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Abgtract

The steady state diffusion equation for irrotational flow
is transformed to that of Schroedinger. The temperature (or
solute's concentration) distribution in the flow past a cylinder
of arbitrary cross-section is then evaluated. Various boundary
conditions are congidered. Perturbation type of solution is
then constructed for the cage of flow past an isothermal gphere.
Availability of these solutions in termsg of tabulated functions
demongtrates the advantages of the proposed new approach to the

probliem.

Introduction

In analyzing the temperature (or solute concentration)
in the potential flow past a heat (or mass) emitting body it
is very often assumed that ths amount of heat (or mass) con-
ducted upstream is negligible(l’z). Further assumpfions are
made when the temperature distribution is other than two-
dimensiona1<3’4). Under these assumptions many cases can be
solved, even in a closed form, especially when use is made of

4

Boussinesqg's transformation. However, under the asgssumption
of negligible upstream conduction the diffusion equation is
trunkated and is therefore no longer elliptic. Thus, its solu-
tions repregent a process which is)in certain qualitative
respects)different from that of heat or mass diffusion. For
example, according to these solutions the temperature of the

fluid upstream of the front stagnation point is unaffected by

the heat emitting body. Hence though solutions of the trunkated



equation are acceptable on degign engineerg they leave something
to be desired.

There are available exact solutiong for the two dimen-
sional diffusion equation which repregent  heat source in an
irrotational flow. Attempts were also made to solve the bound-
ary value problems at hand in terms of suitable sources and
sinks distributionscs). The resulting expregsions for the
temperature are in the form of definite integrals which are
of ten difficult to evaluate. Furthermore, this method has not
been shown to be applicable either to three dimensional cases
or to those in which the general linear conditions hold, i.e.
when a linear combination of the temperature and the flux is
pbrescribed at the obstacle sﬁrface.

This survey shows not only the shortcomings of the various
approaches mentioned but also the lack of a more universal
one. In an attempt to overcome thi; inadequacy the problems
under consideration are reformulated in a form which can be
tackled systematically. It is shown that for both two and
three dimensional casesg the governing diffusion equation can
be reduced to that of Schrdedinger. Standard techniques are
thus employed in the solution for the temperature distribution
in the unseparated flow past an isothermal cylinder of arbi-
trary cross section. This solution is then extended to the
case of circular cylindrical obstacle on which the general
linear condition holds. Finally, the temperature in the
irrotational flow past a sphere is evaluated using a perturba-
tion technique. Thus, unlike any of the exisgting ones the

broposed formulation and approach is applicable to a variety
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be reduced to that of Schrdedinger. Standard techniques are
thus employed in the solution for the temperature distribution
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linear condition holds. Finally, the temperature in the
irrotational flow past a sphere is evaluated using a perturba-
tion techmnique. Thus, unlike any of the existing ones the

proposed formulation and approach is appiicable to a variety



of geometrics and boundary conditions. Yet it is independent
of any agsumption which is incompatible with the physical

nature of the process under consideration.

Transformation of the Diffusion Equation

With T as the temperature or concentration of solute
and U; (¢=1,2.3) as the components of velocity of the fluid
in the directions of the cartesian co-ordinate x. , the

diffusion equation can be written thus:
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The variables X; and U, are non-dimensionalized with respect
to a characteristic length L and the speed of the stream
when unobstructed L( . The non-dimensional Peclet number

ig defined by
R = UL /k

where £ is the diffusivity of the fluid. It is therefore a
measure of the relative strength of convection with respect to
conduction.

For irrotational flow the following hold

where the potential function @ is a known function of 2x¢ and
(3‘70/'31,> is unity far from the solid body. Therefore the

variable (&) , defined by

W



@ = T'z:r/)(fl‘f/z)
gatisfies the equation

S 2 2 FS
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Though this transformation appears in the literature on heat

(5

transfer very few attempts have been done to analyze temp-
erature distribution by solving equation (2). This formulation
is advantageous not only because the governing equation (2)

ig fairly well known but also because (O satisfies conditions

which are no more complicated than those imposed on T . The

general linear condition is taken to be

NT o+ NOT/m) = 700, (3)

where ™ is the normal to the obstacle surface, 196) ig a
function of pogition § on it and T, is a characteristic
temperature (or concentration). When one of the non-dimensional
constants M and N vanigh either T or the fiux (277/2n)
is prescribed, but in general both constants are non-zero.

Since (?so/ﬁn) vanighes on the obstacle surface, condition

(3) reduces to

Mo + NGO/ = T, ) explrph) (4)



Two Dimensional Cases

(4)

Under Bousgsinesq's transformation equation (2) reduces

to

[b“‘/?y’l + m"/)}v‘ - (/)] O = o 2h

where " is the Lagrange's stream function, and the complex
conjugate of Y . If the flow past the cylinder is either
symmetric with respect to % = const. or one which does not

form a wake, the origin of the co-ordinates (¢, ) can be so
chosen that the crogs-section of the wet surface is wﬂfb,-04yk1L

In terms of the co-ordinates (¥, ? ) defined by

P o= acosZ§cor7) o= asVMXES‘"?) (5)

this boundary is X =0 . Solutions for & 1in terms of
Mathieu and related function of 7 and 3’ , regpectively,
are available for a large class of boundary conditions.
Consider the elementary case of an isothermal cylinder,
so that P(S) and M are equal to unity and AN vanishes.
It is further agsumed that the temperature of the stream at
infinity, Te , is also uniform. The solution of equation (2')

has the following form

I

©=(T.-T) 26 Fey (5 ~(pe/2)*) oy (9,-(Pe)) + T, 2 (Rpl2)- (o)
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Using Ince-Goldstein notation, the functions Cg and Fek, are

defined by:



C,QZ? (7 , - (P l)') = (-I)? 2:(-0[ Ai.?)cos (167)

. 2 = < (2. 1)
u.u?“(»], - (p2/2)) = (-;)72(-9 B,_Z:. ;os ((1({—1)7)
(7)

[:éhul (\g )~ (P..G/Z)’) = (- |> L(,.) A{ _7) );(JJ: (l?a Qoszg)

(=0

2 N !1 +) ‘ w
F{hl7+§3’ -(Pz/l)): -1) Z ) L7 xm (P{ cos/\) S)

ey

~

4
where Kb is modified Begsel Function of the second kind.
- 29¢) N
The constants A(:Z) and /3(,1'*, satisfy well known recurrence

relationships and are normalized thus

( 101)) (zf:) ) \’\?;(Ba.f)»\)) - (8

AL+
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Since the functions Rk, approach zero as % is increased
indefinitely the assumed form satisfies the condition of iso-
thermal stream at infinity. The conditions at the solid surface

yvields

x}:- (&Q(COS'?)/Z) :; a, FE;;P (o, = (Pe/2}) Ce, (7, -(r2)) - (%)
p=2

The constant coefficients 4, are thus found to be given in

terms of the modified Begsel Functions of the first kind by
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aa.? = [Fﬂl ( "(P&/z z) Z 1) A 7) PzCL/Z> \

(10)
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2 ?22 O o Ry ‘
o = [k o, ~(0e)) 2 PSP B T (at) )

i=o
In deriving these, use is made of the orthogonality of the

Mathier Functions, and the identity
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IP(Z) = (lﬂ)d-g{g ,wcz' /g?) 505(2)7) 4/7 (1D

More complicated integrals are encountered when fg(s‘) ig not
uniform. The resulting distribution T (¢, V) for P.=! is
Pblotted in Figure 1.

While the solution just obtained holds for isothermal
cylinder of arbitrary shape it is impossible to obtain such
general golution for cases in which M, N and Jp(s) do not

vanish. 1In terms of (‘3,7 ) equation (4) reads

/‘Q@ + N (QS«M’])" (BY/DH)(D@/3§)= T, P(s)-ex%(&(cos?;‘/z).(J')

The term (T‘}’/b n) is equal to the velocity tangential to the
obstacle surface which vary from one CIross gection to another.
The applicability of the proposed methods to the cases in which
the general linear condition hold ig therefore demonstrated by
congidering the cage of circular cylinders. For ungeparated

flow the potential and gtream functions are given by

LP: (’0 + r”)cost Y‘(f“[’-‘) svm ¥ (12)
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where (ﬁ,X ) are polar co-ordinates and L 1is so chogen that
f’= 1 is the cylindrical surface, Comparison of equations (5)

and (12) implies that the following identities hold

a

W

2 e =% B (?‘/’/5“%=' - 25y

Therefore if %@) ig again unity the constants @, differ from
those given by equation (10) only in their being proportional
to [MRE(0,-PehP)  + N Rfo, - (Pef2)) ]

rather than to | ﬁﬁ#(o, -(fk&)')]“.

It is finally remarked that the assumed form (6) holds
whenever the temperature (or mass) digtribution in the flow
field is symmetric with respect to "Y'= 0. This condition
ig satisfied when the temperatures at infinity and at the soiid
surface are uniform. Nevertheless, the fiow pattern and the
geometry of the cross section need not be symmetric with respect
to any gtraight line in the (:1l,.x; ) plane. For example, when
the temperature at infinity and at the solid surface are uniform
the form (6) holds for unseparated flow past almost any airfoil.
If there is separation this form holds if there is no transfer
across the reéulting wake Y=o Y < -4 , and the pattern is
symmetric with respect to the line 2, = const. 1In such cases
the zero flux condition is satisfied because Cipgmﬁ - (Pe/2)¥
vanish. 1In such cagses 7T and ® appear to be continuous
across 1 =®  but physically the two branches of this curve
enclose a region which is not part of the domain under discussion.

The more general cases, when T and ® are not symmetric, can



be solved by generalizing the expansion (6) to include also
broducts of Mathieu and related functions which are anti-

symmetric with respect to »z = 0 and 7 =97,

Temperature in the Flow Past an Isothermal Sphere

Consider a gphere of uniform temperature To . Let the
- temperature of the flow past it be uniform at infinity so that

the following hold

& = T, .ex%(3/4 2 cosB) > =1, (13)

G = T %xﬁ(l/z Rcos®) » N (14)

Spherical coordinates are used so that the solid surface is

defined by =1 and the governing equation reads

PANES L gme - (B
[rr a’rlT + T emf 4 sw'gag z7 D1
g 2 ot 1 - '
+ pre (1—3co,é) + TW(;'-#SCOSQ)]J?@ = O (2

Solution of the following form is assumed

e =(T-7;)Z@¢(Pe/2)ac b T oexpl@A(r + hr)coss) (15)

where the multipler of (Pe /2) in the argument of the exponent

is equal to kf . The functions @; for (=0 are made to



satisfy
{__L_?i.'yx}_ L «—-’—-—— 2 Si/n‘:‘"-l _(&)7@ = iﬂ—3£0$‘é)+-‘- ——l-(t+3f05167ﬂ@ <16~)
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The functions ©. for i>o are homogeneous at the two
boundaries so that equations (13) and (14) are satisfied by

~ brescribing the appropriate conditions on @, .

In view of equation (/4 ) (and the inexistance and hence

the vanishing of G ) (O, can be expressed by the form

o0
N\ h
- D or
©) ) G r }{P(/fw/z) Jﬁ (cos 8) (17)
b=o
where /:;(COSQJ are Legendre Polynonials. The constants

CI, are obtained from the boundary conditions at the solid

surface which yield

;C# ﬁ{'}fe/z) /f(cosé‘) = ,ex/: (3/4: Pecosg)

By expressing P in terms of cosl(}»-zi)é} and utilizing

I8
equation (//) these constants are found to be given by

C, - %{srol(sﬁm - )L Ghr)x

y (ap -2k-D <2k -1p ) '
(af - 2ky(ahy ) (18)
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where éh ig the Kroneker delta. The upper limit 7 is an
integer which is equal either to }A cn:(}—&é and & 1is
equal to 2 and 1 when z&#ﬁ and 2k=0o , Tresgpectively.

The bracketed quantities are defined thus:
(2%) s %(2“ (2M~§ = (2nﬂ/ékn}

The function C} ig solved by expressing the right hand
side of equation (16,) as a sum of terms of the form

-5h .. .
v %g$£?+ﬁj)f}(10550 . Once thig is done the solution

for ©, can be expressed as the sum of functions }ﬁ“%/hwhich
satisfy the equation

e L 2snp - (BY]Y (perh) P (cos8)
[’T 2 T ¥ Snb 36 070 58 2) Ai p Kif )P

+i/z J/u yols

are finite at infinity and vanish on * = 1. These are given by

S P - ] { /L((Pw/) K(pe2) - K(peh) K, +/))P(c~sé) (20)

'/1;/&= )
and when 1/=/M ?Lmﬁy« is given by the limit approached
as Y — /‘4 .

In rearranging the right hand side of equation (16 ) use

is made of the relationship

cosd P (cosﬁ) - ) a) P teos9) (21)

The coefficients Q: are given by

11
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o .
Qﬁ = 2(—1)J@*5“’0‘) {ap -2j- 1) (ps2-2))!
J

D= G (ap s akziy (202255

=0

where the upper limit is « or [ , whichever is smaller.
Using the well known recurrance relationghip the following

can easily be shown to hold

el ngl%ir/z): vl K (prt) by Ky lperh)),

(23)
2
v k) < Y G KT
where
Lv’))' = - é’b)_, = (2/:%1/\’1
Cpta = (z}o+§l(z/> + iz)"(z[»um)"'(?/u;:4)"
(24)
o, = ! Ab +2 shirx g
Cpat2 (2p+) (2p+122)’ l (2p+1)(2p+i2) * (2piza) (2p+ té)]
Cho =_ ! (4b+2)° :
o (2p +1) [(ZIHS) (2p+3)* +(2}>+3)“(2’b+/)(2,b~l)2 * (2}’“’)2(2/"3)J

The solution for @' ig therefore

£l

o
b
@l = z CP {E (gou - 30’%)[(]:' 78}"’3/2))9*'2—1& + L-l’rl Xk*'[l)}nl-z.(}
P:a od=zo
f+l . 2
¥ “-f VA (éf’“ * 3&0()2 Cpoai Xb"'l"‘*'/z)}’*Z']a(s ’ (25)

N
[~3

Lz-2

(22)
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Functions C)i for (>°  will not be evaluated within the
framework of this treatige. The foregoing solution neverthe-
less outlines one of the methods one could use. The general
gcheme implied by equations (15) and (léi) is fairly well
known. Its convergence and the other methods for solving ©.

are digcugsed by Morse and Feshbach(0),

Discussion

Unlike any of the available solutions those obtained or
outlined here are not restricted to any range of A and
hold when it is small., Thus for very ineffective convection

the equation (15), (17) and (18) reduces to
T = (To - T;o) 'Y'—‘ + Too + O(P-L') (26)
The contribution to the right hand side which is of O(R’

is the spherically symmetric digtribution of temperature or

concentration in a stagnant medium. Undersgtandably it ig the

. - R '
effect of convection, as reflected by terms of O (r!) ,
R >0 , which gives rige to asymmetry with respect to
6 = /2 . The situation is somewhat dissimilar in the case

. )
of flow past an isothermal cylinder. When A is small Aii
Qg+ .. ) .
and 3154, are negligible unless ¢=3 . Therefore, in
view of equation (10) again the first term in expansion (6)
is the predominant and the distribution is essentially
7-—independent. Terms which represent Y] variations are

smaller by an order of magnitude. However, in this case one
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obviously cannot carry the limiting process to the extreme,
Pe =0 , becauge there is no two-dimensional solution for the
diffusion in a stagnant infinitely wide medium.

The features of the solutions just discussed have interesgt-
ing counterparts in the theory 6f laminar flow past obstacles.
In such cages Reynolds number, 1@ , 18 the measure of the
effectiveness of momentum transfer by convection as compared
to its diffusion by viscosity. When Re vanish there is no
solution for the flow past a cylinder but there isg for flow
past a sphere. Just as equationg (15) (17) and (18) reduces
to equation (26) when Pe > o  so is the Stokes flow past a
sphere believed to be the limit of the viscous flow solution
when Re — o . However, it is impossible to analyze the
viscous flow or temperature distribution around a sphere by
perturbations, with the zeroth perturbation as the "convection-

legs" (zero Qe or Pe ) solution.
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