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Abstract

Existing attempts to extend two dimensional treatments
of stability problems to the three dimensional cases under
consideration are gshown to be erroneous. These mistakes
stem from a lack of clarity in the accepted formulation of
the governing differential system. The author restates it in
a form that can fully account for the presence of the surround-
ing solid and free surfaces as well as for surface-tension
variations in the latter. Approximate golutions for circular
cylindrical geometry are then found to be physically plaus-
ible. Thus, an increase in the conductivity of the solid
surface has a stabilizing effect. An increase in either the
conductivity of the top surface or the slenderness of the

container retard the Marangoni type of insgtability.



1. Introduction

This work is concerned with the instability of fluid
which is either completely confined in a closed vessel or
partially confined in a container which is open on top.
The instability is either of the Ragleigh or the Marangoni
type or due to both effects combined. This work is there-

. . 1 . .
fore similar to Pellew and Southwell’s( ), Ylh's(z), Nield's

and many other treatments<4’5’6>. It differs from these in

(3)

that it fully -accounts for the presence of laterally confin-
ing vertical walls. Thus, unlike previous ones this work is
concerned with a bona fide three dimensiomal problem. In
most of the works cited a horizontal layer of fluid is con-
sidered and pertinent variables are agsumed to satisfy the
Helmholtz equation in the horizontal co-ordinates (X, , X ).
Periodicity in the vertical direction X; 1is assumed when
very high columns are considered(2>. Congequently only in
one direction the variations of the dependent variables are
a priori unknown. The critical Rayleigh and Marangoni
numbers K. and B are therefore characterigtic values of
ordinary homogeneous differential systems. Treatments of
this type are inapplicable to the problems under considera-
tion. Once the 2(; dependence of the variables ig assumed to
have a particular form, it is impossible to prescribe arbi-
trary conditions at X = const. An appropriate alternative

approach is proposed here and various particular cases are

solved by way of example.



The need for an altogether new method has not been
recognized, probably because Pellew and Southwell appear
to have outlined a procedure by vhich some of the problems
under discussion could be solved. They assume the above-
mentioned horizontal variations not only for unbounded
layer but also in the case of latterally confined fluid
( § 13). This assumption gives rige to cylindrical surfaces
C:(x;,bﬁj = ¢ on which the vertical component of velocity 4,
vanishes. They state the conditions that should be gatig-
fied by the other variable there, assuming that this surface
is solid ( § 14). The variable U; and Ka are solved-for
simultaneously. It is proposed to complete the solution for
the horizontal components of velocity (W, , U, ) and the
temperature, when U; and KR« are already known ( § 12).
It is noteworthy that according to this procedure the con-
ditions imposed at Ci&,xl)z ¢  on all variables other
than U; play no role in the solution for Ka . This
mathematical scheme, therefore, does not reflect the full
physical effect of the latteral wall on the confined fluid.
Nevertheless they try this method ( §§ 37, 38). Understandably,
they fail to satisfy one of the conditions imposed at Clx, %, )= ©
namely, that of zero heat flux. They conclude that "the case
of rigid non conducting boundary is intractible® but fail to
mention that their approach is, to say the least, unpromising.
Anyway, they do not rule out the possibility that the case of

rigid conducting boundary (which they believe to be unrealistic)

could be analyzed by their method. It is shown here that subsequent
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(7. 8)

close examination with attention on its determinacy shows
gixth order
that theAQifferential system proposed by Pellew and Southwell
Q
governs only the instability in latterally unconfined layer,

attempts to do 8o produced wrong results. Indeed

The formulation of the appropriate differential system is
presented in the next section. This formulation and ensuing
analysis is based on the agsumption that marginally stable
modes are time-independent. This has been proved for the
cagses of completely confined fluid(z). Por the other cages
this widely acceptable assumption appears to be justified
in view of the exisfence of a non trivial time-independent
solution and the plaugibility of the results obtained.

Particular solutions are obtained for the marginally
ungtable modes in circular cylindrical containers. This is

(9) (10)

done by extending Jeffrey's Goldstein's method so as
to account for the three dimensional nature of the problem.
Dependent variables are expanded in terms of space~dependent
functions which (like the Pourier Series in the one dimen-
sional cases) form a complete geries. The coefficients in
the expansions are governed by infinitely many homogeneous
algebraic equations. Thege are satisfied when Ra and £
attain their critical values. Approximate results are ob-
tained here by trunkation. These are restricted to cases
in which the containers® radius to height ratio is not too
large. For open containers these results are in a qualita-

tive agreement with those obtained by Nield. For very

slender containers the critical values of K. are found to be



within a few per cent from the values obtained by Yih.

2. Mathematical Pormulation of the Problem

The equations considered are

/ = ; -
/st - 27y, = - p 2 2x 4 (0,0.54T), (1) - (3)

~u /2x. = o, (4)

/2t - «7)T - £ (5)

Here p and T are the deviation of the pressure and tempera-
ture respectively from their undisturbed state. The
expengivity of the fluid, its kinematic viscosity and thermal
diffugivity are designated by « , »~» and &« , respectively,
The symbols P and g denote the imposed temperature gradient
and gravitational acceleration. The symbol ¥° represents
the three-dimensional Laplace differential operator. Re=-
peated indices denote summation and 7 is time.

The boundary conditions imposed on the temperature can

be quite generally expressed by

}:((’57/3?) + AT =0 (6)

In this relationship k ig the thermal conductivity of the
/
liquid, h is the appropriate coefficient of heat transfer

and 7 is the direction normal to the bounding surface. 1In



addition to (6) it is necegsary to prescribe boundary conditions

on either [, or the three stress components. The conditions

u, = o (0= 1,2,3) (7) - (9)

hold at the solid surface. Therefore equations (1) = (9)
form a determinant system which governs the case of completely
confined f1luid.

The cases in which the top surface is exposed appear to
be gsomewhat more complicated because that surface deviates
from its undisturbed plane by an unknown amount Z(:g,og,{) .

From continuity one has

Elé; + L{EEQ + U pRA = U
R

"X, 2 2x (10)

where the non-linear terms are neglected within the frame-
work of this study of stability. Similarly, linearization

of the equilibrium equation in the x, direction yields

_/335 . (%S%—é. + .Dl_ > 20/)“2—/3, (1)
where the right hand side is evaluated at the undisturbed
position x, = covs{v , rather than at Ay = cons[. +4 .

In the last relationship the normal stress is equated to

the sum of pressure variation due to gravity and membrane-
type of force, produced by the surface-tension S. Equili-
brium in the x and 2 directions is maintained provided

the following holds

(S\2T  _ (py)] 2Us 2 Us fe 1 2). ¢
33z -3 3] e an - an

»



Here FBS//DTV is the rate of change of surface tension
with the temperature, which gives rigse to the Marangoni
effect. Thus, the agsumption of freely distorting surface'
requires introducing one more dependent variable Z and pre-
scribing four conditions (10) = (13) rather than the three
(7) - (9). It is then noted that since boundary-condition
(11) is in itself an elliptic partial differential equation,
the system ig underdeterminant unless Z is made to satisfy
appropriate condition at the intersection of thé cylindrical
surface C(x”)q)=0 and =x, = cowst. . It is assumed that
vertical capillary forces are constant go that this condition

»

is

s(vé/ap .o, o Cln.%) =0 (14)

where 7 is the normal to the cylindrical surface.
Fortunately, under the assumption that time variations

vanish, equations (11) and (14) are uncoupled from the

differential gystem which has to be solved. Under this

agsumption the linearized equation (10) reduces to

u. = O (10"

In such case equations (10), (12) and (13) are the three
kinematic boundary conditions and these do not contain 7 .
A determinant system is therefore obtained when equation (6)
together with either these three or equations (7) = (9) are

prescribed at the boundaries and equations (1) - (5) are made



to hold throughout the cylindrical domain. The uncoupling of
equations (11) and (14) impliesthat as long as the relative
strengths of surface-tension, viscosity and gravity keep 4
infinitesimally small, these surface effects do not influ-
ence the gtability of the fluid below. The variable f“ﬁ
plays a somewhat gimilar role to that of £ . It does not
appear in any of the boundary conditions (6) - (9), (10) (12)
and (13) and may therefore be eliminated (by cross differentia-
tion) from the governing equations. Once all the other
physical variables are solved for Fj> (and Z when the top
surface is exposed) can be obtained by integrating
equationsg (1) - (3) (together with (11) and (14)).

While in this work only ff (and 41 ) are eliminated,
Pellew and Southwell eliminate also U, U, and T . Their
derivation is therefore believed to be permissable under
some but not all circumstances. Such gtep is legitimate
whenever the conditions which are imposed on the eliminated
variables are expressed in terms of the remaining one, which
is U, in their analysis. They indeed show that the vanish-
ing of U, and 4, on a horizcntal solid boundary together
with equation (4) yields the condition

)US /33(5 = 0, om 363 = coust.

Conditions imposed on T are similarly expressed in terms of
U3 . Their derivation is therefore believed to be legiti-
mate in the case of an unbounded layer of fluid. However,

they propose and try to solve the latterally bounded case



without reducing the conditions of vanishing 4 and U, on
Clx,, %) = © to a condition which is expressed in terms of
U; - This loss of information is reflected in Osrach and

(7 (8)

Pnueli'’s and Pnueli’s restatement of the underdetermi-
nant problem. There, a sixth order partial differential
equation governing U, is assumed integrable when three con-
ditions are presgcribed everywhere on the boundary. Two of

these
u, = o Uy /2% = 0

P . T

In eliminatingrﬁ% from the governing equations it is
convenient to make use of the functions ‘f and V/ which are

defined by

u, :_?,'70/33(,‘ - 3«{/335 u, = - DV’,/&)XZ+D\7///BJ{v(15)

Cross differentiation of equations (1) and (2) then yields

/3t -2 9)Y = o | (16)

where <~ is the Laplace operator in o, and ¥, .
Cross differentiation of the other two posgsible pairs of

momentum equations yields

2._ __l_ -} r\‘;“r. Z’Z:, [ jé.- _.—_a_, - ) '2\“34% - i ;}T
‘aoa,<3{ ‘) ‘/)kaxs" = a;r»,:< it~ v/ax‘j 47 2%,

(17)
2/ ,.,;»:‘;/")(asﬁ“\ e Y 0 I A/ g 2T f
2%\ 97 A2x" 3] ax ot /3%, 2%,



Continuity then reduces to

ALURE R R />x, ) (18)

so that equations (1) - (4) can be gubsgtituted by (16)
(18) and any one of (17).

Evidently equations (15) = (18) remain unaltered when
one adds to (? +iy) the product of an arbitrary analytic
function of (X,+(Xx,) times an arbitrary function of x, .

A certain flexibility is therefore permissable in prescribing
the boundary conditions on (f and YV , provided the conditions

on U, and (I, hold. The following relationships

:"r - \PI = O om X, o= 45”-31[A , (19)
(o) D'”,/:} ys . {“BS/"Z'T/ T 3 '\_}f/'}){s - 9 om O, = 505-3[1(20)

are thus chosen as the boundary conditions for the solid and
free horizontal boundaries, respectively. On the cylindri-

cal surface both of the conditions

(ID - o, 3\4//‘;»7 = 2, - Bﬂ/f,/.,\g: 2(/0,/97, (21)

¥

W

*3!{.‘;/3%.:@ o= 0 ’7\'\;"/37 }flﬁ/}; (22)

make (L and U, vanish when 7 and § form an orthogonal



right handed coordinate system. It is convenient to impose

equations (21) and (22) in the treatments of Sections 3 and
4 respectively.
In view of the geometry of the particular cases under

discussion use is made of circular cylindrical co-ordinates

L S-S Xy d /j _5

1 X ¥ . b . B
e i L T ’ thbe oy 7,

where c[ ig the height of the container. As mentioned, time-
independent solution ig sought. Dependent variables are

therefore assumed to have the following form

[
<
T

v i LY.

o .
- it NES Ae \ A 4 ,-l; R
i .. g ._lj‘\ \1). N - i ¥ A T

\; SRS '\;[/"; ALY i I ) T [ o E) {23%

where W, ¢ , + and = are dimensionless. In wview of the
Fourier Theorem there is no loss of generality by having the
assumed dependence on ¢ , provided » is an integer. With

the assumed form of solution equations (5) (16) (17) and (18)

reduce to
ol ANV ¥
\7 \;\ = - i / (5 )
AVARYARE . (16%)
N . v _ - A / \L‘

(17%)

PN

10




and
Vi = awliz, (18")
where
- s C(" ! LI / / \ _ 2 . X
Ra‘i&“f YK V 'z vl riz/er) - vy Tz Vie 3/3z?

These together with the boundary conditions are first solved
for cases in which %+ 1! . Axially symmetric cases, which are

more involved are consgidered in Section 4.

3. Non Symmetric Modesg of Instability

Congider fluid which is completely confined in a container.
Its temperature is taken to be uniform over the top and bottom
surfaces, z= z 1 . Its cylindrical gurface w=c¢ ig
agsumed to be either insulated or maintained at the linearly
decreasing temperature of the undigturbed fluid. The last
boundary condition holds when this surface is made of
highly conductive material. 1In the light of previous studies,
here too both modes in which W is symmetric and antisymmetric
with regpect to z-0 , are expected to be pogsible. For
reason which will be explained later attention is focused on

the symmetric case. The variable W is thus assumed to be

expandable in the following form

g ®
W= S S AT 1) coslueenma] (24)

izt

-
<

° ) m y e o
In this expression A, are constants, J is Bessel Function

3

of the order m . Throughout this gection v is assumed to be

11
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a pogsitive non-zero integer. The number «_ are the roots of

the transcendental equation

J(4lc) =o.

The assumed expression for W satisfies the boundary conditions
which must hold on the solid boundaries. Furthermore, in

view of the completeness of the Fourier geries and the series
of Bessel Functions, this expression is quite general. 1In
terms of the unknowns A, the solution of equation (5%), for

insulated and highly conductive cylindrical surface, is

e L el
Ko ) + {ai+1) gt*

@ =

NAe
i N e

¥
5

E{—/TS— AL dn I (a( 3] I (acsngey) cos[Girnmrz] g, (25)

(40,) %+ @ien)?ae? @i+ I Uaisnoro

£ =0 ? @(c,z) =0 £=1 P

The symbol I, designates modified Bessel Function of the

%\g
«3
O

first kind of order m .

In view of equation (18') and the symmetry of W, @
must be antisymmetric with respect to z = 0. This function
is therefore assumed to be expandable in the form

d-)

mz

|\/|g

B? 5“(%fm) sin (2j7z) (26)

—.
"



‘m
in which B are un i i i
i i known congtants. Like the expression in

equation (24), this form ig quite general and satisfiesg the

conditions which are imposed on 50 » namely equations (19)

and (21). In terms of the constants B:‘, the solution for

which satisfies (16") (19) and (21) is

oG e )
V- D Bl S
e

" I.@jrr)

R G Ty S 7 D

m T Gjsey

Rt ]

A

Wiz

So far two doubly-infinite sets of constants, A?and B:"
were introduced. All the boundary condition and two of the
four governing equations were gatisfied. The solution will
be completed by reducing the two remaining governing equa-
tions to two gets of doubly-infinite algebraic equations,
which are linear in Aw and B:ﬂ . The non-trivial solutions
of the latter are associated with critical values of Ra ’
i.e. values of R: for which the confined fluid is margin-
ally stable. One set of equations is obtained by subgtitut-
ing from (24) and (26) into (18'). Termwise differentiation
of the two expansions, which will be justified and discussed

later, yields

T

'?;\:» j-.-. ’ Tz LTO
This relationship is multiplied by J,(«5.7) swléwnz]  and

integrated with respect to ¥ and z throughout the ranges

oct<c . thez i o toyield

?

W o ‘?O_‘_ ':,:
= = - o ' y mo
2 2 B; (d‘;‘) Jh(d:nT} S (gsyrz) = }_2_ Ai [(zu-l) V}Jﬁ(-xs’r} Stn [&Hhﬂf.é}
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12, (23) (-
Toadent o @g)? 28y, 32

i
(\/pg
3
—
=
=
_
o

The other set of algebraic equations is obtained by substitut-
jng from equations (24) - (27) into (17') and integrating the
1atter with respect to » from o to » . By processing the

regulting relationship in a similar manner the following is

obtained:

" "R 2 (.,)(“])éd e N iRl oy
AL EGY w aiv)'a’) v e e B [() - ysllbm )

(<o

N 2 i ’
Yo\ D/’ 1) 1, (gre) 1L
— > 1. J { C) 2 — {2jm} =
01 %8 / [)J ol I (2)’4“‘(.) 2 /

{\ A? L2 ) (lw)( p™

A
}Z_(z i+ ot Ue D Gt Gt

.)
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_ NIAN A (o) )0(“‘3) Ao 2w,
E_Z- / W7 () e inyist® ) T I;((Lé-i-l}ff(:)iﬂ)(l{;-l-i)z &7 ) %%n,;
t=0 b
where
o S r)de 2¢" L0400
Y - JC,»V. 3'2( 0{:“1“) U{'r (;;(_MC {jh(o(,m(l)]
27 (L T dr 2 @0 T(420) L)

[T e ()" + ieterJe?
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0f the non=trivial solutions of equations (28mj) and
(29mj) the one which ig associated withlthe lowest value of Ka
ig of interest. It is assumed here that this solution can
be approximated by trunkating from the series expressions
under consideration terms involving A? and BT for mj >\

and ( > o . Equations (28mj) and (29mj) then yield

1 4 ’- Y "
0 a1+ [ 0o - g w0 LOT0 T g0
S R (SR TR 3 (70)

(L) | e 2l I (o)
(A7) o [+ '] Gt T (re)

The corresponding flow pattern, namely, that which is repre-

(30)

sented by nonvanishing AL and B: , is (say) upward through=
out the sections -whemy) < v/2 , 3m/s «mo< s/ oo
and downwards =/ < w4 <3xls,.. o<a<cC ,-thez< /. Within
such sections it is radially outward for z>0 and in-
ward for 240 . When ¢ is not too large this is the
expected circulation pattern for the least stable mode.

More ®complicated® patterns in which U; changes its sign
across an internal cylindrical surface = 7<c are
bound to produce higher vigcous dissipation and consequently
be more stable. In order to verify this conjecture a possible
change of flow direction across =Y is allowed by re-
taining AL’ B: ) A, and R" , rather than only the
first two constants. An algebraic equation quadratic in

is then obtained. For C<§ the lower of the two solutions

is indeed quite close to the expression in equation (30).



The Rayleigh number which corresponds to the more 'complicated?®
circulation pattern is higher. Of course for large ¢ or

"coin shaped! cylindrical containers the 'simple® modes are
more stable. These can take place only if the work done by
the buoyancy forces along the upward fluid partic1e~path$‘is
ballanced by the high viscous dissipation due to the compara-
tively long horizontal paths. Thus the more ®complicated?®
patterns, in which the horizontal paths are not too long,

are likely to be marginally stable for lower values of RKa .
The critical values of Ra for such modes are governed by
equations (28m,j> and (29y_j). Those values of Ra can
therefore be approximated by allowing a change of flow direc-
tion across one or more cylindrical surfaces, in the manner
shown. Again, convection patterns in which W is anti-
symmetric with respect to z = 0 are more ®complicated? than
symmetric onesg in the sense that Y, changes gign across an
internal surface. Since for any value of ¢ the former are
bound to be more stable they are not treated within the frame-
work of this analysis.

Though more accurate, the explicit expresgsion for the
solution obtained by retaining four constants is lengthy and
involved. On the other hand equation (30) readily demonsgtrates
the effect of various circumstances on the sgtability of the
completely confined fluid. Thus when the cylindrical surface
is insulated and ¢ is unity, Ro is smaller than when this
surface is highly conductive. Indeed highly conductive walls
tend to inhibit instability by reducing the deviation of the

temperature from its linear distribution. When the area of

16



the cylindrical surface is small compared with the horizontal
oneg its conductivity plays a less important role. Thus when ¢
is large, yet («7¢) is kept constant, the multiplyer of

is very small. Similarly Rayleigh number for very slender
column can be obtained by letting ¢ become very small.

Equation (30) then degenerates into

Ra = RaC* = () (1 + 2e/m)” (30%)

where Rs ig the Rayleigh number defined with the radius of
the container as the characteristic length., In Table I the
values of R. for very slender insulated containers which
were obtained by Yih are compared with those of Equation (30%),
The closeness of the results is particularly reassuring when
it is born in mind that in Ref. 2 an altogether different

mathematical procedure is used.

Table I
n 1 2
from equation (30) 71.9 347 .8
from Ref., 2 67 .9 329.1

It is noted that not very meaningful results are obtained

by carrying this process in the other direction, namely, by

finding the 1imit of equation (30) for very large ¢ . As




mentioned, the mode represented by non-vanishing A; and B,
is not the least stable unless ( is moderate or small,
When VW vanishes on z=*% f/2 the series expression of
equation (24) can be differentiated with respect to z(ll).
It can be similarly shown that if ‘Zzé is expresgsed as

Vi -

ij(a( *) S (2)mz)

H l\/lg
i\/ I

]

)

where (rr are constants, then the following holds

. h ch
6': l v .3M2(a(:,?)ohf' g sin’ (257z) dz = Jf'r- v’jb ) Sinloj 2z) oz ol
¢ A

- _ /\042/\J£ q«@ 1{0(:%) sgn(z)'crrz)o{nlz : /0(») B J ANx) oly f; fn ('MPZ)”{‘

In the integration by parts the boundary terms vanish be-
cause Eﬁ(c,z) (lixe W/(~, ilﬁ) in the previousg instant)

is zero. Since Y/ vanishes on all the boundaries one can
also justify the differentiation which was carried out in
order to derive V'W . The termwise differentiations in-
volved in expressing the other components of the integrated
vorticity equations are similarly permissable. In many other
works on stability the series expressions which are to be
differentiated have to contain terms which depend on the
boundary values of the variable expressed or its derivatives.
This complicates the analysis considerably when a certain
expregsion has to be differentiated as many as four or six
times. Here four rather than one or two dependent variablesg

are gsolved for. Each is therefore differentﬁated fewer times.
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It is consequently possible to expregs thege variables by
comparatively simpler series forms.
When the top surface is exposed one can no longer expect
modes of instability to be symmetric with respect to the
central horizontal plane., Therefore, in these cases the origin
is taken to be on the bottom of the container. The following

expregsion for the vertical component of velocity is assumed

o0 o2

i o ) |
\W = ZZ Ah Sh(o(%v-) SimRrz) > (31D

Wz R=1
j where 2 are unknown constants. Since it is intended to

account for surface tension variations the following rather

general condition

NO + 20/2z = o (6"

is asgsumed to hold at z = 1. The nondimensional parameter N

is defined by

N = hd/r
(6)

Its physical significance is amply explained by Pearson .
On the other hand ©(w o) and (¢, z) are assumed, for
gimplicity, to vanish. The solution for the temperature

distribution is therefore

00

© = ) ) K LIAw () (] simthrn

W 2

b

S

o0

N\

N8

N e, INE hz).
_ . . Smhfmz) - (32)
L (L) (k! N simh (L) + o5 cosh (L)

]

P
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When non-dimensionalized, equation (20) reduces to

O = *aaﬁ/'})z , 75‘\1/”/32 =0 (209

where the Marangoni number B is defined by

B ()

2T /ork,

It is assumed that <£ can be expressed in terms of the unknowns

’B"“ in the form

2 20
@ = Y 2 ‘3 J(vf 'Y') SLMJ(l(,f")gYZ/‘}
YV Iy L) L)
— - 30 i K e i O(h”r) ”‘LIIZ«,BB
Bf.% L ()« (Rt Nsahdh) s 4o cokin) d sz (33)

which satisfies (19) and (20'). A third set of constants ("

is introduced in the assumed expansion for Y

[-% [ ¢]

”\?f Y \\ T((J.L-H ﬁ'C//Z)J I“((ll'H)’de“/Z) ]SW' ,_z_i'i;jrz) (34)
%-/_— /. 0( S ) I ((uumw) T ((szﬂ/z)ly((m/‘)ﬂfo/z) (

This form satisfies condition (19), (20) and the governing equa-

tion (16'). From condition (21) ome gets the relationship

o0 ~
2™ A L ais _ v Aw . s:ih/ (a(:«) S {brz)
(Bi Ci>5 ( 7 ﬁ'\'Z) = BL (0(:,.)1'1’ (hﬁ)l N Sw\/\(%;) - 0(;60‘54{(0(:‘) (fez
k=1

N8

—

T

which yields an infinite set of algebraic equations linear in
A
k

,g\-ﬂ and E‘T . Two other such sets are obtained from
the equations of continuity and vorticity. Trunkation of these

e ———————————
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in the manner which was discussed breviously yields

pv\ 3 >7. , + 2 : I (/)50»‘1\(4( rosxc,(
Z(X) + [ 4 Nsoh (KT)%QT)COSL(F() - (0() +(ar/2) )J
Bz S{MA(‘*T") RN
AN s h(L) v () cosh(&7) W) gt
- /o() 0(}; et +l/¥ +(6T/z)] )1 - 2 Jan(dlc) -M(ﬂ'c/z) (35)

" I ﬁtc/z) J»\(”{-C)

Though inaccurate this relationship is in agreement with
available results and is physically plaugible. It implies that
the fluid is unstable when a linear combination of R. and [
exceed a critical value. Thus as found by Nieldcg) ingtability
can occur when the fluid is cooled rather than heated below,
provided the Marangoni number is sufficiently large. Equation
(35) also indicates that an increase of [\ or a decrease in ¢
retard the Marangoni type of instability. Indeed, when N is
large the temperature of the exposed surface tends to be uniform
and there are only small variations in the surface temsiom.
Again, such variations across a comparatively small area have
little influence on the fluid below. It is then noted that in
the extreme case of N —> o0 CV:“ = B’: and equation (35)
degenerates into a form which is similar to that of equation (30)
when t=o .  The numerator in the latter is larger than

the right hand side of equation (35). Fluid in an open container

is thus found to be less stable than that which is completely
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confined. In the other limiting case of very slender column
equation (35) reduces to equation (30%) in which ¢ wvanishes.

This is to be expected because of the aforementioned reasons.

4. Approximate Solutions for Rotationally Symmetric Modes

It was pointed out in the last section that the assumed
expansions are quite general and differentiable. This trouble
was taken in order to show that it is possible to solve for more

than one mode or obtain more accurate values of Ry . However,

the properties of the assumed expansions hardly affect the quality

of the solutions which were actually obtained by drastic trunka-
tions. The results turn out to be acceptable mainly because
the trunkation gives rise to local rather than overall viola-
tions of the physical principles. Thus two of the governing
equations and either all or all but one of the boundary con=
ditions are satisfied exactly, i.e. pointwise. The relation-
ships that are not satisfied exactly are reduced to identities
between integrals over‘either the entire volume or the cylindri-
cal surface. The quality of the results is also affected by
the deviation of the assumed trunkated expressions for W and é
from the exact solution for those variables. As pointed out
the trunkated expressions represent physically plausible flow
patterns so that this deviation is quantitative rather than
qualitative. The errors in the resulting values of Ra and £§
are consequently not too serious.

Conversely, the trunkation carried out in Section 3 gives

L} ’
rise to serious errors when mM=o . If only A, and B, are
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non-zero the relationship (which wasg first introduced in Ref. 7).

¢ 9T
Jg “3 5!57‘011" -0 on z = COth_ (36)
2 -%
does not hold unless n # o - In other words, for trunkated
rotationally symmetric solution continuity is not satisfied
even in an overall manner and the arguments about the quality
of the solution hold no longer. The general analysis of the
last section is nevertheless valid for w=o sgo that meaningful
results can be obtained by adopting less dragtic trunkation.
However, as mentioned, the solutions of two many homogeneous
algebraic equations cannot be presented in the explicit form of
equations (30) and (35) - toward which we strive., A solution
of such form is therefore obtained here by assuming rather
simple expressions for di and W and carrying out the analysis
as before. These expregsions need not be the first terms in a
complete differentiable series. Ingtead they must satisfy
equation (36) and other physical requirements which are believed
to have bearing on the quality of the solution. It is thus
required that the flow pattern should be compatible with the
destabilizing forces. FPor example, the pattern inside a closed
container should bear resemblance to that of a ‘convection cell?.
However the assumed flow should be stagnant at the solid
boundaries.
In view of the above mentioned requirements and the rota-
tional symmetry of the flow pattern the fluid is constrained to
move in the vertical planes & - COhs% . It therefore circu=

lates forming horizontal vortex rings. Unless ¢ is large; with

23



24

the least stable mode it is expected that only one such ring
will be formed. It is therefore assumed that for a closed

container the vertical velocity is given by

Wea|J(@oI(on - Jlom] (we)]cos(x2) (37)

where @ is a constant. The origin of the co-ordinate system
is chosen as in the corresponding non-symmetric cases. The

number (&, is the first nontrivial root of

S (W.C)I ?&3') + Y (we) T (we) = o

° o (o] -

Hence the expression for W satisfies (36) and (9).

The operator v? appears frequently in the governing equations
so that the assumed dependence on 7 involving Bessel Functions
is convenient. Thus the solution for © can be readily shown

to be given by

@ = - a< U.an _(.w!cﬁ)l;I IQ([J"Y\) *+ . IJ(‘M) jo(W,T')) COS@’Z)

W 4+t

2 50 (@.¢) Im(@zﬁ) Lla) cosé‘(z)) \ Q Ok,1):0(38)
I(xy |

l 0 29 ] 00 [ ) LEv) ? 2icz)-.
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It is assumed here too that both horizontal solid surfaces are
kept at constant temperature,

In view of the axial symmetry of the flow pattern one of
the momentum equations is satisfied identically. This is re-
flected in the present formulation of the problem by the possi-
bility of eliminating one of the dependent variables. When
equation (22) rather than (21) is assumed to hold on the cylin-
drical surface, the variable WV’ gatisfies homogeneous governing
equation and boundary conditions. It therefore vanishes identi-
cally. The radial component of veiocity is therefore Q—*ayVSf).

The function 4> is assumed to be given by

Qb - & 3O son (mz) (39)

so that (—’B%/?() has the direction which is compatible with
the assumed circulation pattern of a single ring-vortex. This
expregsion satisfies the boundary conditions (17) and (20)

when 7, is the first roots of

Use is then made of the equations of continuity and vor-
ticity. Procedure similar to that of Section 3 yields the

following results

)Q& i} %2;2W1‘ (022 + w*) z(hi+4gw)m“ (40)
N, n & g ((A), -/\,4)07”'
( | .k (w,* - &) 2 )

Here 7, which is defined by
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- ot _TQ(“C) 1, (0.c)
15 Twe) I, ()
is unity when w, = & . Hence as in equation (30) the

multiplier of ¢ is always positive and when the cylindrical
surface is well insulated the confined fluid is less stable.
Again when ¢ — o Ra approaches the value obtained in
Reference 2. However, since there equation (36) is not stated
explicitly, agreement in the rotationally symmetric case appears
at first surprising rather than reassuring. Nevertheless,
closer examination shows that Yih's solution (accidently?) does
satisfy that requirement. When C is very small z varia-
tions are mnegligible and by virtue of equation (17') the con-
dition of vanishing ('a@/}v)hc , which is imposed there,

reduces to

27w = o ow YL . (41)
Since in Reference 2 the solution has the form

W= E 6w + FI(4w)
equation (41) is mathematically equivalent to (36). The two

conditions nevertheless are derived from two different physical

principles.
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Discussion

In Fig. 1 Ra is plotted as a function of ¢ for three
values of m and two values of ¢ . Completely confined fluid
is ungtable when the Rayleigh number exceeds the least of
(infinitely many discrete) values of R, which correspond to
the slenderness of the container (gsee Fig. 1). Thus, convec-
tion never commences by forming a pattern in which there are
strong @ variations. ‘Simpler® modes, mn= o, ! , where
there is only one surface across which U; changes sign are
evidently less stable. Of the two possible the rotationally
symmetric pattern is more stable for slender containers and
less so for coin-ghaped ones. The transition between the two
is when C is about 4. It occurs probably because compara=-
tively wide horizontal solid surfaces tend to inhibit long

horizontal particle paths. When w =! fluid particles tra-

vergse shorter horizontal distances than when mt=o . As

mentioned)these results are restricted to moderate values of ¢ .

These stability curves also show that fluid is least stable

when ¢ is about 1.3. The corresponding critical Rayleigh

numbers for highly conductive and insulated cylindrical sur-

faces are 2500 and 2150, respectively. Because of the increased

viscous dissipation caused by the cylindrical wall both of these

values are slightly higher than 1708 which was obtained in

Reference 5 and 1.
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