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TRANSFINITE ELECTRICAL NETWORKS *

A. H. Zemanian

Abstract — This is a tutorial/survey paper that provides an explanation of “transfi-
nite electrical networks.” The theory of such networks has been developing only over the
past decade, and undoubtedly much is yet to be discovered. It is quite abstract, and its
mathematics is complicated. In this work we try to facilitate an understanding of its main
ideas without encumbering comprehension with too much mathematical jargon. Instead,
definitions and arguments are heuristically presented, and many examples are given. Trans-
finiteness for electrical networks is a radical generalization of conventional network theory,
which opens up an entirely new area of research. It may be of interest to mathematical

circuit theorists but will disappoint those looking for practical applications.

1 Introduction

This paper is an explanation of a recently introduced idea for a new kind of electrical
network, the “transfinite network.” The graph of such a network is not a graph in any prior
sense but is instead an extension roughly analogous to Cantor’s extension of the natural
numbers to the transfinite ordinals. Cantor introduced the transfinite numbers over 100
years ago and profoundly altered thereby mathematical ideas, as for example the concurrent
invention of sets and the consequent examination of the foundations of mathematics [3],
[4]. In contrast to number theory, graph theory, which is another fundamental subject
with many applications in mathematics, science, and engineering, remained on “this side
of infinity” until a decade ago. An initial embryonic idea [9] concerning “connections at

infinity” was introduced in 1975, but it was only after 1987 [11] that transfinite graphs and
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networks were investigated on a continuing basis. This has enriched the theories of graphs
and networks with radically new constructs and research problems. In general, many solved
problems of conventional graphs and networks have now reopened and comprise a largely
unexplored research area, and in addition there are transfinite-network problems having no
counterparts in conventional theories.

Let us be more indicative about the difference between conventionally infinite graphs
and transfinite graphs. In a conventionally infinite graph two nodes are either connected
through a finite path or are not connected at all. On the other hand, in a transfinite graph
two nodes may also be connected by an infinite path or more generally by a union of infinite
paths — possibly infinitely many infinite paths, and this may even be the only way those
two nodes are connected. Moreover, there may be two nodes in a transfinite graph that
are connected by a walk (i.e., a tracing in the graph wherein nodes repeat) but not by any
path (i.e., a tracing wherein nodes do not repeat); consequently, we now have to distinguish
between “walk-connectedness” and “path-connectedness,” something that is unnecessary
for conventionally infinite graphs.

The basic idea for constructing a transfinite graph is the following. Any conventional
(finite or infinite) graph will henceforth be called a 0-graph, and its nodes will be called
0-nodes. As is explicated in Section 3, the infinite extremities of an infinite 0-graph can be
defined in a certain precise fashion, and these extremities will called 0-tips. As a heuristic
example, consider the infinite checkerboard graph of Fig. 1; some of its 0-tips are the
infinite extremities of the horizontal and vertical lines therein, one 0-tip to each half-line,
but there are other 0-tips as well, such as the infinite extremity of a path that spirals
outward infinitely.

Now, a new kind of node, the “l-node,” can be defined as a set consisting of some of
those 0-tips; we can interpret this as the shorting together of those 0-tips. 1-nodes may
connect many 0-graphs together at their 0-tips; the result will be called a “l-graph” or
alternatively a “graph of rank 1.” This process can be repeated. Infinitely many 0-graphs
can be connected through 1-nodes, and the result may have infinite extremities of a higher

rank; the latter are called “1-tips.” A “2-node” can then be defined as a set of 1-tips, and



these can be used to connect together 1-graphs to obtain a “2-graph,” synonymously, a
“graph of rank 2.” Moreover, this process can be repeated any finite number of times to
get a u-graph for any natural number px.

Continuing our heuristic example, let us consider infinitely many checkerboard graphs
laid out in a checkerboard fashion with adjacent 0-tips connected through 1-nodes. The
result is the checkerboard of checkerboards, indicated in Fig. 2. That 1-graph has 1-tips;
some of them are the infinite extremities of horizontal and vertical lines that pass through
infinitely many of the checkerboards. We can repeat this procedure using those latter 1-tips
and 2-nodes that short together adjacent 1-tips to get a checkerboard of checkerboards of
checkerboards. This can be repeated finitely many times to get a checkerboard of checker-
boards of ... of checkerboards.

We can go even further. Iimagine that this process has been continued through increasing
ranks without ceasing, and then jump in your imagination to the result. Call the result an
“@-graph.” w denotes Cantor’s first transfinite ordinal, and the arrow above it is indicative of
the never-ceasing process of construction through all the natural-number ranks. Continuing
our example, we now have a checkerboard of checkerboards of ..., unceasingly. Now, a &-
graph may have infinite extremities, which we now call “&-tips,” as for example the infinite
extremity of a line that starts at a 0-node and passes horizontally through our unending
checkerboard-like &-graph. Then, w-nodes, which are sets of &-tips can be used to create
an “w-graph,” as for example a checkerboard of our unending checkerboard-like &-graphs.

This process still need not end. Indeed, we can define w-tips and then short them
together through (w + 1)-nodes to get an (w + 1)-graph, and so on through succeeding
transfinite-ordinal ranks w+2, w+3, ..., w-2, w-2+1, .... We have hereby a hierarchy
of transfinite graphs of natural-number ranks and then transfinite-ordinal ranks. We can
convert these transfinite graphs into transfinite electrical networks by inserting electrical
elements into the branches. Does such a transfinite network have a voltage-current regime,
that is, an operating point in the resistive case? Yes. We shall explain how in Section 4.

But, what good is all this? Why should one bother with such strange infinite networks?

Actually, the first critical step is the generalization from finite networks to conventionally



infinite networks. Once infinite concepts are introduced into any analytical description of a
physical phenomenon, that description becomes perforce a mathematical abstraction that
can both simplify and complicate the original description. For example, a physical resistor
consists of a complicated configuration of molecules, atoms, electrons, nuclei, and so on.
It is far simpler to represent it as a continuous medium described by a resistivity constant
and the spatial dimensions of the medium. However, such a continuous medium is itself
an infinite concept; indeed, the resistance between two connections to that medium, having
say irregular boundaries, can only be approximately computed using our customary theory
of finite networks by representing the medium as finite grid of lumped resistors. In general,
infinities may intrude when smoothing out physical descriptions, and finiteness can only be
restored by accepting still further approximations.

Once conventionally infinite concepts have been accepted, it is no longer a radical leap
to continue on to transfinite ideas so far as mathematical analysis is concerned. To put this
more specifically, finite sets are well-behaved; infinite sets require a leap in conceptualiza-
tion (and lead at times to antinomies, that is, paradoxes that cannot be resolved [1, pages
611-635],[3, Chapter 11]). Nonetheless, we use infinite sets (while circumventing their anti-
nomies) because of the power and conveniences that infinite sets provide. Transfiniteness
is basically no more than a classification of infinite sets.

The unfamiliarity of transfinite electrical networks may provoke uneasiness, but hope-
fully not its rejection. In fact, in some circumstances transfinite ideas must be introduced to
resolve questions regarding conventionally infinite ones, as we shall see in the next section.
But, let us not beg the question, “What good are transfinite networks?” It is presently the
case that there are no practical applications of transfinite models other than some models
at the borderline between the conventionally infinite and the transfinite [13], [14, Example
1.7-1]. The motivation for research into transfinite electrical networks has to be purely
mathematical, at least for now. Electrical network theory, which is so important to our
vast electrical industry, is also part of mathematics, and it behooves at least a few of us to
develop its theory in the various ways that theory may point, whatever be the abstractions

encountered.



In the rest of this paper, we shall restrict our discussions to the first rank of transfinite-
ness, that is, to 1-graphs and 1-networks. Most of the ideas and many of the peculiarities
occurring in transfinite network theory can be explained at this first level of transfiniteness.

This may be enough for a tutorial/survey paper.!

2 A Need for Transfiniteness

Let us now ask a simple question about the conventionally infinite ladder shown in Fig. 3.
What is its input resistance R;, = v1/7;?7 When the ladder is uniform (that is, when all
the r; have the same value r and all the g4 are the same value g), it is customarily asserted
that R;, is the characteristic resistance R.,. Its value can be determined by solving the

circuit of Fig. 4; that is, R, is the positive solution of the quadratic equation

1
Rep = 1
g+ r+Ren
Thus,
r r? r 12
h = —— — 4 = . 1
Ren 5+ <4 + g) (1)

Wait. We may be missing something. Let us examine this matter a little more closely.
Can we agree that, given any network, any voltage-current regime (i.e., any set of branch
voltages and branch currents) that satisfies Ohm’s law on every branch, Kirchhoff’s current
law at every node, and Kirchhoff’s voltage law around every loop is a solution of the
network? If so, we can then assert that the input resistance Ry, of any infinite ladder,
whether uniform or nonuniform, is any arbitrarily chosen real number (positive, negative,
or zero). Indeed, to compute R;,, we can set v; = 1 and compute i; to get Ry, = 1/14;.
Now, choose i; to be any real number. Then, a solution can be obtained by computing

recursively according to

The1 = Uk — GkVk (2)

V41 = Vg — ’I‘kik+1 (3)

!We should also point out that two prior tutorial/survey papers on infinite electrical networks have
appeared; the first one [10] did not discuss transfinite networks, and the second one [12] hardly touched
upon them.



for k = 1,2,3.... This recursion can be continued indefinitely, and any branch voltage
or current can thereby be determined.? It turns out however that, for the uniform ladder,
there is one and only one choice of i; for which the ¢; and v; tend to 0 as k — oo; it is
iy = 1/ R.1. Every other choice of ¢; yields currents ¢; and voltages vy whose absolute values
tend to oo as k — o0. A regime of this latter kind dissipates infinite power and requires two
power sources, one injecting the finite power ¢;v; at the input and another injecting infinite
power at the infinite extremity of the ladder. Thus, it appears that we can distinguish R.p
from all other input resistances by stipulating one more condition, namely, the total power
dissipated throughout the ladder is to be finite. This insures that the only power injected
into the network comes from the input.

We seem to have resolved the problem of determining a “proper” input resistance for
an infinite ladder: Just impose Ohm’s law, Kirchhoff’s laws, and a finite power condition.
Let us apply this conclusion to a nonuniform ladder. For the sake of specificity, let it be
the ladder of Fig. 3, where now gx = 27* U and r;, = 2% Q for all k. Some computation
will show that any choice of ¢; will lead to a finite-power regime. Indeed, whatever be ¢,
it will approach a constant value as £k — o0, and so too will v;. The fact that g, and r;
tend exponentially to 0 then insures that the power dissipated is finite.

Perhaps, we should try another way of determining a “proper” input resistance. Let us
truncate the ladder by opening the nth resistance pair (i.e., set r,, = 00}, then compute
the corresponding input resistance R,, and finally take lim,,_ ., R, as the “proper” value
of R;,. We get R;,, = 1.1245€). Just to check this result, let us now truncate the ladder by
placing a short across the nth conductance gi, compute the resulting input resistance, and
then take the limit again as n — oo. We now get R;, = .6384 Q2. We are forced to conclude
that R;, depends on whether we send an open or a short out to infinity, and we are led
heuristically to the idea that R;, depends upon what is connected to the infinite extremity
of the ladder — in these two cases, an open or a short.> Indeed, we can move any resistance

Ry out to infinity by truncating the ladder either just after g, or just after the r,/2 pair

2 A recursive procedure like this can be performed on any conventionally infinite network [14, Chapter 2].

3This is equivalent to writing Rin as an infinite continued fraction using the rules for series and parallel
combinations of the ry and gx and then noting that the continued fraction does not converge [15, Section
1.4].



and using Ry as a load resistance at that truncated output. Upon sending n — oo, we
get a value of R;, depending upon the value of Ry. We might interpret this as the input
resistance R;, when “R is connected to the ladder at infinity.” For example, R;, = .8380
when Ry, = 1. In fact, this even works for negative values of Rp; for instance, R;, = .59
when Ry = —3.1800%2, and R;, = —-.5€) when Ry = -1.0058 Q1.

Let us review our investigation. We started by asking an ostensibly local question:
What is the input resistance R;, of the ladder of Fig. 3?7 For the uniform ladder, the
answer R;, = R, was obtained through some local reasoning so long as a finite-power
condition was also assumed. However, for the nonuniform ladder where r; = g, = 27,
local reasoning and the finite power assumption did not provide a unique value for R;,
— even approximately. We were forced to go transfinite, that is, we had to declare what
is connected to the ladder at its infinite extremity in order to determine a unique value
for R;,. The essential difference between the uniform ladder and our nonuniform one is
that “infinity is imperceptible” in the first case and “infinity is perceptible” in the second
case. Indeed, in the uniform case there is infinite series resistance r; + r5 + ... and infinite
shunting conductance ¢y + g2 + ... between the input and the infinity extremity of the
ladder. Consequently, any finite-power source at the input is unable to send power to
infinity; instead, voltages and currents decay to zero along the ladder. As a result, what is
connected to the ladder at infinity is of no consequence; it cannot be perceived at the input.
On the other hand, in our nonuniform case the total series resistance and total shunting
conductance are finite, and power can therefore be sent to infinity. This forces us to specify
just what the load at infinity is if we wish to determine what power the input voltage source
produces, or equivalently what R;, is. In short, going transfinite in our nonuniform case is
not generalization just for the sake of generalization. Going transfinite is forced upon us if
we wish to answer a simple natural question. It is remarkable that this question was not
posed and resolved transfinitely during the hundred or so years that engineers have been
contemplating infinite transmission lines.

There is however a difficulty with this transfinite resolution of our problem. How does

one connect the load resistor Ry to the infinite extremity of the ladder? There is no last



pair of nodes to which Ry can be connected. What is needed is the invention of a new
kind of node, the “l-node,” which enables us combine the nodes of R; with the infinite

extremities of the ladder.

3 Transfinite Graphs

By a 0-graph we mean a conventional (finite or infinite) graph. Let us now explain more
specifically just what is a transfinite graph of the first rank, namely, a 1-graph. First of
all, we need to define precisely what are the infinite extremities of an infinite 0-graph. By
a 0-path we will mean a path in the conventional sense; it is an alternating sequence of

0-nodes and branches

0 0 0
{...,ng,b1,n5,ba,m.,...}

wherein each branch is incident in the graph to the two 0-nodes adjacent to it in the sequence
and no 0-node (and therefore no branch) appears more than once. A 0-path may be finite
because it terminates on the left and right at 0-nodes, one-ended because it terminates only
on one side at a 0-node, or endless because it terminates on neither side. A 0-loop is a finite
0-path except that the two terminal 0-nodes are the same. We take it that one approaches
an infinite extremity of a given 0-graph G° by following unceasingly a one-ended path in G°.
However, the infinite extremity that this tracing is extending toward should be independent
of how the one-ended path initially roams. So, let us consider two one-ended paths as being
equivalent if they are eventually identical, that is, if they differ by no more than finitely
many branches and nodes. Then, let us partition all the one-ended paths in a given infinite
0-graph into equivalence classes, each class consisting of all the one-ended paths that are
equivalent to each other. Each such class will be called a 0-tip, and these we take to be
precisely the infinite extremities of G°. Just as we can connect branches by combining their
terminals within 0-nodes, so too we can connect 0-graphs by combining their 0-tips within
1-nodes. More precisely, a 1-node is defined as a set of 0-tips along with (possibly but

not necessarily) a single 0-node.* Those 0-tips may come from the same 0-graph or from

*We do not allow two or more 0-nodes in a single 1-node so as not to alter the 0-graphs by introducing
a new short between 0-nodes.



different 0-graphs. The possible presence of a 0-node in the 1-node allows a terminal of a
branch to be shorted to an infinite extremity.

For example, consider the infinite ladder graph of Fig. 5(a). One of its 0-tips consists of
all the one-ended paths that eventually follow the a; branches; let us denote this by 0-tip
by t. Another 0-tip tJ consists of all the one-ended paths that eventually follow the by
branches. There are still others, such as the 0-tip, one of whose one-ended paths passes
through the branches ag, ¢1, b1, ¢q, a3, ¢3, bs, ¢4, a4, ..., thus zigzagging down the ladder.
How many 0-tips are there? Uncountably many of them, in fact, as many as there are real
numbers because a traversal of a horizontal branch is followed by a binary choice of a vertical
or horizontal branch traversal. This is equivalent to following the binary representation of
a real number.5 Let us now combine ¢ with a 0-node of a branch by, to make a 1-node nl,
and do the same thing with ¢J and the other 0-node of b1, to get another 1-node n}, as is
shown in Fig. 5(b). The result is a 1-graph. It is transfinite because by, is connected to
any other branch only through an infinite path. In this way, we have succeeded in a precise
mathematical way of connecting a branch by to two of the infinite extremities of the ladder.
This firms up the heuristic idea of a load resistance at infinity discussed in Section 2.

Of course, we could also connect the branch by to any two 0-tips of the ladder. This
would be another perfectly legitimate 1-graph, but a complication arises in this case.® The
trouble comes from the fact that, except for the pair tJ and t, the representative paths of
any two 0-tips remain forever entangled; that is, any path for one 0-tip and any path for
the other 0-tip meet infinitely often. Thus, electrical power cannot be sent through to those
two 0-tips simply because there is no transfinite loop for the flow of current through them.
A consequence of this, as we shall see, is that node voltages with respect to a chosen ground
node need not exist uniquely in an electrical network based on a 1-graph, even though that
network has a unique operating point (i.e., a unique set of branch voltages and branch
currents). Since we are presently discussing graphs, not electrical networks, it is too early
to examine this electrical difficulty more closely.

However, there is a related connectedness problem that can be discussed. We can strip

®See [15, page 21] for a more detailed argument,
5This should not be surprising when infinities are introduced.



the problem down to its essentials by examining the simple 1-graph of Fig. 6. We first need

to define a 1-path. This is an alternating sequence of 1-nodes and 0-paths
{...,n}, P n}, P) n},..} (4)

satisfying the following condition. No 0-node within any 0-path P or 1-node n! appears
more than once within the elements of the sequence (and thus no branch repeats either).
Each of the two 1-nodes adjacent to a 0-path PY in the sequence (4) contains either a 0-tip
of P or a terminal 0-node of P, which implies that P{ either extends infinitely toward
the 1-node or terminates at that 1-node. Furthermore, if the sequence terminates on one
side, it does so either with a 1-node or a 0-node. The fact that no 0-node appears within
two or more 0-paths of (4) implies that, for the two 0-paths adjacent to a 1-node n! in (4),
at least one of them must reach n! with a 0-tip. Finally, a 1-path is called two-ended if the
sequence (4) is finite, it is called one-ended if (4) terminates only one side, and it is called
endless if (4) does not terminate but instead extends infinitely on both sides. A 1-loop is
a two-ended 1-path except that one terminal node embraces or is embraced by the other
terminal node.”

By “0-connectedness” we mean connectedness in the conventional way. Thus, two nodes
are said to be 0-connected if there is a finite 0-path terminating at them, and a graph is said
to be 0-connected if every two nodes in it are 0-connected. Note that a 1-graph would be
0-connected if every 1-node in it contained a 0-node and there was a finite 0-path between
every pair of nodes whatever their ranks. Furthermore, two nodes are said to be 1-connected
if there exists a finite 0-path or a two-ended 1-path that terminates at those nodes.

Consider now the 1-graph of Fig. 6. The 0-node n? is 0-connected to n} and 1-connected

0

to all the ng, where k£ = 1,2,.... However, n

is not 1-connected to either n} or n9 because
there is no 1-path that terminates at nl and n} and similarly for n? and n9. Indeed, any
tracing from n? to ng will require a repetition of infinitely many of the n. Thus, we might
say that nQ and n9 are “connected by a 1-walk” but not by a 1-path.

There is a related peculiarity concerning “sections.” A k-section (k = 0,1) is a maximal

"We say that a 1-node embraces itself, its O-tips, and its single 0-node if it has one. We also say that a
0-node embraces itself.

10



subgraph such that every two nodes in it are k-connected. The k-sections of a 1-graph G!
are said to partition G! if every branch belongs to one and only one k-section. It is a fact
that 0-sections always partition every 1-graph, but this need not be so for 1-sections. For
instance, in Fig. 6 the 0-subgraph to the left of the 1-nodes n} and n} is a 0-section. Branch
B, along with its two incident 0-nodes is another 0-section, and similarly 3, with its 0-nodes
is a third 0-section. These 0-sections partition that 1-graph. On the other hand, all the
branches ag, by (k = 1,2,...) along with branch 3, induce (i.e., comprise the branch set of)
a l-section, and all the branches ag, bg, (k = 1,2,...) along with branch 3, induce another
1-section. In this 1-graph the 1-sections overlap and thus do not partition the 1-graph.
Nothing of this sort can be said about conventional graphs; the 0-sections are simply the
components of a 0-graph.

Both of these graph-theoretic peculiarities and the electrical difficulty alluded to before
arise from the fact that the binary relationship “l-connectedness between nodes” is not
in general transitive. We have seen in Fig. 6, for instance, that node n? is 1-connected
to nd, and n} is 1-connected to nY, but n? is not 1-connected to nY. This problem can
be avoided if we restrict a 1-graph as follows. We shall say that two O-tips t2 and #) are
nondisconnectable if any path in t2 and any path in tQ meet infinitely often. When this is so,
every pair of paths for ¢ and 9 will meet infinitely often. Furthermore, we shall say that a
0-tip ¢© is open if it is the only element in the 1-node containing it; this means that nothing
is connected to the 0-tip, that is, after tracing a one-ended path in 2 to reach ¢, there is
no way to leave 2 through another one-ended path not in t° or through some branch.

Here is a condition making 1-connectedness well-behaved:

Condition 3.1. If two 0-tips are nondisconnectable, then either they are shorted to-
gether (i.e., are members of the same [-node) or at least one of them is open.

Theorem 3.2. If a I-graph G! satisfies Condition 3.1, then I-connectedness is transitive
in Gl.

For example, in the networks of Fig. 5 there is only one pair of nondisconnectable 0-tips,
the 0-tip 0 induced by the aj branches and the 0-tip ¢ induced by the by branches. All

other pairs of 0-tips have representative paths meeting infinitely often. So, if we assume

11



that all 0-tips other than ¢ and ¢) are open, then 1-connectedness becomes well-behaved
so far as connections to the infinite extremities of the ladder are concerned.

Two consequences of Theorem 3.2 are the following:

Corollary 3.3. Assume that the 1-graph G' satisfies Condition 3.1. Then, the following

are true.
(i) The 1-sections of G partition G! (i.e., the I-sections do not overlap).

(ii) Let P} and P} be two-ended I-paths in G! that meet at one or more nodes (0-nodes
and/or 1-nodes). Let {ni}rex denote the set of nodes where they meet. Totally order
{ni}rek according to an orientation for P!. Then, {ni}rex has a first node and a

last node.

Theorem 3.2 is easy to state but hard to prove (see [15, Chapter 3]). There is another
condition that ensures the transitivity of 1-connectedness (see [15, Theorem 3.2-2]). It is

harder to state but easier to prove.

4 'Transfinite Electrical Networks

As was mentioned above, any transfinite graph can be converted into an electrical network
by specifying electrical parameters for the branches. Much has been accomplished for
transfinite networks of resistors and sources, but there are hardly any results available
when inductors and capacitors are allowed. So, let us restrict our attention to the case
where each branch has the Thevenin form of a resistor r in series with a voltage source e as
shown in Fig. 7, where » > 0 and e may be any real number including 0. With J denoting
an index set for the branches® and with j € J, we assign the subscript j to the quantities

in Fig. 7. Thus, Ohm’s law becomes
vitej = 15l (5)

Let v = {v;}jes and ¢ = {i;};es denote the vector of branch voltages and the vector of

branch currents respectively. Also, let us refer to the pair {v,i} as a voltage-current regime

8The set of branches, and therefore J too, may be uncountably large.
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— or in engineering parlance as an operating point — if Ohm’s law and a generalization of
Tellegen’s equation (to be specified later) are satisfied. That generalization will encompass
Kirchhoff’s laws whenever those laws can hold. Unfortunately, Kirchhoff’s laws do collapse
for certain transfinite networks, and that is why we are forced to resort to that generalized
form of Tellegen’s equation. As a special case, we wish to have® 3" v;i; = 0. However, we
now need to make sure that ) v;i; is a finite quantity before we can hope to set it equal to

0. We can accomplish this by adopting two more restrictions, one on ¢ and the other on e:
.2. . 6
il < oo (6)

2

Here g; = 1/7;. Restriction (6) asserts that every allowable current vector ¢ dissipates only
a finite amount of power in the resistors. The second one (7) concerns how much power can
be extracted from all the voltage sources; the maximum such power occurs when a short
is placed across each branch, in which case all the power extracted from the source of a
branch is dissipated in that branch’s resistor. We refer to this as the total isolated source
power, and (7) asserts that it too is finite.

Furthermore, let e = {e;};cs be the vector of so restricted voltage sources, and set
(z,y,) = > zjy; for any two vectors z and y. Then, (e,s) = ) e;s; denotes the power
delivered by e when s is the current in the network. (As with general applications of
Tellegen’s equation, we are not requiring that s be the current vector generated by e.)
Then, by Schwarz’s inequality we have that

’

. . /
(e8) = LGy < [Yedsy Yain]

and thus (e, s) is finite whenever the two summations on the right-hand side are finite,
conditions we shall continue to assume. Altogether then, for any current vector s = {s;};es

with 37 s?r; < 0o, we have from Ohm’s law (5), condition (6) on ¢, condition (7) on e, and

Schwarz’s inequality that

olvisil = domilizsil + Y leisil = Dol lsilvrg + 3 leilvas 1silvrs

® All summations will be over the branch index set J unless something else is specified. See [15, Appendix
B] for a discussion of summations having uncountably many terms.
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< Zi?rj Zs?rj + Zefgj Zs?rj < 00.
Thus, 3_ v;s; now has a meaning, and we can therefore impose Tellegen’s condition: (v, s) =
Yvjs; = 0.
Next, let R be the operator that assigns to each current vector ¢ = {%;};cs the vector
Ri = {rjij};jeq of voltages across the branch resistors. Then, we can rewrite Tellegen’s

equation as

(v,s) = (Ri—e,s) = 0 (8)

It is important to note that since Kirchhoff’s laws need not hold everywhere, (8) is now
being imposed, rather than being a consequence of those laws as in the case finite networks.
We might say that Tellegen’s equation now steps forward as a more fundamental relation-
ship, which determines a voltage-current regime for the transfinite network, something that
Kirchhoff’s laws are unable to do in the case of transfinite networks.

However, these finite power conditions are not enough to generate a unique current
vector ¢ that we might accept as a sensible solution to a transfinite electrical network.
We still wish to satisfy Kirchhoff’s laws whenever it is possible to do so, especially for
Kirchhoff’s current law at finite maximal 0-nodes (that is, at each 0-node not contained in
a 1-node and having only finitely many incident branches) and for Kirchhoff’s voltage law
around 0-loops (which perforce are finite loops). To do this, we set up a solution space A
of allowable current vectors ¢ that fulfill these desired properties regarding Kirchhoff’s laws
and in addition dissipate only a finite amount of power. A is the space that will be searched
for a vector 7 (hopefully a unique one) that can be accepted as a solution to the network.

It turns out that there are at least four ways of setting up A, as we shall explicate in
the next section. Which space is preferable depends upon how much generality is desired.
The greater the generality, the more likely it is that ¢ will have an unexpected — perhaps,
peculiar — distribution of values on the branches. The less the generality, the more likely it
is that i will have more restricted properties, such as the inability to pass through 1-nodes.

The proof of the existence of a solution ¢ can be informally described as follows. A will be
chosen to be a “Hilbert space.” This means that there is an “inner product” (synonymously,

“scalar product” or “dot product”) defined on all pairs i, s of current vectors in .A. In our
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case, that inner product is taken to be

(i,8) = Y rjijs;. (9)

Corresponding to this, there is a “norm” ||¢|| on each i € A given by

lall = /3 i, (10)

The “distance” between two current vectors ¢ and s is ||¢ — s|| = /2(3; — s;)%r;. Also, A

2

is a “linear space,” which means essentially that adding two vectors in A by adding their
corresponding components yields a vector that is also in .A. Finally, A4 is “complete” in the
following sense. If any current vector z is arbitrarily close to vectors in A (that is, if, given
any € > 0, there is an s € A such that ||z — s|| < €), then z is in A as well.

Now, by virtue of condition (7) on e, it turns out that a common theorem of functional

10 asserts that corresponding to the given

analysis, called the Riesz representation theorem,
e satisfying (7) there is a unique 7 such that (8) holds for all s € A. This is a fundamental
theorem. We shall discuss four versions of it in the next section by choosing four different
A. At this point, let us present this fundamental theorem more explicitly.

Conditions 4.1. The network N is either a O-network or a I-network (that is, its graph
is either a 0-graph or a I-graph), and its branches have the Thevenin form shown in Fig.
7 with positive resistors in all branches. Moreover, the total isolated source power is finite
(that is, (7) holds).

Theorem 4.2. Under Conditions 4.1, there exists a unique branch-current vector i

such that
(e,s) = (Ri,s) (11)

for every s € A. Furthermore, there is a unique branch-voltage vector v satisfying Ohm’s
law: v= Ri—e.
Here then is how Tellegen’s equation (8) changes from a consequence of Kirchhoff’s laws

when dealing with finite networks to a more fundamental principle for transfinite networks,

19Also, the Riesz-Fischer theorem.



from which Kirchhoff’s laws can be derived for certain nodes and loops including those

mentioned above.!!

5 Solution Spaces

Here we discuss and compare four solution spaces for the branch current vector ¢. The third
and fourth of them are presented here for the first time.

5a. Loop Currents: The simplest of the solution spaces can be constructed by aping
what is done with finite networks. We start with loop currents; these are currents that
are restricted to 0-loops and 1-loops and are constant thereon. However, we also require
that the power dissipated by each loop current be finite. This does not restrict the 0-loop
currents, for they pass only through finitely many branches. On the other hand, it does
restrict the 1-loop currents by requiring that the total resistance in any admissible 1-loop
be finite. We let £° denote the span!? of such admissible loop currents.

Unfortunately, £° is usually not large enough to encompass the current vector we seek, as
we shall note in an example below. So, let us complete £° by appending all current vectors
that are arbitrarily close to members of £° in the following sense: ¢ will be appended to
Le if, for each € > 0, there is an 7' € £° such that || — i'|| < € (i.e., such that the power
dissipated by i — 1’ is less than €?). We let £ denote the resulting expansion of £°. The
fundamental Theorem 4.2 now holds with A = L. It turns out that every member of £ will
satisfy Kirchhoff’s current law at every 0-node whose incident branch conductances have
a finite sum and also Kirchhoff’s voltage law around every loop whose branch resistances
have a finite sum.

For example, consider the network of Fig. 5(a) with all 0-tips open. Let there be a
voltage source in branch ¢y and no voltage sources anywhere else. Now, every member of
L° is a finite linear combination of 0-loop currents and therefore can be nonzero on only
finitely many branches. However, Kirchhoff’s laws require that any current vector that is

nonzero on any one branch must be nonzero on infinitely many branches, that is, the current

" Because of space limitations, we do not derive Kirchhoff’s laws here but instead refer the reader to (14,
Section 3.4} and [15, Section 5.3].

12j e., the set of all finite linear combinations of those loop currents.
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distribution must spread out throughout the ladder. Thus, £° cannot provide a solution to
our network. However, £ does do exactly this, as is asserted by our fundamental Theorem
4.2.

5b. Basic Currents: Depending upon the choice of the network N, £ can in general
be expanded by adding basic currents, which are defined to be a sum ¢ = )}, cps%m of
current vectors i,,, where M is a countably infinite index set, each ¢,, is a 0-loop current
or a 1-loop current, each branch or maximal 0-node meets only finitely many of the loops
of the 4,,, and the branches on which ¢ is nonzero are contained in no more than finitely
many l-sections. Basic currents can be intuitively explained as an infinite superposition of
loop currents that together permit a spreading and thinning out of a current regime as it
flows toward infinity from some node of injection. This might allow such a current regime
to dissipate finite power, even when an infinite power dissipation would result were that
injected current to flow out to infinity along a single path.

An example of this is shown by the binary tree of Fig. 8, wherein a current of 1 A
flows from the apex node n°, spreads out uniformly through the tree, and then is gathered
through a short at infinity and returned through a source branch to the apex node. When
every branch of the binary tree is a 1 Q resistor, the total power dissipated is finite; were
that 1 A current to flow along a single path from n° to infinity, the power dissipation would
be infinite. The current regime shown in Fig. 8 is a basic current and is the one dictated
by the fundamental theorem.

For any network, the span of all finite-power basic currents is denoted by K°, and
the completion K of K° is obtained as before by appending all current vectors that are
arbitrarily close to members of X° as measured by the norm (10). Thus, every member of
K also dissipates finite power. We always have £ C X, and in general X is larger than £,
as is the case for Fig. 8. In fact, for that figure, £ consists only of the zero vector, but K
is much larger. The corresponding fundamental theorems yield i = 0 under £ and i # 0
under K. Moreover, Kirchhoff’s voltage law is violated around every transfinite loop in Fig.
8 under £ but is fulfilled under K.

5c. Tour Currents: Let us define a track as a finite sequence { Py, P,,..., P,,} of oriented
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finite 0-paths or two-ended 1-paths such that, for each k = 1,...,m — 1, the last node of P
embraces or is embraced by the first node of Pgyq.!® It is not required that the these paths
be disjoint. Thus, a track may pass through a node or branch several times — but at most
finitely many times. Next, let us define a tour to be a track such that the last node of P,
embraces or is embraced by the first node of P;. Thus, a tour generalizes a loop. Finally, we
take a tour current to be a constant flow f of current passing along a tour. Thus, if a tour
repeats a branch, the corresponding branch current is a multiple of f obtained by adding
and/or subtracting f for each passage of the tour through the oriented branch, addition
being used when the flow f and branch orientation agree, subtraction otherwise. In fact,
the branch current may be 0 by cancellation. Note that a loop current is a special case of a
tour current. Fig. 9 illustrates a tour current along a transfinite tour. This is the simplest
network that must sustain a nonloop tour current if a certain branch (in this case, by) is to
have a nonzero current, and it can often occur as a subnetwork in many more complicated
networks.

Let 7° be the span of all finite-power tour currents,'* and let 7 be the completion of
7T°, as before. Thus, every member of 7 dissipates finite power. A is now 7 in Theorem
4.2. Moreover, we have that £ C 7. A branch may have a nonzero solution current in 7
but a zero solution current in £ and in K. In fact, this is the case for the example of Fig. 9,
(for whose network £ = K). Indeed, the branch current in by, dictated by Theorem 4.2 can
be nonzero under 7 but must be zero under £ = K whatever be the choices of the branch
resistances and voltage sources. This is because there is no loop passing through by, but
there are tours doing so. When A = T, when there is a source in b7, when no other branch
has a source, and when the resistances in the branches to the left of the 1-nodes have a finite
sum, there will be a nonzero current in by, but zero current in all other branches; this is an
apparent violation of Kirchhoff’s current law. However, Kirchhoff’s voltage law is satisfied
around tours so long as resistances decrease rapidly enough as stated in Fig. 9.

5d. Splayed Currents: T can be expanded into a generally larger space S in much the

135ee footnote 7 for “embrace.”

QObviously, a tour current is of finite power if and only if the resistances in the tour sum to a finite
amount.
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same way as L is expanded into K. For certain networks this will permit a thinning out of
currents as they flow toward infinity, thereby enabling a finite-power current distribution
that may not be available in 7. A “splayed current” is specified as is a basic current except
that loops are replaced by tours. Specifically, we define a splayed current to be a sum
i= Y ,.crmim, where M is a countably infinite index set and each i, is a tour current,
such that each maximal 0-node and each branch meets no more than finitely many tours
of the i,, and moreover the branches where ¢ is nonzero are contained in no more than
finitely many 1-sections. Thus, a tour current is a special case of a splayed current. For i
to dissipate finite power, it is not required that any of the i,, do so; in fact, it is possible
for every i,, to dissipate infinite power, whereas 1 dissipates finite power nonetheless. We
now let §° be the span of all finite-power splayed currents, and let § be the completion
of §° as before. Thus, the members of S also dissipate finite power. This time, we have
K C 8. Once again, the fundamental Theorem 4.2 holds for the still more general case
where A = §. Moreover, Kirchhoff’s voltage law now holds around permissive tours, that
is, around tours whose resistances sum to a finite amount.

Fig. 10 illustrates a particular splayed current i = ) ,._; 1, on a quarter-plane square
grid along with other branches connected to certain of the grid’s extremities (i.e., 0-tips). All
branch resistances are 1 2. The top three parts of that figure indicate i,, for m = 1,2, 3,4, 5.
The small circle labeled n, (resp. np) is a 1-node that connects to the 0-tip determined by
the lowest (resp. the next lowest) path of horizontal branches. The small circles labeled
wy, denote 1-nodes that connect to 0-tips determined by paths that wiggle rectangularly,
passing along vertical and horizontal branches. All of these 0-tips and their corresponding
1-nodes w,, are different from each other. For m even (resp. odd), there is a branch at
infinity connecting n, (resp. np) to w,,, which allows i,, to close on itself at infinity. The
indicated pattern repeats itself for m = 6,7,8,... with the vertical wiggles expanding
upward and with the first (i.e., leftmost) wiggle shifting to the right as m increases. The
bottom part of Fig. 10 shows the total splayed current i so far as the currents within the
grid are concerned. All the branches at infinity carry nonzero currents too, but are not

shown in this part. All the tour currents i,, in i cancel to zero within the grid except on the
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squares shown. Note that every i,, by itself dissipates infinite power. On the other hand,
i = Y1, dissipates finite power. This provides an example of how an admissible splayed
current can be a superposition of inadmissible tour currents. Note also that with respect to
i each current at infinity passes through its branch but goes no further. This is yet another
apparent violation of Kirchhoft’s current law.

5e. Which Solution Space Should We Use?

As was indicated above, L C K C S and £ C T C S, with strict inclusion occurring for
certain networks. So, which one of these solution spaces is preferable?

The smallest space £ is the simplest to comprehend, but it may yield only the trivial
solution 7 = 0 and lead to a violation of Kirchhoff’s voltage law around some transfinite
loops, as we have noted in Subsection 5b. In contrast to £, the space KX may provide a
nontrivial solution ¢ and may ensure a satisfaction of Kirchhoff’s voltage law, at least in
special cases where £ is unable to do so. This is the case for the network of Fig. 8. As
will be noted at the end of the next section, the nonsatisfaction of Kirchhoff’s voltage law
is reflected in the loss of uniqueness for node voltages with respect to a chosen ground even
when node voltages exist throughout the network. On the other hand, the spaces 7 and
S may provide nontrivial solutions ¢ in cases where £ and K are both unable to do so. In
fact, 7 and S always provide unique node voltages with respect to a chosen ground so long
as the node voltages exist; this is because Kirchhoff’s voltage law around permissive tours
holds. But then, apparent contradictions of Kirchhoff’s current law may arise, as was noted
in Subsections 5¢ and 5d. It seems that the restoration of unique node voltages is paid for
by possible violations of Kirchhoff’s current law. Furthermore, the spaces 7 and S seem
unnatural — at least with regard to our conventional thinking about electrical currents in
finite networks as being superpositions of loop currents.

Compromising between these features, we feel that the space K is the most natural one

to use. The theories presented in [14] and [15] have been based upon K.
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6 Node voltages

Another possible peculiarity of a transfinite network is that node voltages need not exist
throughout the network whatever be the choice of solution space. An example of this is
given in [15, pages 151-153]. This is a consequence of the facts that there are pairs of nodes
in a transfinite network that are connected only through transfinite paths or tracks and
that the sum of branch voltages along such a path or track may diverge.

Still another peculiarity can occur even when sums of voltages along paths or tracks all
converge and a ground node has been selected: The node voltages need not be uniquely
determined despite the fact that they exist. This is a shortcoming of the use of £ and K,
but not of 7 or §. To see this, we must first define “node voltages” for transfinite networks.

A track (and, as a special case, a path) is called permissive if the resistances in the track
sum to a finite amount. Let ny, and ng be any two totally disjoint nodes of the transfinite
network N with n, designated as ground, and let T be a permissive track starting at ng
and stopping at n,. We define the node voltage vy at ng with respect to T to be the sum
2_(7) £vj, where 3 ) denotes a sum along the branches of T' with an additional term for
each occurrence of a branch as T is traced from ng to ny and where the 4+ (resp. —) sign
is used with v; if the orientation of the branch b; agrees (resp. disagrees) with that tracing
of T for the considered occurrence of b;. Note that a node voltage will be assigned to ng if
and only if there exists a permissive track between ng and n,.

Theorem 6.1. Let N be a transfinite network satisfying Conditions J.1. Let the current
regime in N be that dictated by the fundamental theorem based on the solution space T or
S. Let ng be a chosen ground node and let ng be any other node. Let Ty and Ty be two
permissive tracks in N starting at ng and stopping at n,. Then, the node voltage assigned
to ng along Ty is the same as that along T,. (That is, node voltages will be unique whenever
they exist.)

Proof. Let -T; denote the track T} with a reversed orientation — that is, =73 starts
at ng and stops at ng. Let (=77)UT, denote the tour consisting of —T; followed by 75. By
the fundamental Theorem 4.2 based upon 7, )" v;s; = 0 for any s € 7. Upon choosing s

as a tour current along (—77) U T3, we find that s € 7 because of the permissivities of T
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and T3, and from this we obtain 375y +v; = 37(7,) £v;. The same argument holds when
T is replaced by S. Q.E.D.

Corollary 6.2. Let N be as in Theorem 6.1. Let there be a permissive track from a
chosen ground node ny to every node of N. Then, there is a unique set of node voltages
throughout N when the solution of N is based upon either T or S.

As an example, consider again the network of Fig. 9, where now the branches to the
left of the 1-nodes have no sources, their resistances have a finite sum, and the branch by,
is a series circuit of a 1 Q resistor and a 1 V source oriented upwards. Then, as was noted
in Subsection 5c¢, under £ or K, currents must be zero in all branches including by, because
the network does not have any 1-loops coupling by to the other branches. However, there
are tours passing through b7. Consequently, under 7 or S, a nontrivial current distribution
will occur; specifically, the current in by, is 1 A and the currents in all other branches is 0
A. Then, with any 0-node to the left of the 1-nodes chosen as ground, we have that, with
regard to the solution found in £ or K, the node voltage at the upper 1-node is either 0 V
or 1 V depending on whether we choose a path passing along the upper branches or a path
passing along the lower branches and then through b;. On the other hand, with regard to
the solution found in 7 or &, that upper 1-node voltage along either path is 0 V because
the 1 A current in by, produces a zero branch voltage for b;. However, this restoration of a

unique voltage is paid for by an apparent violation of Kirchhoff’s current law.

7 Simplifications

It is remarkable how easily the existence of an operating point for a transfinite network, as
expressed by Theorem 4.2, can be obtained. The proof of that theorem is quite short [14,
pages 77-78], [15, pages 132-134]. However, not much more can be developed if we maintain
the generality of Conditions 4.1 because that generality allows quite complicated structures
for transfinite graphs. We have to simplify those graphs if major progress is to be made. In
this section we list a variety of such restrictions and point out what they lead to. Moreover,
much of the strange behavior of transfinite networks can be tamed in this way. All this

enables richer analyses of the simplified networks.
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By describing possible simplifications, we can provide an indication of how complicated
transfinite networks can be in general.

Ta. Nondisconnectable Permissive 0-Tips Shorted Together: We noted in Section 3 that
1-connectedness becomes transitive if Condition 3.1 is satisfied by nondisconnectable 0-tips.
A similar but nonetheless different condition insures the uniqueness of node voltages under
the solution spaces £ and K. We shall say that a 0-tip is permissive (resp. nonpermissive) if
it has a representative one-ended 0-path whose resistances have a finite sum (resp. infinite
sum). Every representative one-ended 0-path will then have that same property.

Condition 7.1. If two 0-tips are permissive and nondisconnectable, then they are
shorted together.

Theorem 7.2. If a network satisfies Conditions 4.1 and 7.1, then under the solution
spaces L and K its node voltages (with respect to a chosen ground node) are unique whenever
they exist.

See [15, Section 5.5] for a proof. This result extends to certain nonlinear networks as
well [16]. Note also that, according to Corollary 6.2, node voltages are unique under the
solution spaces 7 and &, whether or not Condition 7.1 holds.

Tb. If Fvery 1-Node Contains No 0-Node, Sections and Subsections Coincide: The fact
that a 1-node can contain a 0-node leads to another kind of complication. In particular,
the following distinction must be made. In contrast to a 0-section, which was defined in
Section 3, a 0-subsection is a maximal subgraph whose nodes are connected by 0-paths that
do not meet 1-nodes. For example, in Fig. 6 there are three 0-sections, one consisting of
the branches to the left of the 1-nodes, another having branch 3, alone, and the last having
branch 8, alone. On the other hand, there are three 0-subsections, one identical to the
first 0-section and the other two being degenerate graphs consisting of only the 0-nodes n?
and nd separately. However, if we add another branch incident to the 0-nodes n? and nf,
then the first two 0-sections coalesce into a single 0-section, but the 0-subsections remain
unaffected. In this latter case, we can “pass through infinity” (i.e., we can pass through the
l1-node nl) via a finite number of branches. Thus, 0-sections no longer serve as a means

of distinguishing conventionally infinite subnetworks within a transfinite network; instead,
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we must resort to 0-subsections for this purpose. This leads to complications when trying
to establish a maximum principle for node voltages or when analyzing random walks on
transfinite networks {15, Chapters 6 and 7). Much simplification occurs when we simply
assume that no l-node contains a 0-node. When this is so, 0-sections and 0-subsections
coincide.

Tc. Transfinite Ends: A useful concept for conventionally infinite graphs is that of an
end [7, page 40]. This is defined as an equivalence class of one-ended paths, where two such
paths are equivalent if there is a third one which meets each of the first two infinitely often.
More heuristically and particularly, one can think of a 0-graph as having finitely many ends
if it is shaped like an octopus with a central finite body and finitely many infinitely long
arms. If every 0-section in a 1-graph has such a structure and no 1-node contains a 0-node,
then 1-nodes can only connect 0-sections at the extremities of their arms, that is, at their
ends. Such a structure is illustrated in Fig. 11. In this case, 1-nodes can be isolated from
each other by severing arms.!> When every 0O-section has only finitely many ends, each
severing of an arm can be implemented by a finite set of branches, which serve as a cutset
for the considered 0-section. This too is advantageous when trying to extend Kirchhoff’s
current law to l-nodes.

7d. Terminals: As was noted in Section 2, the infinite extremities of a uniform ladder
network cannot be perceived by a source at its input. Thus, so far as electrical behavior
is concerned, there is no point to defining connections at those extremities. We should
therefore only do so when electrical power can be transmitted through those extremities,
but we need some way of determining this. Such can be done by converting the set of
0-nodes of each 0-section into a metric space as follows.

Let m and n be two 0-nodes in the same 0-section S°, and let no 0-node be a member
of a 1-node (i.e., let 0-sections and 0-subsections coincide). Let P(m,n) be the set of all

0-paths in S° that terminate at 7 and n. For each path P in P(m,n), let | P| be its resistive

15This structure can be extended to l-graphs by letting O-sections take the role of branches to ob-
tain thereby “l-ends,” which are then connected together by 2-nodes — and so on for higher ranks of
transfiniteness.
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length, that is, the sumn of resistance values for the branches in P. Set
d(m,n) = inf{|P|: P € P(m,n)}.

It can be shown that d is a metric on the set ANgo of all 0-nodes in S°. Ao then becomes
a discrete!® metric space, but it is not in general complete. Upon taking the completion of
Nso, we obtain limit points, and these turn out to be the extremities of S® through which
electrical power can be sent [2]. We call these limit points terminals. Heuristically speaking,
we append terminals to each 0-section at places where the 0-nodes of the 0-section crowd
up infinitely as measured by the metric d.

For example, if every resistor of the ladder of Fig. 3 is 1 €, there are no terminals,
and no connection at infinite is warranted. If 7, = 27% Q and g, = 2* U for all k, there is
exactly one terminal, but with just one terminal there is no point in connecting anything
at infinity. If however 7, = 27% Q and gx = 27% U for all k, then there are two terminals.
They coincide with the 0-tips tJ and ¢} of Fig. 5(b), and thus an electrical connection at
infinity now makes sense.

Te. Permissive and Nonpermissive [-Nodes: Each terminal T of a 0-section can be iden-
tified with a set of permissive 0-tips of §9 as follows. If a 0-tip t° of SO has a representative
0-path whose 0-nodes converge under the metric d to the terminal 7 of ANgo, then ° is a
permissive 0-tip and is a member of the set of 0-tips with which T is identified. In fact,
the terminals of S° partition the set of permissive 0-tips of S°. A helpful simplification
occurs if we use the terminals to create the connections between 0-sections. In particular,
we define a permissive 1-node to consist of all the 0-tips (perforce permissive) in a set of
terminals chosen from among all the terminals of all the 0-sections of the network N. A
permissive 1-node can be viewed as a short among terminals. Every nonpermissive 0-tip
can be effectively discarded so far as electrical behavior is concerned by making it the sole
member of a singleton 1-node, called a nonpermissive I-node. In other words, we open all
nonpermissive 0-tips.

These are strong assumptions, for they remove the distinction between the solution

spaces £ and K, and also between 7 and S§. The thinning out of current flows among

16 There is a positive distance between every two 0-nodes.



nonpermissive 0-tips is what made K larger than £, and S larger than 7. By opening the
nonpermissive 0-tips, we prevent such thinning out. However, these simplifications may be
worth the restriction.

7f. Finite Incidences Between 0-Sections and [-Nodes: A further simplification occurs
when we assume that each 0-section has only finitely many terminals and therefore only
finitely many incident 1-nodes and conversely assume that each permissive 1-node has only
finitely many terminals and therefore is incident to only finitely many 0-sections. This is
advantageous when discussing current flows through 0-sections and when trying to extend
Kirchhoff’s current law to 1-nodes. The 0-sections incident to a 1-node play a role analogous

> which is the condition of

to that of the branches incident to a 0-node. “Local finiteness,’
finitely many branches incident to each 0-node, plays a strongly simplifying role in the
theory of conventionally infinite graphs. Finite incidences between 0-sections and 1-nodes
is an extension of local finiteness to transfinite graphs.

7g. Coincidences between FEnds and Terminals: Still another simplification occurs if
terminals and ends coincide (i.e., if there is a bijection between terminals and ends). When
this is so, the extremity of each arm of a 0-section can allow power to be transmitted
through itself and into other such extremities. Thus, a source in one 0-section may then
send currents through 1-nodes and thereby into other 0-sections.

Th. Consequences: Various combinations of the above simplifications serve to tame
transfinite electrical networks sufficiently to allow some rich theories about them to be
constructed.!” For example, we now have a potential theory for node voltages wherein a
generalized maximum principle holds [15, Chapter 6]. Also, a theory for random walks
on transfinite networks now exists [15, Chapter 7]; a random walker may now “wander
through infinity.” Furthermore, nonstandard analysis [6] has been extended to certain
transfinite networks so that Kirchhoff’s laws have been reestablished for those networks
using infinitesimal and infinite hyperreal numbers [17]. Finally and most recently, the
classical theory for nonlinear finite networks by Minty [5] has now been extended to certain

transfinite networks whose branch characteristics are maximal monotone and may have

17Some further technicalities, such as the assumption of only finitely many permissive 1-nodes, are also
imposed for particular results, but the above list covers the principle ideas.
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restricted domains or ranges; the first rank of transfiniteness is discussed in [2] and higher

ranks of transfinitenenss are covered in [18]. These two work also extend Wolaver’s “no-gain”

property (8] to Minty-type transfinite networks. Furthermore, for the kinds of transfinite
networks considered, Kirchhoff’s laws now work to establish an operating point, in contrast

to the general theory of unrestricted transfinite networks.
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1. An infinite square grid of branches and nodes forming an “infinite checkerboard”

pattern.

2. A 1-graph consisting of an infinite checkerboard pattern of infinite square grids,

that is, an “infinite checkerboard of infinite checkerboards.”

The small circles rep-
resent 1-nodes that connect the square grids at their horizontal and vertical infinite

extremities.

3. A conventionally infinite ladder. The g; are conductances, and the ry are resis-

tances; gi need not be equal to 1/7.

4. When the ladder of Fig. 3 is uniform, its characteristic resistance R, can be

obtained by solving this circuit for R.p.

0 is a 0-node. The ay, by, and cx

5. (a) A conventionally infinite ladder graph. =
(k=0,1,2,...) are branches. Each dashed line on the right represents a 0-tip.

(b) A branch by, connected to the two 0-tips 12 and ¢{ of the ladder through the 1-
nodes nl and n}. Each of the other 0-tips is the sole member of a singleton 1-node

and is not shown in this diagram.

6. A 1-graph. The ag, by, B4, and §y are branches. The solid dots denote 0-nodes,
and the two small circles denote 1-nodes, n! and n}. Each of those 1-nodes contains

a 0-node, n2 and nf respectively.
7. Every branch has this Thevenin form.

8. An infinite, purely resistive, binary tree fed by a 2 V source branch that gathers
current through a short at infinity (i.e., through a 1-node) and feeds it back to the
apex node n°. The vertical dashed lines denote the uncountably many 0-tips that are
shorted together by the 1-node. Every branch has a 1 § resistor. The numbers near

arrows indicate branch currents.
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Fig.

Fig.

Fig.

9. The transfinite network of Fig. 6 modified to have only a single branch bp,
connected to the two 0-tips induced by the upper and lower branches through 1-
nodes. The arrows indicate a tour current that passes through every branch once and
only once. When the resistances in the loops are 27% Q, where the index k = 1,2, 3, ...

counts loops from the left, we can have a finite-power tour current as shown.

10. The splayed current ¢ = }°, cas i discussed in Section 5d. The quarter-plane

grid is shown four times to display ¢,, for m = 1,2,3,4,5 and also 4.

11. A 1-graph illustrating the conditions in Subsections 7c and 7d. The cross-hatched

areas represent six 0-sections. The small circles denote six 1-nodes. There are 16 ends.
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