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ABSTRACT 

When a f i n i t e - s i z e d  obs tac le  moves through an i n f i n i t e  body of 
I 1  

viscous inconpress ib le  f l u i d ,  then the  momentum f l u x ,  in tegra ted  over 

a con t ro l  volume surrounding the source of disturbance,  is constant 
1 

and equal  t o  t h e  drag  fo rce .  However, it is  shown here t h a t  f o r  t h e  
'I 

corresponding f l o w  produced by an obs tac le  movj.ng p a r a l l e l  t o  an in-  
I 

I 
1 

f i n i t e  s o l i d  p lane ,  t h e  system of fo rces  on t h e  obs tac le  is balanced I 

by an equal and opposi te  one exerted by t h e  plane.  Therefore, the  
I 

t o t a l  momentum imparted t o  t h e  s?mi- inf in i te  Body of f l u i d  i s  zero. I '  
' 1  

I 
Apart from being phys ica l ly  s i g n i f i c a n t ,  t h i s  r e s u l t  makes i t  possi- ! I  I 

ble  t o  use t h e  computational procedure explained herewith. , I  1< 11 
The t i t l e  problem i s  solved by a f i n i t e  d i f ference  technique. 

' 8 ,  

I : 
:I I 

- .The h a l f  space is  replaced by a l a rge  f i n i t e  g r i d  and the  conditions I{ 

'I1 

inposed a t  i t s  o u t e r  boundaries simulate a uniform p a r a l l e l  flow. ' , ' j  : 
l 1  

This i s  poss ib le  because t h e  wake is known t o  decay with t h e  distance 

from t h e  p l a t e .  The non- l inear i ty  inherent  i n  the  governing equa- 

t ion  i s  circumvented by an i t e r a t i o n  scheme based on Newton's method. 

It i s  found t h a t  t h e  p l a t e  i n  questi.on experiences appreciable posi- 



INTRODUCTION 

An obs tac le  which is symmetric with r e spec t  t o  i t s  a x i s  and moves 

with zero  incidence through an  i n f i n i t e  body o f  viscous incompressible 

f l u i d  experiences drag b u t  no l i f t  o r  pi tching moment. However, when 

such body moves p a r a l l e l  t o  a s o l i d  plane and n o t  t o o  f a r  from it, t h e  

pa t t e rn  is no longer  symmetric. The in te rac t ion  between t h e  motion pro- 

duced by t h e  moving o b s t a c l e  and t h e  confining influence of the  p lane  

may give  rise t o  a t r a n s v e r s e  force  and a p i t ch ing  moment. I n  as much' 

as these  occur they a r e  of  p r a c t i c a l  importance, and the purpose o f  t h i s  

work is t o  provide a numerical method by which such streaming problems 

could be  tackled.  As an example t h e  author cons iders  the  case of a 

I 
f i n i t e  p l a t e  moving near a w a l l  a s  shown i n  F ig .  1. Reynolds number i s  1 1  + 

1 I 
J ,  

. taken t o  be smal l ,  s o  t h a t  t h e  influence of t h e  moving p l a t e  i s  no t  jl 
I 

confined t o  a t h i n  boundary l a y e r ,  and the  e f f e c t  of  the  s o l i d  p lane  i s  (11 
/ 

sijpif i can t  . 'J 1 I 
I 

With respec t  t o  a two dimensional co-ordinate system (x,y)  moving ( 

' I' 

with t h e  p l a t e ,  a s o l u t i o n  f o r  t h e  steady stream function,  Y ( X ,  3) i s  - I 
I 

obtained, The non- i inear i ty  of the  Navier Stokes equations i s  t ack led  I 

r 11 1 
by forming t h e  i t e r a t i o n  scheme suggested by t h e  author 'll. The "n'th !I 

/ 

approximation of t h e  stream function is governed by a four th  order  d i f -  
4 

f e r e n t i a l  equation,  i n  which t h e  c o ~ e f f i e i e n t s  and inhomogeneous term 

depend on t h e  (n-1) approximation, The boundary conditions a r e  derbived 
11 

from t h e  requirements t h a t  t h e  f l u i d  on t h e  w e t  surfaces should n o t  move r 
jl 

with r e spec t  t o  t h e  s o l i d ,  and t h a t  t h e  flow a t  i n f i n i t y  should b e  uni- 11 
4 

I 

form and p a r a l l e l .  Numerical s o l u t i o l ~ s  f o r  t h e  r e s u l t i n g  d i f f e ren t i a l  11 

systems a r e  obtained by rep lac ing  t h e  t h e o r e t i c a l l y  semi- inf in i te  domain 

with a s u i t a b l y  l a r g e  g r i d .  



xote t h a t  it would have heen im?ossible t o  apply t h i s  procedure t o  

t h e  case of a p l a t e ,  or o t h e r  o b s t a c l e ,  i n  an .unbounded stream. In the 

absence of t h e  s o l i d  p l ane  t h e  drag  on the  obstacle  i s  balanced by the mc- 

menturn f l u x  through a con to^ surrounding the  body. If the contour i s  

l a rge  the  momentum f l u x  a t  any of t h e  f a r  g r i d  points  is  small and the 

l o c a l  discrepancy between t h e  imposed condition, simulating uniform papal- 

lei flow, and t h e  c o r r e c t  one vould be minute. Nevertheless, the sum 

t o t a l  of t hese  d i s c r e p e n c i e s ,  f o r  a l l  outer  g r i d  points ,  would be sizable. 

Moreover the  r e s u l t i n g  s o l u t i o n  would lack one of the  essent ia l  qualit ive 

features of  t h e  flow. However, it i s  shown t h a t  i n  the case a t  hand the 

t o t a l  momentum f l u x  can b e  made a r b i t r a r i l y  small  by chosing a sufficient- 

l y  large contour .  Consequently,  no e r r o r  i s  committed by requiring that the 

'flow a t  i n f i n i t y  shou ld  b e  uniform and p a r a l l e l .  The vanishing of the 

wake i s  understandable on p h y s i c a l  grounds. I n  a s  much as the  obstacle 

disturbs t h e  o e h e r i i s e  uniform ve loc i ty  f i e l d  there  w i l l  be s t resses  on the 

solid plane. These w i l l  a c t  i n  t h e  d i rec t ion  tending t o  restore the stream: 

uniformity. Therefore,  over  a s o l i d  plane of i n f i n i t e  span the momentum 

flux w i l l  be completely absorbed. 



MATHEMATICAL DEVELOPMENT 

The governing equat ion  i n  t h e  case a t  hand is 

2 where Re is  Reynolds number, and V is  the  two-dimensional Laplace operator .  

The independent v a r i a b l e s  a r e  non-dimensionalized with r e spec t  t o  ha l f  t h e  

p l a t e ' s  a x i a l  l e n g t h  b. The stream function is non-dimensionalized with re- 

spect  t o  t h i s  l e n g t h  and t h e  free stream speed U. The boundary conditions 

are 

' y  5 0  

where h+ and h- des ignate  t h e  top  and bottom s u r f a c e s  of t h e  p la te .  

Since t h e  domain under d iscuss ion i s  mul t ip ly  - connected equations 

(1) - (4)  do no t  de f ine  a unique s o l u t i o n   for^. The solu t ion  sought is 
I 

t ha t  f o r  which t h e  p ressure ,  p, is s i n g l e  valued. With s a s  the  arch 

length, measwed along a contour surrounding t h e  p l a t e ,  and ly ing i n  t h e  

h3lf space y>O t h e  requirement of  single-valuedness i s  expressed thus: 

SP//as)ds = 0 ( 5  

Note t h a t  f o r  flows which a r e  symmetric with r e s p e c t  t o  x=o o r  some o t h e r  

axis ,  t h i s  requirement i s  automatical ly s a t i s f i e d  . ' In t h e  absence of 

such symmetry, a s  i n  t h e  case  a t  handF3Jquation ( 5 )  yields a non t r i v i a l  

re la t ionship  without  which t h e  d i f f e r e n t i a l  system (1)  - (4) is under- 

determinate. 

l e t  +yn=1 ,2 ,3  and s o  on b e  a sequence'cf approximations f o r  ~ , Y I ,  

each s a t i s f y i n g  boundary condi t ions  (2 )  - (4) .  As has been sho~rn,h.ro Con- 

ive appmx imat ions  y (n) and y ("-')are r e l a t e d  by 



~t the  'n'th i t e r a t i o n  a s o l u t i o n  f o r  ylw is sought which s a t i s f i e s  

equation (6) and is a s s o c i a t e d  wi th  a single-valued approximate pressure 

f i e ld ,  PJ . The l a t t e r  requirement is obtaiiled by combining the relation- 

ship 

3 - ~aly(*~b*~a/y i b ~ y b 3 )  t [~y~h-s-$ya/~x 

I 

- ,and the  corresponding r e l a t i o n s h i p  with equation (5 1. 
Here P 

designates t h e  d e n s i t y  of t h e  f l u i d .  If the  i t e r a t i o n  scheae converges the 

following ho lds  

U S  M - @  (8) 

and the  t h r e e ' g r o u p s  of non- l inear  terms i n  equations (6) and (7 )  become 

equal. The g ~ o u p s  w i t h  oppos i t e  s igns  cancel  one another and these equa- 

t ions reduce t o  t h e  r e g u l a r  v o r t i c i t y  and momentum equations* 

Once t h e  z e r o t h  approximation is chosen the  i t e r a t ion  scheme can be 

s tar ted.  The convergence and r a p i d i t y  of convergence, depend markedly on 

this s t a r t i n g  p o i n t .  In t h e  case  a t  hand the  following choice is made 

= y >  ( 9 )  

JO t h a t  +''is t h e  Oseen's solution. Such solut ion is often taken 
I 

- as a good approximation even when t h e  obstacle  is blunt a d  it i s  even be t te r  

in th.e p re sen t  . , case: a blunt  body t h e  flow f i e l d  given by equation 

('1 both p e n e t r a t e s  through and s l i p s  along the  boundary, while i n  the case 

I 

I 

at hand t h e  assumed f i e l d  ~ L o 1 a t - e ~  only the  no s l i p  condition. The 

- - 
> 



solution procedure is  s topped  n o t  a f t e r  the  f i r s t  i t e r a t ion  but when the 

three groups of non-1inea.r terms associated with the  momentum o r  vort ic i ty  

in equations (7) and (61, r e s p e c t i v e l y  a re  ( e s sen t i a l l y )  equal. I 

Approximate s o l u t i o n s  f o r  Y/(*{x L ) a r e  obtained by evaluating /-I 
f o r  d i s c r e t e  and  f i n i t e  values o f  i and j. A t  the cuter 

boundaries o f  t h e  g r i d  a s  w e l l  as a t  3 = 0 y is  prescribed,so tha t  a t  

these p o i n t s  is known. The unknowns o f .  t h e  problem are  the values of . 

q' one o r  more mesh-lengthes away from the  ou te r  boundaries, and the 

value of zy(n) a long  t h e  p l a t e .  The d i f f e r e n t i a l  system provides an equal 

number o f  l i n e a r  a l g e b r a i c  equat ions.  Corresponding t o  every point i n  the 

flow t h e r e  is a f i n i t e  d i f f e r e n c e  counterpart  o f  equation (6). An addi- 

t iona l  r e l a t i o n s h i p  i s  provided  by equation ( 5 ) ,  which by vir tue of equation 

(7)  can be expressed  i n  t e r n s  o f  -the' values of -y(" ) and y a t  mesh 

points around and on t h e  ? l a t e .  The f i n i t e  difference - counterpart of equa- 

t ions (6 )  and (7) c o n t a i n  e r r o r  of C ( d q o r  ~ ( d f ) .  The conditions imposed 

on the  d e r i v a t i v e  of 
.. 

normal t o  the ou te r  boundary o r  the plate,  

are incorpora ted  i n .  t h e  f i n i t e  difference scheme i n  the usual manner. 



THE VANISHING OF THE fiiOMENTU*! PLUX 

AT INFINITY 

~ p b l i c a t i o n  of t h e  s i n g u l a r  per turba t ion  method t o  the problem a t  

hand would y i e l d  t h e  fo l lowing  f a r  f i e l d  expansion 

where 

A , ( & )  - i3 Q S L A O  (11) 

Here yi is a s o l u t i o n  of t h e  Oseen equation which is f i n i t e  a t  in f in i ty  and. 

matches t h e  near f i e l d  expansion. However, it i s  evidently d i f f i cu l t  t o  eon- 

s t r u c t  such matched a sympto t i c  expansion type of  s o h ~ t i o n .  (In f ac t ,  t h i s  

i s  why t h e  a u t h o r  r e s o r t s  t o  numerical technique. ) Hence the f a r  f ie ld  be- 

havior of \yr w i l l  b e  i n v e s t i g a t e d  without evaluat ing t h i s  function exactly. 

?his l imi t ed  a i m  is achieved  by imposing su i t ab l e  conditions on % near the 

or igin,rather  t han  by matching with t h e  near  f i e l d  expansion. In a sense 

the author fo l lows  Oseen l s  o r i g i n a l  treatment of flow past a c ircular  cylin- 

der. There too t h e  c o n d i t i o n s  which hold on the  obstacle surface are not 

exactly s a t i s f i e d .  Never the less ,  a s  was proved long a f t e r  its publication, 

Oseen's s o l u t i o n  adequa te ly  represent  t h e  general  features of the  fa^ f i e l d  

behavior. 

It fo l lows  from t h e  previous remarks t h a t  Yf is governed by 

where t h e  dependent vap iab le s  and Laplacian operators are scaled t l ~ u s  - v'r a*/axld af/W' = v2 
(x ,y)2 P Q - ' ( x , Y )  , 

- 

In the con tex t  of s ingu la r  p2rtcrbation solut ion the implication of this 

is t h a t  t h e  region - 1  c 3 A , o 9 d, t o  a point. Hence can- 

ditions ( 2 )  - ( 4 )  aye s imula ted  by 

( t x  3) . @ 
I 



where $is  D i r a c f s  d e l t a  func t ion .  The f a c t o r A  r e f l e c t s  the  poss ib le  d i s -  

crepency between t h e  value o f  -)1;/, which could be obtained by t h e  matching 

I ' 
process,and t h a t  der ived by imposing the  s imula ted  condi t ions  (13) and (14). I 

I 
1 , 

The cons tan t s  appeming on t h e  r i g h t  hand s i d e  of equation (14) a re  supressed 
t 
1 

by normalizing t h e  r e l e v a n t  component of the  s t ream-funct ion  as follows ' 1  
I 

In view of t h e  semi i n f i n i t e  nature of t h e  domain a s o l u t i o n  o f  t h e  - I 
I 

fol lowing Fourier  I n t e g r a l  form is  sought 
Po 

It fol lows from t h e  governing equation t h a t  t h e  transform funct ion  F 

s a t i s f i e s  

( d z / c k L  - (4' +id)) ldz/64vZ - d2> F = o 
1 

11 
, 

1 ' 1  

Of the four so lu t ions  of  t h e  l a s t  equation t ~ i o  i n c r e a s e  exponent ia l ly  with 4 
I 

Y and a r e  the re fo re  r u l e d  ou t .  Henceyis  g iven  by 
00 

= 6 J [ ~ ~ ) g z p ( - ~ v )  + ~ ( ~ ) ~ 2 ~ / ( - ~ ~ ~ e ~ $ c i x ) J d  

and the  r e a l  p a r t  o f f  i s  non-negative. From t h e  two condit ions imposed a t  ., I! 
I 

Y=o A and B a r e  evaluated  and the  so lu t ion  sought is  founi! t o  be 

Note t h a t  by w r i t i n g  a as fol lows 

can be rewr i t t en  a s  t h e  sum of a r e a l  Four ie r  s i n e  transform plus a r e a l  11 
! 

Fourier  cosine t r a n s f o m .  This  rearranged form can be  e a s i l y  used i n  corn- 
I 

puting . However, t h e  complex form (171, and a r e l a t e d  one (19> der ived  j 
below, have more eas i ly  recognized order  p r o p e r t i e s  f o r  l a r g e  X and Y. 



SO a s  t o  deduce t h e  asymptot ic  behavior a t  in f in i ty  use is made of the 

'4 ,/L 
t h e  r e a l  p a r t s  of bo th  &-!+g and Q! i s  posi t ive.  For fixe.' K and 1-e 7 

t h e  expression (17)  i s  t r e a t e d  a s  the  sum of two components. The integrand 

in the  component s a t i s f y i n g  t h e  Laplace equation consists of the product af 

X Z ) I ( A ~ ; )  t imes a func t ion  of o( . The o t h e r  term, hereafter r e f e m d  t o  as  

t he  0 een component, can be rearranged i n  .the form of an integral  with re- 
? I  ..)G~Y) 

spect t o  t imes  a f u n c t i o n  of  as the  integrand. For both integrals 6. P 
Watson's   ern ma''' is app l i cab le .  Hence t h e  following relationship holds 

+. 
' In  the  case of f i x e d  Y and l a r g e  pas-itive X ,*ls rewritten thus: 

OcT 

' L  T = it] 1 I + [k+3"6-' I ( < ~ / ( - i l ~ )  - ~ = / ~ - i ~ ~ ~ ~ ~ ~ ~ ) ~ ~ ~ ) ) ~ ~ ~ ~ ~ ~ / ~  
0 

This rearrangement i s  achieved by t r e a t i n g b a s  the  r e a l  par t  of the eanplcx 

v a ~ i a b l e  (o( i ; b ) and invoking t h e  Cauchy Theorem. Watson's kmna is 

;leaply a p p l i c a b l e  t o  t h e  form (19). Hence the  following result is obtained 

N ~ - ' y  x- '  y ,- cobs f Y --"& 

It i s  of i n t e r e s t  t o  no te  t h a t  t he  harmonic and Oseen components, 

have t h e  dcrninafit c o n t r i b u t i o n s  t o  t he  asymptotic expressions (18) and ( 2 ° t  

Understandably t h e  former has the major influence i* the 

transverse d i r e c t i o n  whi le  t h e  l a t t e r  leaves its mark downsman* 

i n f l ~ e n ~ e  of bo th  combined vanishes a t  i n f i n i t y ,  So tha t  conditim ('I 

' is ju s t i f i ed .  



RESULTS AND CONCLUSIONS 

~ a l c u l a t i o n s  were c a r r i e d  Out with t h e  following choice of emstants 

P, - 1  A X  = A!.J= '/L A = z  

The number of mesh p o i n t s  i n  t h e  g r i d  was about 400. The unknown values 
W J  of y a t  fhe  mesh p o i n t s  were ca lcu la ted  by the  Gaus - Sidel i terat ion 

Allowing 2% e r r o r  i n  t h e  values of ?Jn it was found unneces- 

sary t o  go beyond n = 2 ,  i . e .  just one s t e p  beyond, the Oscen approximation. 

The r e s u l t i n g  f low p a t t e r n  is p l o t t e d  i n  Fig. 1. Note tha t  the disturbance 

created by t h e  p l a t e  is n e g l i g i b  ie beyond the semi c i ~ c l e  @'+$~'=4. The 

grid used i n  t h e  c a l c u l a t i o n  was considerably la rger ,  (only its central part 

is shown i n  t h e  f i g u r e ) .  I n  agreement with the  analysis of the l a s t  section 

the dis turbance c r e a t e d  by t h e  obs tac le  decays f a s t e r  with increasing x than 

+ with inc reas ing  y. 

The s t r e s s e s  4- and 4 a t  t h e  s o l i d  plane were computed by ut i l iz ing 
'3 33 

the numerical s o l u t i o n  f o r  The former i s  proportioned t o  h /a $=),. . - 
and can t h e r e f o r e  be  expressed as a l i n e a r  combination of Yix, and 

- ' [ X ,  243). The ?tress 6 a t  t h e  s o l i d  plane is equal t o  the pressuFe b 
93 

and must, t h e r e f o r e ,  be  computed by in t eg ra t ing  along y 0 thex  ~ ~ e n t ~  

equation. This  p roces s  involves  accumulative e r ro r  and hence the resulting 

of d p l o t t e d  i n  Fig.  2 a r e  l e s s  r e l i ab l e .  35 
Since t h e  d i s tu rbance  c rea t ed  by t h e  p l a t e  decays a t  inf ini ty  the 

sum t o t a l  o f  t h e  f o r c e s  a c t i n g  on t h e  so l id s  must vanish. Thewfore, the 

drag, lift and p i t c h i n g  rnonent on t h e  p l a t e  can be obtained by integmtion 

Over the s o l i d  i n f i n i t e  p lane  y = a  . 1-t follows f m  the resu l t s  plotted 

- in f i g .  2 t h a t  t h e  plate experiences drag and a posi.tive pitching nment* 

t h e r e  is no s i g n i f i c a n t  t ransverse force on the ?late* These re- 

sults can be exp la ined  q u a l i t a t i v e l y  Due t o  the  relat ively high viscosity 



of t he  f l u i d  the p l a t e  drags a s ign i f ican t  amount of f l u i d  i n  the  trans- 

verse direct ion a s  it moves ax i a l l y .  Since motion i n  the  -y direction is 
. . 

hindered by the  s o l i d  plane t h e  f l u i d  pa r t i c l e  - pathes curve around the  

p l a t e  i n  the  concave manner (see  Fig.1.). Associated with t h e  ( + y )  and 

(-y) directed accelerat ion which is experienced by t h e  f l u i d  i n  f ron t  and 

behind the  p la te  there  is high and low pressure zones, respcTively.  These 

give r i s e  t o  the posi t ive  pi tching moment. However, the  deviation of t h e  

pa t te rn  (Fig. 1 )  from symmetry o r  the  pressure f i e l d  (~ig. 2) from an t i -  

symmetry is s l i gh t .  Hence t he re  is no apprecialbe t ransverse  y-. d i rected 

resu l tan t .  
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