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ABSTRACT

When a finite-sized obstacle moves through an infinite body of
viscous incompressiﬁle fluid, then the momentum flux, intggréted over
a control volume surrounding the source of disturbance, is constant
_and equal to the drag force. However, it is shown here that for the
corresponding flow produced by an obstacle moving parallel to an in-
finite solid plane, the system of forces on the obstacle is balanced
by an eéual and opposite one exerted by the plane} Therefore, the
total momentum imparted to the sami-infinite body of fluid is zero.
Apart from being physically significant, this result makes it possi-
ble té use the computational procedure explained herewith.

The title problem is solved by a finite difference technique.

" . The half space is replaced by a large finite grid and the conditions
imposed at its outer boundaries simulate -a uniform parallel flow.
This is possible because the wake is known to decay with the distance
from the plate. The non-linearity inherent in the governing equa-
tion is circumvented by an iteration scheme based on Newton's method.
It is found that thé plate in question expefiences appreciable posi-

tive pitching moment as well as drag.




INTRODUCTION

An obstacle which is symmetric with respect to its axis and moves
with zero incidence through an infinite body of viscous incompressible
fluid experiences drag but no 1lift or pitching moment. However, when

such body moves parallel to a solid plane and not too far from it, the

pattern is no longer symmetric. The interaction between +the motion pro-

duced by the moving obstacle and the confining influence of the ﬁlane
may give rise to a transverse force and a pitching moment. In as much
as these occur they are of practical importance, and the purpose of this
work is to provide a numerical method by which such streaming problems
could be tackled. As an example the author considers the case of a
finite plate moving near a wall as shown in Fig., 1. Reynolds number is
. taken to be small, so that the influence of the moving plate is not
'confined to a thin boundary layer, and the effect of the solid pléne is
significant.
With respect to a two dimensional co-ordinate system (x,y) moving
'wfth the plate, a solution for the steady stream function, ’)Vf(x,ﬁ) is
obtained, The non-linearity of the Navier Stokes equations is tackled
by forming the iteration scheme suggested by the author [lj. The ‘N th
approximation of the stream function is governed by a fourth order dif-
ferential equation, in which the co-effieients and inhomogeneous term
depend on the (n-1) approximation. The boundary conditions are derived
from the requirements that the fluid on the wet surfaces should not move
with ¥especf to the solid, and that the flow at infinity should be uni-
form and parallel. Numerical solutions for the resulting differential

Systems are obtained by replacing the theoretically semi-infinite domain

with a suitably large grid.




Note that it would have been impossible to apply this procedure to
the case of a plate, or other obstacle, in an unbounded stream. In the
absence of the solid plane the drag on the obstacle is' balanced by the mo-
mentun flux through a contour surrounding the body. If the contour is
large the momentum flux at any of the far grid pointé is small and the
local discrepancy between the imposed condition, simulating uniform paral-
lel flow, and the correct one would be minute. Nevertheless, the sum
total qf these discrepencies, for all outer grid points, woﬁld be sizable.
Moreover the resulting solution would lack one of the essential qualitive
features of the flow. However, it is shown that in the case at hénd the
total momentum flux can be made arbitrarily small by chosing a sufficient-
ly large contour. Cons;equently, no error is committed by requiring that the
"flow at infinity should be uniform and parallel. The vanishing of the
wake is understandable on physical grounds. In as much as the obstacle
disturbs the otherwise uniform velocity field there will be stresses on the
solid plane. These will act in the direction tending to restore the streams
uniformity. Therefore, over a solid plane of infinite span the momentum

flux will be completely absorbed.
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MATHEMATICAL DEVELOPMENT

The governing equation in the case at hand is

' ) -1 __2 2 o "
(|ey/s)2/ox - ayhx)a/g] - BTy 0 O
where Re is Reynolds number, and V2 is the two-dimensional Laplace operator.
The independent variables are non-dimensionalized with respect to half the
plate's axial length b. The stream function is non-dimensionalized with re-

spect to this length and the free stream speed U. The boundary conditions

are

r\}/ = 0 'Z’Y/?"c):’ 3:0, o0 < X< O (2)

| + A_) ‘l-‘)C(l (3)
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where h+ and h- designate the top and bottom surfaces of the plate.
Since the domain under discussion is multiply - connected equations
(1) - (#) do not define a unique solution for\{/. The solution sought is
that for which the pressure, p, is single valued. With s as the arch
length, measured along a contour surrounding the plate, and lying in the
half space y>0 the requirement of single-valuedness is expressed thus:
h b /os)ds
¥ote that for flows which are symmetric with respect to x=o or some other

[2]

"

O (5)

axis, this requirement is automatically satisfied. In the absence of

[s]

such symmetry, as in the case at hand, équation (5) yields a non trivial

relationship without which the differential system (1) - (%) is under-

determinate.

i ﬁ) ‘ . ) ‘ L4 d -
L?t ";‘9} mw=1,2 3 and so on be a sequence of approximations for Way)s

each satisfying boundary conditions (2) - (4). " As has been shown, two con-

(n)

secutive approximations\i/ and yn l)ar-e related by

e S = S
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At the '"W'th iteration a solution for ’\{/Q“) is sought which satisfies

equation (6) and is associated with a single-valued approximate pressure

field, z)(‘” . The latter requirement is obtained by combining the relation-

ship

[@‘,‘/‘“’/35) 3/’33( - b'\%“’/a x) 3/13 ]'b \,v(‘")/oa) + [@y“”/ay‘a/?x

- (7;\{“‘“’/31) 3/%6](0\;/‘“/39 ) - I(m/“”/m ) 3/3((,)
o ) - o) - 6, o

" .and the corresponding relationship for 3/‘"%3 with equation (5). Here F
designates the density of the fluid.‘ If the iteration scheme converges the
following holds

Y ¥ Feh e e O
and the thrée'gfoups of non-linear terms in equations (6) and (7) become 1
equal. The groups w<ith opposite signs cancel one another and these equa-
tions reduce to the regular vorticity and momentum equations.

Once the zeroth approximation is chosen the iteration scheme can be
started. The convergence and rapidity of convergence, depend markedly on
this starting point. In the case at hand the following choice is made

Y(o ) 3 , (9) !

so that ")Iy)is the Oseen's solution. Such solution is often taken |
t is even better

.. 88 a good approximation even when the obstacle is blunt amd 1

in the present case.’ For a blunt body the flow field given by equation

i i ase
(9) both penetrates through and slips along the boundary, while in the ¢

only the no slip condition. The

———-—-—-¢

at hand the assumed field violates




solution procedure is stopped not after the first iteration but when the
three groups of non-linear terms as»soéiated with the momentum 6r vorticity

in equations (7) and (6), respectively are (essentially) equal.
Approximate solutions for '\//(hzx/ﬂ) are obtained by evaluating

'\#M((AX/)‘ALJ) for discrete and finite values of i and j. At the outer

boundaries of the grid as well as at 3: o W is pr-escribed’so that at

(n)

these points ’\,/ is known. The unknowns of.the problem are the values of .

> one or more mesh-lengthes away from the outer boundaries, and the
value of »\}/(n) along the plate. The differential system provides an equal
number of linear algebraic equations. Corresponding to every poéint in the
flow there is a finite difference counterpart of equation (6). An addi-

tional relationship is provided by equation (5), which by virtue of equation

(n) -1)

’ . , (n h
(7) can be expressed in terms of the values of /\[!/ and V at mes

points around and on the plate. The finite difference - counterpart of equa-

tions (6) and (7) contain error of C(Axyor O(Alsl) The conditions imposed
(n)

on the derivative of normal to the outer boundary or the plate,

-

are incorporated in the finite difference scheme in the usual manner.




THE VANISHING OF THE ﬁOMENTUM FLUX

AT INFINITY

Application of the singular perturbation method to the problem at

hand would yield the following far field expansion

/)V ~ Y + 4, (Re) v (10)
where . ‘
A.(ﬂe) —> 0 os e — o (11)
Here’ﬁ, is a solution of the Oseen equation which is finite at infinity and
matches the near field expansion. However, it is evidently difficult to con-
struct such fnatched asymptotic expansion type of solution. (In fact, this
is why the author resorts to numerical technique.) Hence the far field be-
havior of 7 will be investigated without evaluating this function exactly.
This limited aim is achieved by imposing suitable conditions on ‘}f; near the
origin}rather than by matching with the near fieici expansion. In a sense
the author follows Oseen's original treatment of flow past a circular cylin-
der. There too the conditions which hold on the obstacle surface are not
ex-actly satisfied. Nevertheless, as was proved long after its publication,
Oseen's solution adequately represent the general features of the far field

behavior.

It follows from the previous remarks tha‘c"}'/is governed by
) —1 = o)
(V> - 2 /2x) TV,
where the dependent variables and Laplacian operators are scaled thus
: - A ‘/3x‘4 5/t = Ko’
(x,q)2 R'(Y) =
In the context of singular perturbation solution the implication of this

- : . . ' 3 int. Hence con-
SCalJ.ng is ‘that ‘the ‘r\eglo'n <At ‘4} / 0 341\/ Shrlnks to a pO

ditions (2) - (4) are simulated by

N, = %.‘n.ﬁ C(#x,Y) o2
"\}/ = O A 3’\}//25\(: -~ M [A,(R@)WJHSO‘I)
) Lh




where gis Dirac's delta function. .The factor M reflects the.possible dis-
crepency between the value of'ﬁg which could be obtained by the matching
process,and that derived by imposing the simulated conditions (13) and (14).
The constants apﬁearing on the right haﬁd side of equation (14) areléupressed
by ﬁormaliziﬁg the relevant component of the stream-function as follows
Vvo- - alak)]TY
In view of the semi infinite nature of the domain a solution of the

folléwing Fourier Integral form is sought

V2R IF(YIDZ) explinX) ool
It follows frogo:he governing equation that the transferm function F
satisfies

(c(l/n(\’l - (a(z-rio())(cj.l/ff{‘fz— )F = o
Of the four solutions of the last eqﬁation two increase exponentially with
Y and are therefore ruled out. HenceV¥is given by
J[A(X)z;/a( A¥) + ﬁ(x)uf( FY)],&J/}( Zx) el

where
AR = (* + ia()'/”
and the real part of/& is non-negative. From the two conditions imposed at
_Y;(D A and B 5;e evaluated and the solution sought is found to be
Voo oo [({g -oz)"[mll(.xy) - m})(_/s*v)] m/:qwg d
Note that by writing F as followa |
R A R A O L E Y SR L0 +a2) "1
’EV can be rewritten as the sum of a real Fourier sine transform plus a real
- Fourier cosine traﬁsform. This rearranged form can/be easily used in com-
pﬁting’ﬁ?'. However, the complex form (17), aﬁd a related one (192 derived

below, have more easily recognized order properties for large X and Y.
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So as to deduce the asymptotic behavior at infinity use is made of the

following relationship ,
(B-)" = W1+ iyt

where the real parts of both Quj ;nd acléis positive. For fixed ¥ and large Y

the expression (17) is treated as the sum of two components. The integrand

in the component satisfying the Laplace equation consists of the product of

.ea})(gl\y times a function of K . The other t,eﬁ; hereafter referred to as ‘

the Oseen component, can be rearranged in the form of an integral with re-
whH peav)

spect to (;Atlmes a function offg as the integrand. For both integrals

Watson's Lemma[uj is applicable. Hence the following relationship holds

’\1/\ ~/ GT“/L \("/L X = cous/ \ —> o2

" In the case O.L fixed Y and large positive X, is rewritten thus:

Y - JLJ + (ke }z’{ (sz// chy) - b,} (- Fb? \/) jﬁkkx)’{k
-This rearrangement is achieved by treatlng@hao the real part of the complex
variable (0(+~}1) and invoking the Caucby Theorem. Watson's Lemma is
clearly appllcable to the form (19). Hence the following resul‘t is obtained

Voo~ f)‘de X" v o= zohs'/ X —=

It is of interest to ‘note that the harmonic and Oseen components,
have the dominant contributions to the asymptotic expressions (18) and (20),
respectively. Understandably the former has the major influence in the
transverse direction while the latter leaves its mark downstream. The

s ’ L e pels diti L
influence of both combined vanishes at infinity, so that condition (4)

is justified.




RESULTS AND CONCLUSIONS
—= 7 UL LVolUNS

Calculations were carried out with the following choice of constants

Re =/ Ax = Ay = v h=2

The number of mesh points in the grid was about 400, The unknown values
Of'\y at the mesh points were calculated by the Gaus - Sidel iteration
scheme[ ]. Allowing 2% error in the values of '\fjn) it was found unneces-
sary to go beyond n = 2, i.e, just one step beyond the Oseen approximatién.
The resulting flow pattern is plotted in Fig. 1. Note that the disturbance.
created by the plate is negligible beyond the semi circle <>c1+5”>‘{:4. The
grid used in the calculation was considerably larger, (only its central part

is shown in the figure). 1In agreement with the analysis of the last section

the disturbance created by the obstacle decays faster with increasing x than

“with increasing y.

,

The stresses 4, and { at the solid plane were computed by utilizing
>
the numerical solutlon for ’Y/ The former is proportioned to (‘a V/afjb = o
and can therefore be expressed as a linear combination of '\-//(3‘ A‘j) and

T,\y(x/ 244)- The stress J;f) at the solid plane is equal to the pressure })

-and must, ‘therefore, be computed by integrating along y = o thex momentum

equation., This process involves accumulative error and hence the resulting
values of zjg)b plotted in Fig. 2 are less reliable.

Since the disturbance created by the plate decays at infinity the

Sum total of the forces acting on the solids must vanish. Therefore, the

drag, 1ift and pitching moment on the plate can be obtained by integration

over the solid infinite plane y =0© . It follows from the results plotted

) e, . * 1 ento
in Fig. 2 that the plate experiences drag and a positive pitching mom

e. These re-
However, there is no 31gn1f1cant transverse force on the plat

: iscosit
SUlts can be explained qualltatlvely. Due to the relatively high vi y




8
of the fluid the plate drags a significant amount of fluid in the trans-
verse direction as it moves axially. Since motion in the -y direction is
hindered by the solid plane the fluid particle - pathes cub&e around the
plate in the concave manner (see Fig.l.). Aésociated with the ( + y) and
(-y) directed acceleration which is experienced by the fluid in front and
behind the pléte there is high and low pressure zones, respectively. These
give rise to the positive pitching moment. However, the deviation of the
pattern (Fig. 1) from symmetry or the pressure field (Fig. 2) from anti-
symmetry is slight. Henée there is no apprecialbe transverse y-- directed

resultant.
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