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TWO-VARTABLE EXPANSIONS FOR SINGULAR PERTURBATIONS

A. Erdélyi

Summary. The author applies the two-variable expansion procedure to an
example in éingular perturbations and shows how the validity of this pro-

‘cedure can be established in many cases (including some nonlinear problems).

1. The boundary wvalue problem

(1..1) ey’ +3y' =h'(t) 0<ts<1

(1.2) y(0) =a, y1) =8,

in which h is a given infinitely differentiable function, e is a small
positive parameter, and.a and B are given numbers independent of ¢, has
often been used to illustrate features of boundary layer theory or, more
generglly, of certain techniques for singular perturbations.

Some time ago [2] I used, this example to illustrate the use of the
technique developed by P. A. Lagerstrom and his associates, in particular
S. Kaplun [L4]. According to Kaplun and Lagerstrom one obtains first an
"outer expansion'" of the form
(1.3) yo~3% £, (1) &"
for the solutién of (1.1), (1.2). This expansién is supposed to hold for
t > O,.and it can be made to satisfy the second, but it will in general
fail to satisfy the first, of the boundary conditions (1.2). In the present

o]

(1.4) yo~8 + % [h(n)(t) - h(n)(l)] (—e)n.

3% ! .
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.One then introduces the "stretching transformation™

(1.5) ' | t = er

and obtains an "inner expansion" of the form

(1.6) y o~z og (r) "

'holding for bounded T. This éxpénsion can be made to satisfy'the first,
but not the second, boundary condition (1.2), and it ﬁill contain unde-
termined constants. In the present case,

. 0 n T — -
0 sea 8 ST P w g,

where the An are the undetermine@ constants. A matching process which
need not be described further here leads to the conclusion that the outer
and inner expansions will be consistent if
Ao =B - o +n(0) - h(1), A, = (-—1)n_lh(n) (1) n=1
is chosen.
Neither the outer nor the inner expansion isrvalid throughout the
interval O < t < 1, and for this reason Kaplun and Lagerstrom propose a

"composite expansion' which in the present case takeés the form
' - -t ® n
(1.9) y° a5+ T o )

5™ + ™) - 1 @3-
and can be shown to hold uniformly throughout the interval 0 < t < 1.
2. Once the possibility of .2 uniform expansion has been recognized, and
the genergl character of such an expansion is known, one might try to
construct the expansion by the so-called two-variable expansion technique
(see for instance [1] Chapter 3) without going through the preliminaryl

" stages of inner and outer expansions and matching. At this point it is




necessary to discuss briefly the mathematical character of the various
expans;ons.

In all three expansions ¢ -+ O+. Both the outer and inner expansions
are asymptotic expansions in the classical (Poincaré) sense, with coeffi-
cients depending on a parameter. In (1.L), t may be regarded as a fixed
parameter, 0 < t < 1, while in (1.7), T may be considered fixed, T = O.
Now, the coefficient of ¢’ in (1.8) depends on both t and T. These para-
neters are related by‘ﬁhe stretching transformation t = eT and camot
both be fixed as ¢ # O+. Thus, (1.8) is not an asymptotic expansion in
the classical sense.

The composite expansion (1.8) is a general asymptotic expansion in

the following sense. Given an asymptotic scale {@n(e)} (in our case {e™}),
an asymptotic expansion |

(2.1) Fle) ~ZF () (o)

with respect to this scale is charaéterized by the property that

(2.2) F(e) - nENFn(e) = olg,)

for each N. This definition does not demand that Fn be a multiple of Q.3
it does not even demand that Fn be of the same order of magnitude as ¢,
(although the latter property happens to hold in (1.8) and many other’
general asymptotic expansions).

The most conspicuous feature of general asymptotic expansions is an
obvious and fundamental lack of uniqueness. If & function F possesses an
asymptotic expansion, in the sense of (2.2), with respect to an asymptotic
scale {@n}, then it will possess an infinity of such expansions (with res-
pect to the same scale). Mathematically, all such expansions are of the

same standing; they all lead to the same error estimate (2.2), although




the first approximation and often ¢ for higher approximations.

Now, it can be proved under fairly general conditions that v will
be an approximation to a solution y of the boundary value problem (3.1)
in the sense that
(3.3) 3 -u=0), ' - = o((1ree?/0))

provided that T

0(e), and
e’ + P(b,u,u,e) = 0(N) + 0(e~ e /€
o(e) - u(0,e) = 0(N), B(e) - u(l,e) =0(N)

with m > 1. This result will be egtablished, and the conditions for its

(3.4)

validity will be given in full detail, in a forthcoming paper [3]. Far-
lier, a similar but more elaborate theorem was proved by Willett [ 5]
whose result is more general in that it requires only 1 = o (1) in place
of the more stringent condition M = 0(¢).

Because of the nonlinear character of F in (3.1) it does not appear
to be feasible to relax the conditions in (3.L) -"even if one is willing
to accept a weaker result than (3.3). However, in the case under conside-
ration here, it is possible to achieve further progress by making use of
the linearity of (1.1).

Let u(t,e¢) be a tentative approximate solution of (1.1), (1.2), and

set
(3.5) [71(8) = e (s) - /()] ds = K(bye)
and
(3.6) : y=u+ g.
Then z satisfies
(3.7) ez’ + 2z’ = k'(t,e)
(3.8) z{0) = oy = o - u(0se), 2(1) = By =8 - u(l,e).



This system can be solved explicitly.

' ' t —(t-s)/e ~t/e -1/e
(3.9 a6 =20 g 0ya v o £
€ 1- e

i 1 _(1-s _ o Ye
# oy - 2 /% k(o )as) L
v (t-s)/e |, T
= k' (s,6)ds - —2F
Ioe (s,e)ds T
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We now make the assumption that w is an approximate solution satis-

fying
L .
(3.11) fo | ev” +u -n' | at = o)
(3.12) oy =o -u(l) =0(M), By =8 -u(l) =o(M).

Under these conditions clearly k = 0(1)) and from (3.9) also z = 0(0).

Moreover, by integration by parts,

[0 e (as = x(w) - Lt e 80/ w(s)as = o),

and hence also ez’ = 0(7)). Thus, under the asswmptions (3.11), (3.12) we
have
(3.13) y-u=001), y -u =o0(e?N),
a result that is weaker than (3.3) but is acceptable in many cases.
If we make the more demanding assumptions
(3.1L) eu +u’ -n’ =01 + o(?e\ cMt/ey  ps g
and (3.12), then clearly (3.11) is satisfied and hence (3.13) holds. How-
ever, we have better estimates in this case for the first term on the

right hand side of (3.10).

o (t- -
Io ] (t-s)/e ds = e(1-e t/e)



and

~— -]} / -
1 It e-(t»s)/ee~ms/e s = (m-2) (e tie*e mhey irm # 1.
"2 (t/e) e ¥e if m = 1.

If we then set

it

3(t,e) = 1 + e“le"mt/e ifo<m< 1

1

1+ et (t/e) e—t/6 ifm=1

-t/
1+e2e™¥E drm> 1,

we have the improved results
(3.15) y-u=0(M),y -u =o(mg)
wnder the conditions (3.1l), (3.12). This coincides with (3.3) if m> 1
but is a new result if 0 < m < 1. Moreover, (3.13) and (3.15) hold with-
out the restriction M = O(e).
i. We are now ready to construct asymptotic expansions of the solution
of (1.1), (1.2) by the two variable method. In addition to the geometri-
cal variable t, we use the boundary layer variable T = t/¢, and will
construct an approximate solution of the form
(L.1) w(t,e) = g £ (t,7)e".

n=o n
At once we notice that this form is not unambiguous since, for instance,
t/T = ¢. We shall think of fn as bounded functions with bounded partial

derivatives. Partial differentiation will be indicated by subscripis,

so that
af
=2l s+l 32.53— +2 7 +Lor
at nt g TnT? T4E ntt ¢ Tntr  F onTT

By straightforward substitution,

” o, 7 - r -1 f o
(u.2) v Tu b (fOTT * fOT> € " (flTT ™ 1T - ofotT
, N-1 n
-} - : + + f -
* fot B') n§1 (fn+1,¢¢ * fn+]_,'r 2oy * fnt ' fn*l,tt) €
R s N N+1
oy Iy Y Iy e © My



Since (L.l) is a partial sum of a general asymptotic expansion for
which there is lack of uniqueness, we cannot conclude that for each n
the coefficient of ¢™ on the right hand side of (4.2) must vanish. Never-

theless, it is plausible to determine fq, ..., fN recurrently from

(L.3) fopr * Tor =0
N

(L.L) fioq * f1p =0 - 20 - £,

(4.5) Lo e, T e - fup - fned,er BT L 2 e No L

At once several circumstances are noticed. We have here a system of

n + 1 partial differential equations which fail to determine the n + 1
functions fgo, 1, <.y fN. If these equations are satisfied, we have
from (4.2) eu’ +u” -h' = O(eN) which is not good enough, since we
must have N=o(e) to make (L.1) the partial sum of a general asymptotic
expansion; yet there is no assurance of our being sble to satisfy also

+ £ = 0.

S S\

In order to clarify the situation, let us consider the simplest
case, N = 0. From (L.3),
6 £o(t,7) = Aolt) &7 + Bo(t)
while from (1.2),
L.7) Ao(0) + Bo(0) = &, Bo(l) = B.
Ay and By are not further determined at this stage. We now set
ue(t,e) = folt,T)
and obtain
(L.8) eug + ug - h' = (eAd - Aé)e_T + ¢Bg + B - n'.
Clearly, T = e in this case, and in order to satisfy (3.11) or (3.1h) we
must have By = h' or

(L.9) Bo(x) = B + h(x) - n(1)



in view of (L.7). Also, from (L.7)

(b.10)  Ko(0) = e -8+ n(1) - B(0),

and Ao is not further determined at this stage. Equation (3.1L) is then
satisfied with N = ¢ and m = 1,  so that with any Ao conforming to (L.10),

-t/e ¢

(h'.ll) Y - lto = O(Q): y, - uol = O(€+-E € )°

€
Equation (L.l}) now becomes
flfr'r * fIL'r = 4 e-T'
This equation will have a particularly simple solution,
£1(t,7) = Ay(t)e” + By(t)
if we make use of the freedem left in the choice of Ag by choosing Ao = 0,
or
(4.12) " Ao(x) =a - B +h(1) - h(0).
It must be emphasized that this is an arbitrary cholce leading to a
simple computation but not influencing the accuracy of the approxima-
tions. With Ao = 0, the right hand side of (L.8) becomes O(c), so that
we may take m > 1 in (3.15) and obtain
(L.13) Yy -uoe=0(e), v - ug = b(e+'e—t/@,)
but this estimate is no better than (L.11). |
We can now repeat with .

wy(tse) = [Ao(t) + ehy()]e™ + Bo(t) + eBa(t)
the process carried out earlier with ugy and obtain Bi(t) = - Bg(t), while
A, will be undetermined except for the value of Al(O). In order to sim-
plify the equation for £, we may choose All = 0, but this is again a mat-
ter of convenience rather than one of principle.

It will now be shown that (L.5) can be satisfied by

(L. 10) £,(6,™) = 4 (8)e”" + B (%)



and then determines A, and B, for 1<n<0N-1hbut not for n = N. It
must be stressed that the determination of An and Bn is due to our as-
suminglthat £, is of the simple form (L.1ll). The system (L.5) ﬁossesses
solutions in which e is multiplied by a polynomial in T with coeffi-
cients depending on t, and these solutions are highly indeterminate. In
fact, at every stage of the construotion there arises the same lack of
determination as the one we encountered in relation to fg and are going
to encounter again in regard to Ty
Substituticn of (Li.1l) in (L.5) yields

-T 7
e

_ ~T ’ " _
O=4Ape" -B - A -Bpg n=1,2, ..., N -1

1
Since this holds identically in t and T, we must have

(h‘]‘S) AI,; = A;/l“l, BI{]. = -B;.:‘l"l n = l, 2, sy N - l’

while from the boundary conditions
(4.16) A,(0) + B (0) = 0, B,(1) =0 =n=1,2, ..., N.
Starting with (L.9) and (u.lé), we now see by induction that
(-7 (1) - 50 (0)] |
(-1)"a® (8) - n®) (1)1

Ap (%)

By (t)

(L.17)

i

Apart from the boundary conditions, AN and BN are not determined at this
stage.
Substituting

I R TN OEUERO)

and taking account of (4.3) to (L4.5), we obtain from (L.2),

iy -T y \
(L.18) ev/ +u’ -h' = (Aﬁ e + Bﬁ + B'N_l)eN
" =T, o N+1
+ (AN e BN) e .

For this to be O(eN+l) + O(eNe~T), it is both necessary and sufficient

that B; + B% 1 = 0, so that the second equation (L.17) must hold also
i N- _

10




for n = N. We may also take Aﬁ = 0, and AN according to the first equa-
tion (L.17), for convenience but there is no compelling reason to make
this choice.

We now have

y-aet s pete) 4 §o<~e>n (™ ()
; =

NG (0)]e" ¢ h(n)(t). - h4(n) @71 + oM.
This is precisely the approiimation by partial sums of the composite ex-
pansion of Kaplun and Lagerstrom. It is seen to be one of manyvpossible
expansions of the solution of (1.1), (1.2).

In conclusion, it may be noted that the degree of arbitrariness
in the choice of A, depends on the availability in this case of the esti-
mate (3.15) under the conditions (3.1). The alternative conditions (B.h)
are of wider application and by the same token noﬁ the best possible con-
ditions in particular circuméfances. Had we depended on the latter for
the validation of u, it would have been necessary to enforce m > 1 and
hence apparently necessary to have Aé = 0. Thus, thé apparent degree of
freedom in‘thecmoice of asymptotic expansion depends essentially on the

tools one uses.

11
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