can be e a s i l y  solved by 

-. Laplace Transform methods. Examples of  cocurrent and countercurrent  

cases are considered and the  r e s u l t s  obtained are found t o  be corn- 

p a t i b l e  with e x i s t i n g  r e s u l t s .  



Most o f  t h e  analyses of hea t  t r a n s f e r  i n  two phase flows . 

repor ted  t o  da te  a r e  based on the  form suggested by Graetz. Thus, 

the . temperature  ( o r  mass) d i s t r i b u t i o n  i n  t h e  e n t i r e  domain is 

obtained a s  an i n f i n i t e  s u m m  of products of eigenfunctions and ex- 

ponen t ia l  functions.  The argument i n  t h e  exponential functlon is . 

propor t ional  t o  t h e  a x i a l  distance.  The eigenfunctions a re  generated by 

a Sturm-Liouville system defined over th'e zrange representing t h e  

e n t i r e  t r ansverse  c ross  sec t ion.  In  t h e  cocurrent ' l )  case t h e  presence 

o f  two phases g ives  r i s e  t o  minor d i f f i c u l t i e s  i n  t h e  so lu t ion  of t h e  

Sturm-Liouville system. Hor.rever, -once t h e  eigenfunctions are known 
..- 

one can u t i l i z e  t h e i r  orthogonali ty and -completeness and thus s a t i s f y  

t h e  i n l e t  condition. Consequently, t h e  c l a s s i c a l  form i s  e a s i l y  

app l i cab le  t o  t h i s  case.  However, f o r  t h e  countercurrent case t h e  

c l a s s i c a l ,  b u t  somewhat form is not  very use fu l  although 

it i s  mathematically v a l i d .  Assuming neg l ig ib le  a x i a l  conduction, 

the i n l e t  temperature must beprescribed wherever the  f l u i d  e n t e r s  t h e  

system, i . e . ,  on p a r t s  o f  two d i f fe ren t  cross  sec t ions .  The eigen- 

functions,however,are conplete and orthogonal only over the  range 

represent ing t h e  e n t i r e  cross  sec t ion of t h e  exchanger and not  over i t s  , 

s e c t i o n s .  Nunge and ~ i 1 1 ' ~ ' ~ )  attempt t o  overcome t h i s  d i f f i c u l t y ,  and 

eva lua te  t h e  coef f i c ien t s  i n  the  expansion by reducing t h e  i n l e t  
* 

condi t ions  t o  an i n f i n i t e  system of a lgebra ic  equations. The l a t t e r  is 
a e  

t runca ted  and a f i n i t e  number of coef f i c ien t s  hawe been evaluated by 

a  compute^. I n  t h e  present  work t h e  author proposes a more 

s o p h i s t i c a t e d  .analysis  which i s  not  based on Graetz 's c l a s s i c a l  form. 



üü he ques t  f.or mathematical elegance i s  not  t h e  only motivation behind 

t h i s  s tudy.  There is a s l i g h t  e+ror i n  R e f .  3 where t h e  der iva t ion  of  

the  a lgebra ic . equa t ions  i s  explained, klthough i n  Ref. 4 the  co r rec t  

equations a r e  presented  and used without derivat ion.  It i s  pointed 

out  i n  t h i s  la t ter  work t h a t  i n  t h e  E m i t t i n g  case of zero a x i a l  

length  exchanger, a l l  b u t  one term i n  t h e  summation o f  equation (38) 

vanish. Indeed i n  such excllanger t h e  i n l e t  conditions . . a r e  prescribed 

over t h e  range which represents the  e n t i r e  cross-section and f o r  which 

t h e  or thogonal i ty  holds.  Nevertheless t h i s  t e s t  is not  s a t i s f i e d  by 

t h e  corresponding r e l a t i o n s h i p ,  equation (22) of Ref. 3. Consequently, 

t h e  ava i l ab le  a n a l y s i s  o f  t h e  countercurrent  case is  l e s s  than adequate. 

. Furthermore,  stein'^'^) work ind ica tes  t h a t  the  numerical so lu t ion  of  

the r e s u l t i n g  a l g e b r a i c  equations is not  always s t r a igh t foward ;  

The a n a l y s i s  presented here i s  based on the  assumption t h a t  t h e  

temperature d i s t r i b u t i o n  i n  each phase is given by a form containing 

two expressions.  The first represents  . the  .d i s t r ibu t ion  t h a t  would 

. p r e v a i l  when t h e  p a r t i t i o n  a c t s  a s  a n , i n s u l a t o r ;  This i s  obtained 

by applying t h e  staxidard Graetz procedure t o  each stream and making use 

of t h e  i n l e t  condit ion.  The second terrn i n  each of these  forms 

represen t s  t h e  d i s t r i b u t i o n  when t h e  temperature d i f ference  across t h e  

p a r t i t i o n  i s  some a p r i o r i  unknown function. of the  a x i a l  distance 

z ,  f(z). The requirement t h a t  t h e  temperature should be continuous 

- ac ross  t h e  e n t i r e  cross-sect ion y i e l d s  an . . i n t e g r a l  equation f o r  f(fi). . 
* 

This equation is of t h e  Vol ter ra  (and  redh holm) type f o r  cocurrent (and 

countercurrent  ) exchanger( s 1. This d i s t i n c t i o n  has Physica l  s ign i f i cance  

which w i l l  be explained l a t e r .  The comparatively s h o r t  t reatment o f  t h e  

cocur ren t . case  is included here only t o  emphasize . t h i s  d i s t i n c t i o n ,  and 



most of t h i s  paper w i l l  be devoted t o  t h e  countercurrent  case .  

The system considered i n  t h i s  work i s  depicted i n  Figure 1. 

Here y represen t s  t h e  d is tance  across t h e  duct ,  which is taken t o  be 
I 

very broad i n  t h e  x d i r e c t i o n .  I n  t h e  range t < y < a phaseA t h e  
J .) 

f l u i d  is assumed t o  f low i n  t h e  +z d i rec t ion .  In  t h e  range 
fk 

b < y < -t, XfW phase ~ , z l o w  i s  i n  t h e  +z and -z d i r e c t i o n s  i n  

t h e  cocurrent  and countercurrent  cases ,  respect ive ly .  The range 

-t < y c t represen t s  a s o l i d  conductive p a r t i t i o n .  

The s o l u t i o n s  are derived without specifying t h e  v e l o c i t y  

d i s t r i b u t i o n s  ui(y) ,  (i = 1 , 2 )  i n  phases 1 and 2. A t  t h e  o u t e r  

boundaries, y = a and y = -b, t h e  genera l  l i n e a r  homogeneous 

boundary conditons are imposed. Thus, t h e  general  s o l u t i o n  obtained 
-. -, * .  

here  is app l i cab le  t o  t h e  va r i e ty  of  two phase exchange systems which 

may have t h e  above mentioned geometry. Moreover, -.extension of  t h e  

proposed technique t o  t h e  double pipe case is  obvious. We a l s o  p resen t  

a numerical example s o  as t o  e x p l i c i t l y  demonstrate t h e  app l i ca t ion  of  

the  method under consideration:; 



11. THEOFSTICAL DEVELOPHENT 

The boundary condit ions and d i f f e r e n t i a l  equation governing' 

t h e  non-dimensional temperature 0. ( y , z )  can be w r i t t e n  as  follows: 
1 

Here t h e  s u b s c r i p t  i = 1, 2 ind ica tes  t h e  phase. The independent 

va r iab les  (y, z )  a s  w e l l  a s  the  constants  Ni and pi have t h e  

dimensions of  length .  The constants Mi and t h e  va r iab les  u a r e  i 

dimensionless. The constants  k and ki a r e  t h e  conduct iv i t ies  of 

t h e  s o l i d  and t h e  l i q u f d s  i n  phase i. I n  t h e  cocurrent case t h e  

i n l e t  condit ions a r e  

In  t h e  countercurre&t case the  i n l e t  condit ions a r e  



We s t a r t  by developing a solut ion f o r  t h e  l a t e r  case. 

Equations (4) and (5 )  r e f l e c t  t h e  f a c t  t h a t  t h e  temperature 

d i s t r i b u t i o n  i n s i d e  t h e  p a r t i t i o n  i s  a l i n e a r  function of y. 

Therefore w e  can express  t h e  physica l  requirements implied by t h i s  

l i n e a r i t y  i n  t h e  fo l lov ing  manner 

This suggests  a s o l u t i o n  form Bi of the  form 

%=, 

where t h e  expansions a r e  t h e  solut ions  when t h e  s i d e s  of 

equations (10) and (11) vanish i d e n t i c a l l y .  Accordingly, the 

eigenfunctions and cbrresponding elgenvalues a r e  generated by 
* 

t h e  following Sturm-Liouville systems 



and 

while t h e  c o e f f i c i e n t s  i n  t h e  expansions (13) and (14) a r e  given by 

3 The function F ;  represen t s  t h e  distrLbutions t h a t  would p r e v a i l  i n  : 

.-phase i when t h e  h e a t  f l u x  across t h e  i n t e r f a c e  is k &) L? and , ! I  
t h e  i n l e t  temperature f o r  t h a t  phase is zero. 

It is poss ib le  t o  s p l i t  t h e  expression f o r  d i n  t h e  above i 
manner because t h e  , d i f f e r e n t i a l  system a t  hand i s - l i n e a r .  This property 

a l s o  enables us  t o  cons t ruc t  a s  the  superpcsi t ion of  t h e  

contr ibut ions  due t o  t h e  va r ia t ions  i n  f a t  a l l  points  upstream 

of t h e  p o s i t i o n  (y ,zJ  i n  t h e  following form 

A 

Here 8 a r e  t h e  temperature d i s t r ibu t ions  which vanish at t h e  i n l e t s  i 

t o  t h e  phase i and . s a t i s f y  equations (11, (21, (31,  (10) and (11) when 

f ( z )  is  given by 

where H'  denotes Heaviside ' s s t e p  function. One :can e a s i l y  show 



A 
t h a t  t h e  Oi a r e  given by 

A 

Since t h e  d i s t r i b u t i o n s  represented by t h e  8 -  have t o  be continuous 
1 

across 6 = z ,  t h e  expressions i n  t h e  cur ly  brackets  vanish f o r  t h i s  

value of z.  From t h i s  condition t h e  c o e f f i c i e n t s  D and Ec can 
9 

be evaluated by making use of the  Fourier  Theorem. I n  t h e  case a t  
h 

hand t h i s  Theorem insures  t h a t  B.(z,y;z) should vanish no t  only 
1 

i n s i d e  t h e  ranges -b < y < -t, t < y < a but  a l s o  at  t h e  end points  

y = ft .  This f e a t u r e  p lays .an  important r o l e  i n  t h e  ensuing development; 

t h i s  is  discussed below. . 

The expressions (13) and (14) represent  d i s t r i b u t i o n s  which sat- 

i s f y  t h e  condit ions of  t h e  problem i n  each phase. If these  a r e  the  

so lu t ions  f o r  t h e  d i s t r i b u t i o n  i n  t h e  combined system they must a l s o  

r e f l e c t  the  f a c t  t h a t  t h e  f l u x  and temperature a r e  continuous ac ross  

t h e  p a r t i t i o n .  The first requirement holds automatical ly,  because 

/? p 7  )L i! is used as t h e  l o c a l  value of  f l u x  f o r  both phases. 

The second requirement y i e l d s  t h e  re la t ionsh ip  from which f ( 2 )  can 

be determined. Once t h i s  is done t h e  so lu t ion  f o r  8 i n  t h e  e n t i r e  

system is completed. Use is  ?ow made of equations (121, (131, (141, (19) 

and (20) which a f t e r  in tegra t ion  by p a r t s  y i e l d  



-. 

~ o t e  t h a t  s i n c e  oi(z,y;z) vanish t h e  process of in tegra t ion leaves 

no boundary terms involving f (2) f (0) o r  f ( L 1. The resu l t ing  

r e l a t i o n s h i p  i s  known as t h e  Fredholm i n t e g r a l  equation of t h e  

-- 
second kind.  If t h e r e  i s  d i r e c t  contact  between the  two phases one 

lets  t and t h e  l e f t  hand s i d e  of equation (23) vanish and t h e  l i m i t  

of (/ 1 2  ) is t h e n  governed by Fredholm equation of the  - f i r s t  

kind.  

I t  can be s i m i l a r l y  shown t h a t  i n  t h e  bocurrent case t h e  : 

d i s t r i b u t i o n  i n  each phase is  given by 

The c o e f f i c i e n t s  Kn and Lm . are  obtained from equations (6) and (9). 
r' A f' 

The func t ions  8 and 8 a r e  i d e n t i c a l  while e2 i s  given by t h e  1 1 

r i g h t  hand s i d e  of equation (22)  with ( z  - 4 ) subs t i tu ted  f o r  ( k  4). 

-- 



I n  t h i s  case f ( z )  is  governed by 

This i s  Vol te r ra ' s  i n t e g r a l  equation. It is of t h e  first and second 

kind for vanishing and f i n i t e  t , respect ively .  



EXAMPLES 

There are  numerous methods by which in tegra l  equations of the  

Fredholm and Volterra types can be solved. The choice w i l l  depend on 

the  features of the  pa r t i cu l a r  case which i s  t o  be analyzed. I n  

prac t ice  heat exchangers are  designed s o  t h a t  the t ransfer  across the  

p a r t i t i o n  is rapid.  The~e fo re ,  fo r  such systems the r a t i o s  ( b /!Zf ) 

( /ZC ) and k/ki i = 1 2 are large.  Consequently, the 

i n t eg ra l s  of equations ( 2 3 )  and (26) a re  large compared with the terms 

on t h e  l e f t  hand sides.  This feature  a l l  but rules out Neumann's 

rnekhod of repeated subst i tut ions  and other techniques which draw 

heavily on the  dominance of the  left hand s ide .  In f a c t ,  t he  most 
-- 

representat ive cases seem t o  be those i n  which the l e f t  hand s ides  

vanish and equations (23)  and (26) become Fredholm and Volterra equations 

of t h e  f i r s t  kind. Examples i n  which t h i s ' i s  so  are presented below. It 

w i l l  become apparent t h a t  the  method used i n  these examples is applicable 
. . 

a l s o  t o  the  case i n  which t # 0 and the  l e f t  hand sides do not vanish. 
;kt let- 

Consider the cocurrent case i n  which the,temperature of each 

stream is uniform. Without much loss  of generali ty one can let 

hl(y) be AT and l e t  h2(y) vanish ident ical ly .  I t  i s  fur ther  

assumed t h a t . t h e  following holds: 

- 

In view of equations (15) and (16) the eigenfunctions and corres- 
.- 

ponding eigenvalues a re  given by 



L 

) /%- 2 6 . :  (28) 

whence 

-* 

It  is then noted t h a t  equation (26) contains a convolution- i n t e g r a l .  

Therefore, by Laplace transforming t h i s  equation the equation is  

reduced t o  t h e  product of t h e  transform of t h e  kernel  t imes t h e  

transform of fir), ) . The l a t t e r  i s  therefore  given by 

This expression has simple pole s ingular i tT6s  on t h e  nega t ive  real s 
g iL4 .w 

ax i s .  Its i n v e r s e ,  t h e  hea t  f l u x  a t  t h e  in te r face ,  is therefGrpby t h e  



The r e s u l t  is i n  q u a l i t a t i v e  agreement with t h a t  of Reference 1. 

, Here (kl/k2) can a t t a i n  any f i n i t e  non-zero 

; 5 
value.  When t h i s #  r a t i o s  arc 4 d ribbpektttltW1~ t h e  constants  

a r e  given by 

Note t h a t  i f  t is non-zero one g e t s  an expression f o r  k @ ) / l f  
which d i f f e r s  from t h a t  given by equation (30) i n  t h a t  it has  un i ty  

added t o  t h e  denominator . This modificat ion does no t  change t h e  
- 

order  p roper t i e s  of  f ( s )  f o r  l a rge  s , o r  the numerical value 

An example i n  which t h e  flow is  countercurrent  is now 

considered, assuming, a s  before ,  t h a t  t approaches zero ,  t h a t  t h e  

i n l e t  temperatures are uniform and t h a t  t h e  various parameters a r e  

given by equation (27). It therefore  follows t h a t  equation (28) holds,  . 

and t h a t  D and E a r e  given again by equation (29 . I n  t h i s  case,  
9 

t h e  Bm vanish w h i k  t h e  C a r e  equal  t o  K . The h e a t  f l u x  
n n f12 / { is solved by t h e  following i t e r a t i o n  scheme. l i t  

every sta$e an  approximate value of f(i) is s u b s t i t u t e d  i n  t h e  

second i n t e g r a l  of  equation (23) and a new approximation of  f (2) is 

obtained by so lv ing  t h e  r e s u l t i n g  Volterra type of equation. The 
P 

s o l u t i o n  of t h e  l a t t e r  is ca r r i ed  i n  t h e  manner explained herewith. 

Designating by f ( U ) ( z )  t h e  value of f (z) obtained in t h e  ' u l t h  

(0 i t e r a t i o n  and l e t t i n g  f ( z )  vanish i d e n t i c a l l y  one g e t s  



The inverse  of t h i s  r e l a t i o n s h i p  has t h e  form 

where 

The second i t e r a t i o n  y i e l d s  t h e  following expression f o r  the transform 

of the c o r r e c t i o n  ( f (2)  - *(l) ) *  



This expression has second order poles a t  s = - ~ ~ / a  and first 

2 2 o rde r  poles a t  s =b(2r - 1 )  n ((a)-2. Therefore t he  inverse has 

t h e  form ' 

where 

while higher terms i n  a l l  three  sequences a r e  numerically insig- 

n i f i c a n t .  Note t h a t  equations (34) and (35) imply t h a t  ( k fk)Lf  1 

increases  sharply as one ge t s  close t o  the  two ends. Nunge and G i l l  

have shorn t h a t  t h i s  characterizes the heat  f lux  between the  two 

counter-current streams. From a mathematical standpoint ( . d p / z e  1 
u 

is s ingula r  a t  z = 0 and z = 4 and t h i s  is re f lec ted  by the  

'divergence of the  s e r i e s  of exponents containing z and (e- z) i n  

t h e i r  arguments. 

In t h e  treatment of the co-current case the r a t i o s  (kl/k2) 

and (p1/p2) could take any value, but i n  t h e  present case one has t o  

be more careful .  For e x p p l e ,  i f  these r a t i o s  are s e t  t o  be 4 and 2, 
I 

as before,  t he  - r e s u l t  (36 contains a mul t ip l ie r  8. This f a c t o r  

r ecu r s  i n  the ensuing i t e r a t i ons  and t h i s  considerably slows t h e  

convergence of the  proposed scheme. However, the s i t ua t i on  can be 



improved by se t t i ng  the problem up so t h a t  the  C vanish but the  n 

B do not,  and reversing the ro les  played by two in t eg ra l s  of 
m 

equation (23). Under such rearrangement t h e  recurring mul t ip l ie r  i s  

(k2/k1) % (pl/p2 ) which is only 1/8. It w i l l  be shown l a t e r  t h a t  

the ro l e  of these i n t eg ra l s  are  r e l a t ed  t o  the nature of t r ans fe r  

i n  the  corresponding phases. In the meantime one notes t h a t  from a 

purely mathematical standpoint the  convergence is the  slowest when 

t h e  mul t ip l ie r  i s  unity.  Since the maximum value of  (z /a)  exp (-)ilz/a) 
- 
1 

e l 1 ,  even i n  such a l imit ing case t h e  contribution of the  
- .  

( 2 )  correction ( f - f ( l )  i s  considerably smaller than t h a t  of the 

f i r s t  approximation f''). This suggests t h a t  f o r  a f a i r l y  large 

c l a s s  of problems an adequate solution can be obtained by going . . 

through two i t e r a t i o n s .  

I 



DISCUSSION . . 

The new mathematical procedusre proposed i n  t h i s  work follows.: 

c losely  the  e s s e n t i a l  features  of the  exchangers under consideration. 

The bas ic  assumption impl ic i t  i n  equation (1) is t h a t  heat  is t ransferred 

e i t h e r  downstream o r  ac$ross the  current. Accordingly, the  temperature 

difference across t he  pa r t i t i on ,  a t  any point  z , f(z) , i s  affected 

by the  values of the  Flux ( h #%),ht ) a t  every point  upstream. 

  he sum t o t a l  of these  e f f ec t s  i s  represented'by an i h t eg ra l  over t h e  

appropriate range. In  these in tegra l s  ( )2 (2) 2 1  ) appears i n  a iP 
l i n e a r  form because t h e  problem (1)  - (5) i s  l inear .  The kernels  i n  

these  in tegra l s  r e f l e c t  the  down-and cross-stream directed t r ans fe r  i n  - - .  

the  appropriate phase. Thus, b . e = .  i n  both cases the  t r ans fe r  

affect ing f(z) is through both phases. In  the  co-current case it is 

expressed by the  L o  in tegra l s  over t he  range 0 c& z.  In  the  

countercurrent case t h e  t r ans fe r  through the  par t s  of phases 1 and 2 
- - - - 

which are  upstream of z is expressed by the  in tegra l s  over t he  ranges 

l O L  L z and z 4 , respectively.  

The l a s t  in te rpre ta t ion  of equations ( 2 3 )  and (26) serves a s  a 

guide t o  t h e i r  so lu t ion .  Neumann's method of repeated subs t i tu t ions  

was not used because i t s  convergence would depend on the  dominancy of 

t he  left-hand s ides  over the  in tegra l s .  However, a s  pointed out ,  

i 
! a the  cases of i n t e r e s t  a r e  those i n  which t he  temperature drop f is 

i small,  ye t  t he  t o t a l  e f f e c t  oi the  f lux  ( k upstream of t he  

I 
point  i n  qu4stion is large.  Mathematically t h i s  is expressed by t h e  

I largeness of ( /2 f ) ( l / L  f 1 and ( k/ki), and products of ihese  
-- I 

1 patios appear a s  recurr ing mult ipl iers  when Neumannts method is employed. 
k n  

. Therefore, had t h i s  method been used, convergence would have W W, a t  



b e s t ,  slovr; Similar mathematical and corresponding physical  

considerations lead one t o  l e t  t he  f i r s t  i n t e g r a l  of equation (23) 

play the  dominant r o l e  when (k /k )*(p2/p1) is  l e s s  than uni ty .  A s  1 2  

shown the  product of these  r a t i o s  has t h e  r o l e  of a recurr ing 
1 

mul t ip l ie r .  Therefore, it slows the  convergence i n  t h e  i t e r a t i o n  

scheme which i s  used h e r e , . i f  it i s  large.  Physically,  t he  smallness 

of Xk /k ) and (p2/p1) implies t h a t  t h e  t r ans fe r  o f  hea t  i n  phase 2 
1 2  

is re l a t i ve ly  slow along the  stream ,yet  f a s t  .across it. Therefore t he  
th; 

r e l a t i v e  smallness of SkW product is an indicat ion t h a t  t he  ,heat 

t rans fe r red  i n t o  phase 1 over the range o J  dL Z s t a y s  c lo se r  t o  t he  

p a r t i t i o n  and hence a f f e c t  the  value of f more than the  hea t  

-- 
t rans fe r red  i n t o  phase 2 over the range - 2  .d $L . Under such 

circumstances t he  f i r s t  i n t eg ra l  is dominant both physical ly  and 

mathematically. ! 
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FIGURE 1. SCHEMATIC DIAGRAM OF THE TWO - PHASE FLOW 
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