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\ bstract

All prior theories of infinite electrical networks assume that such networks are

finitely connected, that is, between any two nodes of the network there is a finite path.

This work establishes a theory for transfinite electrical networks wherein some nodes are

not connected by finite paths but are connected by transfinite paths. The main

difficulty to surmount for this extension is the construction of an appropriate generaliza-

tion of the concept of connectedness. This is accomplished by means of an unorthodox

definition of ordinary graphs, which is amenable for generalization to transfinite graphs.

The construction appears to be novel. An existence and uniqueness theorem is then

established for transfinite resistive electrical networks based upon Tellegen's equation.



- 2 .

1. INTRODUCTION

Infinite electrical networks have appeared intermittently in both the mathematical

and electrical engineering literature for most of this century, but the earlier works were

restricted to networks having graphs with regular repetitive patterns, such as ladders

and grids. It has been only during the past two decades that networks with arbitrary

graphs have been examined. The seminal work in this area was by Flanders [5] and

appeared in 1971. It established an existence and uniqueness theorem for the voltage-

current regime on a locally finite, linear, resistive network having only a finite number of

sources and open circuits everywhere at infinity. This was followed by a series of papers

that generalized the theory in various ways; see [1], [2], [10]-[14], and the references

therein. Actually, infinite electrical networks arise in quite a different context as well,

namely, in the theory of random walks on infinite graphs [3], [4], [7]-[9]. All the infinite

electrical networks considered up to now have been finitely connected, that is, between

every two nodes there exists a finite path. Nonetheless, infinite networks having some

pairs of nodes connected by infinite paths but not by finite ones is an idea worth pursu-

mg.

This paper was inspired by the following question. What kind of connections can

be made between the "extremities" of an infinite network? That short circuits as well as

pure voltage or current sources can be so connected was established in [10] and [13], but

resistances between extremities remained an open problem, which this paper now

resolves. Moreover, if resistances can be connected out at infinity, so too can other

infinite networks, and we are thereby led naturally to a trans finitely connected infinite

networks.

Much of this paper is devoted to a variety of definitions that generalize the idea of

connectedness, allow the flow of currents from here to infinity and beyond, and as a
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result establish transfinite electrical u.etworb. Those definitions set up a fairly eiaborate

structure of ranked extremities, but a simpler way of generalizing connectedness does not

seem to be at hand if one wishes to make connections not only between extremities at

infinity but also between such an extremity and a node or between extremities of

different ranks. In fact, a transfinite network can be partitioned into sections whereby

nodes in different sections are trans finitely distant, that is, the natural numbers do not

suffice to number consecutively the branches in any path connecting two such nodes.

The sections form a hierarchy ranked by the ordinal numbers; in effect, in order to

define sections of higher and still higher ranks, one must keep expanding the concept of

transfinite connectedness.

Finally, an existence and uniqueness theorem is established for the voltage-current

regime in such a network. Under certain assumptions on the branch resistances, each

section affects the other sections, and thus the network cannot be disconnected into a

collection of finitely connected networks. The fundamental principle upon which the

existence and uniqueness theorem is based is Tellegen's equation, which implies

Kirchhoff's laws. Actually, Kirchhoff's laws need not hold everywhere in the network,

but his current law will hold at every "restraining node" and his voltage law will hold

around every "perceptible loop" .

The idea of transfinite networks in the special cases of ladders and grids occurs in

[15] and [16], but those works use the regular structure of their graphs in essential ways.

The arbitrariness of the graphs in this paper requires a much different analysis.

Just a word or two about terminology: When we say that x is a subset of y, we

allow x =y. As usual, a partition {xm } of a nonvoid set y means y =Uxm and XmnXn

is void for m :rfn. A singleton is a set with exactly one member.
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2. AN EXAMPLE

Consider the infinite ladder network of Figure 1 having the indicated resistance

values. We take it that, if the upper nodes are indexed consecutively from left to right,

then all the natural numbers are needed and suffice for this purpose. In analogy to a

finite ladder network, we might suppose that output terminals exist at the end of this

infinite ladder network, as indicated by the small circles. If so, a load resistance RL

might be connected thereto. Let us suppose still further that the monotonicity principle

for resistance functions continues to hold for this ladder network. Consequently, the

driving-point resistance RD should be less than the value it becomes when all the shunt-

ing resistance values are replaced by 00. So, when RL =0, this results in an infinite

series circuit and RD < .111'''=1/9. On the other hand, RD should be larger than the

value it becomes when all the series resistances are replaced by O. Now, for RL =00, we

obtain an infinite parallel circuit and RD > 1/'111'''=9. We could then conclude that

RD changes when RL changes, and so we might infer that, in order for a voltage-current

regime to be determined when a source is impressed at the input to the ladder, we must

specify what the connection at infinity is - at least for this particular network. In short,

infinity is perceptible to an observer at the input. This heuristic argument for ladder

networks has a completely rigorous justification [15].

The point here is that we now have a network with a connection "at infinity".

Moreover, RL may be replaced by the input to another infinite ladder network to get a

network that extends "beyond infinity". To put this another way, if we index the upper

nodes consecutively from left to right starting with 0, the natural numbers will carry

through the first ladder, but the upper circled node will have to be indexed by w, the

least transfinite ordinal; moreover, the upper nodes of the next ladder will have the

indices w+ 1, w+2, . .. . This is a transfinite network characterized by the fact that
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any node of the first Ia.dder is transfimtely - but not finitely - connected to any node of

the second ladder.

Transfinite n'etworks with arbitrary graphs may similarly be conceptualized. What

is needed is a fundamental theory for their voltage-current regimes, and the basic prob-

lem is the generalization of the idea of connectedness to allow currents to flow from local

regions to regions beyond infinity.

3. O-GRAPHS

In order to conform with our subsequent definitions, we shall define an ordinary

(finite or infinite) graph in an unusual way. Let l be a finite set with an even number

of elements or a denumerably infinite set. Call each element of T an elementary tip or~

just tip for short. Partition 1:: into subsets of two elementary tips each and call each

subset a branch. Thus, no two branches have a tip in common, and every tip appears in

a branch. li:: denotes the set of all branches; it is countable.

Also, partition l in an arbitrary way: l=Uxm where XmnXn is void if m ~n .

The subsets Xm will be called O-extremities or extremities of rank 0 or simply nodes. If

Xm has two or more members, it is also called a O-connection; this may be interpreted

as the shorting together of the tips in the O-connection. All the other nodes are single-

tons. As a terminology we shall need later on, we shall say that a node embraces itself.

Also, a branch is said to be incident to any node that contains one or both of its tips.

Furthermore, two nodes are called adjacent if there is a branch that is incident to both

nodes. A finite (or infinite) node is a node with a finite (or, respectively, infinite)

number of incident branches.

An ordinary graph or a graph of rank 0 or a O-graph is defined as the pair

Q =(fl, £0)' where £0= {cm } is the set of all O-connections. £0 may be void, in which~ ~~ ~ ~
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case all O-extremities are singletons, and. no tip is shorted to any other tip. Note that we

do not display Q as the triplet iL, 1i i.~o) simply because L can be recovered as the
~ ~ .-- ,~ r--.-

union of all the sets in B. In words of the customary electrical-network terminology,;::::;:0

this definition of a graph allows branches that are self-loops in themselves, as well as

parallel branches. However, there are no isolated nodes; every node has an incident

branch. Our definition of a graph is equivalent to the customary definition of a graph

with these properties.

Let B' be a subset of B. Consider any c E Co. Any tip in c belonging to a'
;::::;:0 ;::::;:0 ;::::;:0

branch in ~. is taken to be a member of a set c ., which perforce is a subset of c. If

under this rule c' has two or more members, it is taken to be a member of Co', the set;::::;:0

of (JJ°-connections for the ordinary graphQ' =(.Ii' , £0). Q' is called the wbgraph of
r ~

Q induced by £, '. Also, go' is called the restriction of go to £, ..

A O-path or synonymously an ordinary path is an alternating sequence of nodes Xm

and branches Bm

{ . . . , Xm, bm , Xm+1' bm+1' . . . } (3.1 )

that satisfies the following conditions.

Conditions nO;

(i) The sequence is either finite, one-way infinite, or two-way infinite; if it is one-way

infinite (or two-way infinite), it is required that the natural numbers (or, respec-

tively, the rational integers) suffice to index all the elements consecutively as indi-

cated.

(ii) If the sequence terminates in either direction, it terminates at a node.

(iii) Each Xm that is not a terminal node is a O-connection.

(iv) Each bm is a branch that :~ lilcident to the two nodes immediately preceding and



- 1 -

succeeding it in the sequ.ence.

(v) No node appears more than once in the sequence. (Consequently, the branches are

all different from each other.)

The construction of an infinite sequence such as (3.1) may require an infinity of

selections from an infinity of sets, namely, the selection of an incident branch at each

node; this is sanctioned by the axiom of choice.

The O-path (3.1) is said to meet or embrace the nodes in (3.1). A O-path is called

nontrivial if it has at least three elements, finite if it has two terminal elements, one-

ended if it has exactly one terminal element, and endless if it has no terminal element.

We allow the special case of a finite path that is a singleton containing just one node

and no branch; this is called the triviaIO-path. Two O-paths are called totally disjoint if

there is no node that is embraced by both paths. A O-loop is defined exactly as IS a

finite O-path except that the two terminal nodes are required to be identical.

Two nodes Xa and Xb are said to be O-connected or finitely-connected if there exists

a finite O-path with Xa and Xb as its terminal elements. -Two branches ba and bb are

called O-connected if ba is incident to a node Xa, bb is incident to a node Xb , and Xa and

Xb are O-connected. Also, Q is called O-connected if every two nodes are O-connected."'-'

A O-section or nodal section of the graph g is the subgraph induced by a maximal

set of branches that are pairwise O-connected. G may be a O-section by itself or it may~

have more than one O-section. At this stage of our definitions, a O-section is simply a

component of g, but we will shortly generalize the idea of connectedness and thereby

render a O-section into something other than a component.
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4. I-GRAPHS

Two one-ended O-paths in a O-graph :g are taken to be equivalent if they are ident-

ical except for a ffnite number of nodes and branches. This equivalence relationship par-

tit ions the set of all one-ended O-paths in g into equivalence classes, which will be called

the O-pathlike tips of g. A representative of a O-pathlike tip is anyone-ended path in

that equivalence class. A one-ended or endless O-path that contains a representative of a

O-pathlike tip is said to meet or have that tip. This idea of O-pathlike tips is fundamen-

tal to our discussion, for it is to them that "connections at infinity" will be made.

Although the branch set Ii is countable, Q may have a noncountably infinite set of
~ ~

pathlike tips. For example, this is the case when g is the infinite binary tree.

A I-connection or synonymously a connection of ran~ 1 is a finite or infinite set of

the form

1
{

0 0 0
}c = x 0, t 1 , t 2 , t 3 , . . .

w here the t:; are O-pathlike tips and x 0 is anode, which may not be present in the set.

We say that c 1 embraces its elements as well as itself. (For notational convenience, we

have indexed the pathlike tips in c 1 with the natural numbers. However, c 1 is allowed

to be a noncountably infinite set of pathlike tips, in which case another indexing system

should be used.)

The following conditions are required.

Conditions fl:

(i) Each I-connection has at least two members.

(ii) All elements of a I-connection are O-pathlike tips t:; except possibly for one of

them; that one x 0 is a node - if it is present.

(iii) No two I-connections have an element in common.
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It follows that each l-conne<::tion has at least one O-pathJike tip. Also,;co is called

the exceptional element of c 1.

A physical interpretation of a I-connection is that of short circuits connected to the

O-pathlike tips and possibly to one node as well. This will allow the flow of current

along a path out to infinity, through a short circuit at infinity, and then along another

infinite path. Alternatively, the current may jump along a short circuit from a node (the

exceptional element) out to infinity and then continue along an infinite path.

A I-extremity or an extremity of rank 1 is either an I-connection or a singleton

w hose member is a O-pathlike tip that does not appear in any I-connection. In other

words, we get the I-extremities by first partitioning the set of O-pathlike tips and then

adding nodes to none, some, or all of the sets of the partition, at most one node to each

set, all nodes different. It follows that two I-extremities are either identical or have a

void intersection. Again we say that a I-extremity embraces itself and all its elements

too.

Let x 0 be a node in a I-connection c 1. A branch that is incident to x ° is said to

meet c 1. A O-path pO that contains x ° is said to meet c 1 at x °, and, if x ° is a terminal

node of pO, pO is said to terminate at c 1 with Xo. Similarly, a one-ended or endless 0-

path that contains a representative of a O-pathlike tip to in a I-extremity x 1 is said to

meet x 1 with to.

A I-graph or synonymously a graph of rank I is a tripletQ = (]i, £°, £1), where
~ ~ ~ ~

Ii and £0 are as before and £1 is a set of I-connections. £1 may be void. So too may
~ ~ ~ ~

go, or go may have only a finite number of members; in this case g1 is perforce void

because g will have no one-ended wO-paths.

As an example, consider Figure 2, which shows an infinite lattice cascade g1 and

an infinite ladder gz that are "connected at infinity" in such a fashion that their infinite
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extensions reach toward each other. The line segments indicate branches, the heavy

dots indicate nodes, and the two small circles indicate I-connections, which will be

specified momentarily. We can identIfy any O-path just by listing its branches in

sequence. For instance, we have the following O-paths.

Pa = {a 11 a2, a 3, . . . }

Pb = {b 1, b2' b3, . . . }

Pabc = {a1' C2' C3' ai' 65, b5, a7, . . . }

Pd = {d2' d3, d4, . . . }
)

Pc = {e l' e 2, e 3, . . . f

gl has an infinity of O-pathlike tips. Representatives of three of them are Pa, Pb' and

Pabc respectively. Even though Pa, Pb, and Pabc have an infinity of nodes in common,

they represent distinct O-pathlike tips, which need not be declared to be "connected at

infinity", that is, members of the same I-connection.

Let ta, td, and te be the O-pathlike tips with the representatives Pa, Pd, and Pc

respectively. Also, let xf be the infinite node of the ladder network g2' We might take

for our I-connections the two sets c l = {ta, tc} and c 21 = {xf ' td }. Thus,

C 1 = {c l , c l }. This is what is intended in Figure 2. According to some of our forth-:=::::

coming definitions, this allows the flow of a "I-loop current" along Pa, through c l ,

along Pc in the reverse direction, along branch f 1, through c l , along Pd in the reverse

direction, and finally along branch b l' Moreover, we have at hand the I-graph

UI, £°' £d whereJi and £0 are implicitly specifiedby Q1 and Qz together.'"'"' '"'"' '"'"' '"'"' '"'"' '"'"' ,~

Alternatively, we could construct another I-graph by changing &:1' In particular,

we could let C 1 be the singleton {c l } where cl = {ta, tb } and tb is the O-pathlike tip:=::::

with Pb as a representative. This would disconnect gl from gz. On the other hand, it

would allow the flow of current aiong Pa , through c31, and backwards along Pb. This

flow would not be a I-loop current ac Jrding to our upcoming definition because Pa and
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Pb share nodes"

Let Q = (]i, £0' Ql) be a glVt'n I-graph. Given a subset 1!..' of ii, let /20' be the"'-' "'-' "'-' "'-' "'-' "'-' "'-'

restriction of Qo to Il'. Next. let c 1EQ ,-' If a node x 0 exists in c 1, then the set of all
"'-' "'-' ~

elementary tips in x ° belonging to branches in ~' is taken to be a node x; in a set c '

so long as x; is not void. Simiiariy. if any O-pathlike tip tOEc 1 has a representative

with all its branches in ~ ' , then the subclass of to consisting of all such representatives

is also taken to be a member of c' If under these circumstances c' has two or more

nonvoid members, then c' is taken to be a member of a set gt It follows that the

members of g1' satisfy Conditions r1, and thus g1' is a set of I-connections. We say

that Q1' is the restriction of /21 to Ii'. In this way, the I-graph (]i', Qo', Q1') is
"'-' "'-' "'-' "'-' "'-' "'-'

defined as the subgraph of g induced by /l:;' . For instance, if ~' consists of the

branches in Ql in Figure 2 and if /21 = {c l ' c l } as before, then the subgraph induced
"'-' ~

by ~' is in effectg1 and ;f:'/ is void because c: and c; are singletons.

The idea of O-connectedness applies to any I-graph (~, go,gd since O-paths are

defined in terms of 11 and £0' For instance, the subgraph Ql of Figure 2 is O-connected"'-' "'-' "'-'

(in fact, is a O-section) but the entire graph g is not because there is no finite O-path

that connects a. node of G 1 to a node of Gz. However, by generalizing the idea of a~ ~

path, we can say that g is connected in a wider sense.

We need some more definitions. Let x be an extremity of either rank 0 or rank 1,

and similarly for y. Also, let po be a O-path. x and yare said to be totally disjoint if

they do not embrace a common element. Also, x and po are called totally disjoint if pO

does not meet x. Furthermore, x and po are said to be terminally connected if pO

meets x either with a terminal node or with a O-pathlike tip. In this case, x and pO are

said to be terminally connected but otherwise totally disjoint if they do not meet at any

other node or with any other O-pathlike tip or node; thus, Po meets x with only one
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(not both) of its ends or tips.

Now consider the alternating sequence

{ . . . ,c,;, P;;, C';+1' P:/+1, . . . } (4.1 )

which mayor may not have terminal elements Xa or Xb to the left or to the right respec-

tively. This sequence is called nontrivial if it has at least three terms. We require the

following.

Conditions TI1:

(i) No more than the rational integers are needed to index the elements consecutively

as indicated.

(ii) If a terminal element Xa or Xb exists, it is an extremity of rank 0 or 1.

(iii) Each c,; that is not a terminal element is a I-connection.

(iv) Each P:/ is a nontrivial O-path (finite, one-ended, or endless) that is terminally con-

nected to the two extremities immediately preceding and succeeding P;; in the

sequence but is otherwise totally disjoint from those extremities.

(v) Any extremity and O-path that are not adjacent in (4.1) are totally disjoint.

(vi) The extremities in (4.1) - including the terminal elements - are pairwise totally dis-

joint.

(vii) The O-paths in (4.1) are pairwise totally disjoint.

Under these conditions, (4.1) is called an I-path or a path of rank 1. The adjec-

tives, finite, one-ended, and endless, are defined for I-paths as they are for O-paths. A

I-loop is a finite I-path except that the following is required: One of the two terminal

elements embraces the other.

Two I-paths P / and P l are said to be totally disjoint if every extremity or O-path

in P 11 is totally disjoint from every extremity and every O-path in pl.
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For some examples refer to Figure 2 agam. \Ve use the same notation as before.

Also, the x 's denote nodes as indicated, Then,

Pel = { . . . , e 3' X3' e 2' X2' e l' X l' f l' XI }

is a one-ended O-path, and

Pa~1 ={xa,Pa,c/,Pe/,cl}

is a finite I-path. The O-path Pais terminally connected to cl but is otherwise totally

disjoint from c l. Also, {xa, Pa , c / } and {xa, Pa, cl } are totally disjoint I-paths,

but {Xd, Pa, cl} and {cl, Pel' xI} are not because cl embraces xI'

Let Xa be a node or a I-extremity, and similarly for Xb' Xa and Xb are said to be

I-connected if there exists a finite I-path with Xa and Xb as its terminal elements. (This

meaning for "I-connected" is different from the customary one. If this is displeasing,

one might say instead "transfinitely I-connected" to mark the difference.) Two branches

are said to be I-connected if Xa and Xb are I-connected nodes with one branch incident

to Xa and the other branch incident to Xb' An I-graph is said to be I-connected if every

two extremities of rank 0 or 1 are I-connected. It follows directly from our definitions

that, if two nodes Xa and Xb are O-connected, then they are also I-connected. Indeed,

let pO be a finite O-path with Xa and Xb as its terminal nodes. Then, {xa, pO, Xb } is a

finite I-path.

A I-section of a I-graph g is a subgraph of g induced by a maximal set of

branches that are pairwise I-connected. For instance, the graph G of Figure 2 is 1-~

connected but not O-connected and is a I-section by itself. Moreover, the sub graphs g1

and G 2 are O-sections but, under our generalized concept of connectedness, are not com-~

ponents (i.e., disconnected parts) of Q. Neither Q1 nor Q2 is a I-section because it is'"'-' '"'-' '"'-'

not maximal with respect to I-connectedness. A I-path cannot proceed from one 0-

section to another O-section wit hO\lt passing through an I-connection. It may enter or
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leave a O-section either through a node or through a O-pathlike tip~ a.nd its SOjourn

within that section may be either a finite. one-ended, or endless O-path.

5. 2-GRAPHS, HEURISTICALLY

The idea of connectedness can be extended still further by applying strong recur-

sion on the definitions used so far. However, before considering the general case, it may

be helpful to sketch out the next level of generalization.

We start by partitioning the set of all one-ended I-paths in a given I-graph into

equivalence classes by treating two one-ended I-paths as being equivalent if their

sequences (4.1) differ on no more than a finite number of terms. Each such equivalence

class is called a I-pathlike tip and denoted by t 1. A 2-connection is a finite or infinite

set

2
{

I 1 1
}C = x 0, t 1 , t 2 , t 3 , . . .

having at least two members, no more than one of them being an extremity x ° of rank 0

or 1. A 2-extremity is either a 2-connection or a singleton containing a I-pathlike tip. It

is also required that no two 2-extremities "embrace" an element in common; thus, the

exceptional element in one 2-extremity is allowed to embrace neither the exceptional ele-

ment in the other nor the exceptional element in that other exceptional element, if it

exists.

A 2-graph is a quadruplet g = ~, go, gl, &:2) where &:2 is the set of 2-

connections specified for the given I-graph (jfi,go, gd.

A 2-path is a (finite, one-ended, or endless) alternating sequence of the form

{ . . . ~c,;, P';, c,; +1 , P,; +1 , . . . } (5.1)

where the indices m traverse no more than the rational integers, the P,; are nontrivial

I-paths, the c,; are 2-connectioIls, a terminal element - if it exists - is an extremity of
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rank 0, I? or 2, and all theterros are pairwise "iotally disjoint" except for adjacent

terms which are "terminally connected but otherwise totally disjoint" .

Now, a 2-section of a 2-graph is a subgraph induced by a maximal set of branches

that are pairwise "2-connected", that is, for every two branches of the subgraph there is

a finite 2-path connecting those branches. Thus, within every 2-graph there are 0-

sections, which are encompassed within I-sections, which in turn, are encompassed

within 2-sections. A 2-path cannot proceed from one I-section to another I-section

without passing through a 2-connection. Moreover, it is possible for a 2-path to "touch

down", so to speak, in an O-section, by passing through just one branch in that 0-

section, and to "jump off" at both ends of that branch into different 2-sections that do

not contain the O-section or even the I-section in which the branch occurs. This can

happen when in (5.1) the i-path pn: contains only one O-path which in turn consists of

only the said branch, whose nodes Xa and Xb are the exceptional elements in c.; and

C';+l' and when in addition P~-l and pn:+1 meet c.; and C';+l respectively with 1-

pathlike tips.

6. p-GRAPHS

We now apply strong recursion to the definitions given in Sections 3 and 4. Let p

be a natural number greater than 1. Assume that for each q = 0, 1, . . . . p -1 the q-

graphs (]i, Qo, . . . ,Qq ) have been defined for a given branch set Ii and specified sets
~ ~ ~ ~

gq of q -connections c q, and also defined are the q -extremities x q, q -paths P q, q-

connectedness, and q -sections, along with the terminology pertaining to these ideas.

This has explicitly been done for q = 0 and q = 1.

Consider the (p--I)-graph (j}"go,... ,gp-d. Two one-ended (p -I)-paths are

called equivalent if they differ at most by a finite number of (p-I)-connections and
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(p -2)-paths. Thus, all the one-ended {p -i)-paths in t,nat graph are partitioned into

equivalence classes, called {p -1 )-pathhke t1P8, and a. repre8entativt of any such class is

anyone of its members. A p -connectIOn or synonymously a connection of rank p is a

finite or infinite set of the form

p r t P-l t p-l t P-l } ( )C = t x 0, 1 , 2 , 3 ,... 6.1

where the t~-l are (p-l)-pathlike tips, Xo is a q-extremity (q<p) which need not be

present, and the following conditions are satisfied.

Condition8 rp :

(i) Each p -connection has at least two members.

(ii) All elements of a p-connection are (p -l)-pathlike tips t~-lJ except possibly for one

of them; that one x 0' if it exists, is a. q -extremity with q < p and does not appear

as an element of any other n -connection where q < n < p. (x 0 is called the excep-

tional element of c P .)

(iii) No two p -connections have an element in common.

A p -extremity or an extremity of rank p is either a p -connection or a singleton

whose element is a (p -1 )-pathlike tip that is not an element of any p -connection. A p-

extremity x P is said to embrace itself as well as all its elements, and, if it has an excep-

tional element x 0, it is also said to embrace all the elements of x 0, and all the elements

of the exceptional element in x 0 if that exists, and so forth. Thus, we take it that a p -

extremity does not embrace any other p -extremity. Now, let x i and x ~ be extremities

of rank q and n respectively, where n < q < P . We shall say that x r and x2 are totally

di8joint if their sets of embraced elements have a void intersection. On the other hand,

x r is said to embrace x 2 if x f embraces all the elements embraced by x 2 including

x ~ itself.
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Prop08ition 6.1. Let q and p be natural numbers with O<q <p. If:l;o and Yo a.re

respectively a q -extremity and a p -extremity and if x 0 and V0 em brace a common

extremity, then Vo embraces Zo. If in addition p =q, then Xo=Vo.

Proof Let z denote an extremity that is embraced by both x 0 and Vo. If z 's rank

is q, then, since by definition x 0 does not embrace another extremity of the same rank q

but does embrace itself, we must have that z =Xo, and so Vo embraces z =Xo'

Now assume assume that the rank of the embraced common extremity z is less

than q. Let x -1 be the unique exceptional extremity in x 0, and in general let x -II be the

unique exceptional extremity in x -I;+1 for k = 1, 2, . .. .Thus, we have a sequence of

extremities x 0, x -1' X -2, . . . of strictly decreasing ranks, one of which is the extremity z .

Similarly, let Yo, V-I' V-2, . . . comprise the sequence of extremities such that V-II is the

unique exceptional extremity in V-II+1 for k = 1, 2, 3, . . .; z is also one of those

extremities.

Suppose that Vo does not embrace Xo. It follows that there will be an extremity

w = x_; = V- J appearing in both sequences such that its predecessors x_; +1 and Y - j +l

(i, j > 1) are not the same. This violates rp (ii). We can conclude that Vo embraces

xo.

If p = q, we must have that x 0 = Yo because again a p -extremity cannot

embrace another p -extremity. QED

A p -graph or synonymously a graph of rank p is a (p +2)-tuplet

g = ~, go, . . . , gp) (6.2)

where.!!: is a set of branches and each gq for q = 0, . . . , p is a set of q -connections.

As the above construction indicates, each gq can be specified only after!!: and all the

£m for m = 0, . . . , q -1 have been specified.
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Let Ii' be a subset of Ji. For each q = 0, . > . I P --1 iet £q' be the restriction of~ ~ ~

C to B'. Consider any c E en. If an exceptional element x 0 exists in c and is in fact~q ~ . ~~

a node, then all the elementary tips in x 0 belonging to branches in B' are taken to~

comprise a node x; in a set c' so long as x; is not void. More generally, by following

the sequential construction of c from elementary tips to pathlike tips of higher and

higher order, one can build another set c' by restricting the construction to the

branches in B' ~ If this yields a c' with two or more nonyoid members, then c' is~

taken to be a member of a set 12/. £/ is called the restriction of Qp to 1i'. Since the~ ~ ~ ~

members of gp satisfy Conditions fP, so too will the members of g/ except that g/

may be void; thus, g/ will be a (possibly void) set of p -connections. The p -graph (

]i,Qo', . . . , QpJ is called the subgraphof Q induced by1i' .
~~ ~ ~ ~

Let cP be given by (6.1). If in (6.1) Xo is a node and if a branch b is incident to

Xo, we say that b meets cP at Xo. More generally, consider the (p-l)-path

pp-1 - {. .. p-l pp-2 p-1 pp-2 ... }- , Cm , m , cm+1' m +1 , (6.3)

which is an alternating sequence of (p -1 )-connections cJ: -1, (p -2 )-paths P J: -2, and possi-

bly a terminal element to the left and/or to the right. (This was defined for p -1 = 1 in

Section 4. It will be defined for every natural number p -1 once we finish stating our

recursive definitions.) Each PJ: -2 can be expanded into another alternating sequence of

extremities and paths of still lower rank, and so forth repeatedly. Any extremity

embraced by the extremities of pp-l or embraced by the extremities arising in this

repeated expansion of paths is said to be embraced by pp--l. Similarly, pp-1 is said to

embrace itself as well as any path of rank p -2 or lower arising in this repeated expan-

sion of paths. Also, Pp -1 is called nontrivialif it has at least three elements.

As is indicated in (6.1), Xo is the exceptional element in cP and is therefore a q-

extremity (q <p). If pp-l embraces an extremity y that embraces or is embraced by Xo
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(that is) if pp-1 and Xo embrace an extremity in common), then pp-l is said to meet Xoi

we also say that P P-1 meets c P at x 0 or alternatively P P-1 meets c P with y, If in addi-

tion y is a terminal element of pp-1, we say that pp-1 terminates at Xo (or at cP) with

y. Similarly, a one-ended or endless (p -I)-path pp-1 that contains as a subsequence a

representative of a (p-I)-pathlike tip tp-1 in a p-extremity xP is said to meet xP with

t P-1, For the last situation, it should be noted that, even though P P-1 contains a

representative of tp-1 as a subsequence, tp-1 is not an element of pp-1, and any extrem-

ity containing tp-1 is not embraced by pp-1.

Furthermore, x q and P p-1 are called totally disjoint if P P-1 does not meet x q .

Also, x q and pp-1 are said to be terminally connected if pp-1 terminates at x q or if, for

q=p, pp-1 meets xP with a (p-l)-pathlike tip in xP. Moreover, xq and pp-1 are

called terminally connected but otherwise totally disjoint if they are terminally connected

and P P-1 does not meet x q with any other extremity em braced by P P-1 or with any

other (p -I)-pathlike tip.

Two (p-I)-paths pr-1 and p~-1 are called totally disjoint if the set of all extremi-

ties em braced by P r-1 has a void intersection with the set of all extremities em braced

by P P-12 .

We now complete our recursive definition of a path of higher rank by explicating

the conditions that such a path must satisfy. Consider the alternating sequence of

(p-I)-paths p~-1 interspersed with p-connections c~:

{ . .. P P P -1 P P P-1 ... }, Cm, m ,Cm +1' m +1 , (6.4 )

which mayor may not terminate to the left with the terminal element Xa or to the right

with the terminal element Xb' This sequence is called nontrivial if it has at least three

elements. \Ve require the following:
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Conditions np :

(i) No more than the rationai integers are needed to index the elements consecutively

as indicated.'

(ii) If a terminal element Xa or xb exists, it is a q -extremity, where 0< q < p .

(iii) Each c:;' that is not a terminal element is a p -connection.

(iv) Each p:;'-1 is a nontrivial (p -I)-path (finite, one-ended, or endless) that is termi-

nally connected to, but otherwise totally disjoint from, the p -connection or term i-

nal extremity immediately preceding or succeeding p:;'-1 in the sequence.

(v) Any extremity and any (p -1 )-path in (6.4) that are not adjacent are totally dis-

joint.

(vi) The p -connections and terminal extremities in (6.4) are pairwise totally disjoint.

(vii) The (p -I)-paths in (6.4) are pairwise totally disjoint.

Under Conditions fJP, (6.4) is called a p-path. Finite, one-ended, and endless p-

paths are defined as expected. Also, all the terminology us~d with (6.3) is carried over to

(6.4). A p -loop is a finite p -path except for the following requirement: One of the ter-

minal elements embraces the other one.

Proposition 6.2. Assume that the p -path (6.4) contains at least one p -connection,

say, c!:,+1 that is not a terminal element. Then, at least one of the adjacent paths,

p:;'-1 or P:;'-;1, meets C:;'+1 with an (p-l)-pathlike tip.

Proof. In view of Conditions rll (ii) and np (iv), the only way the conclusion can

be negated is if both P!:,-1 and P!:,;1 terminate at the single exceptional element x 0 in

c!:,+1 in such a way that P:;'-1 has a terminal element Ym and P:;'-;1 has a terminal ele-

ment Ym+l1 each of which embraces or is embraced by Xo. Three cases arise:
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1. 11m and 11m+1 both embrace xCi By Proposition 6.1, either Ym embraces 11m-tl or

Ym +1 embraces Ym.

2. Ym embraces Xo and ;fO embraces Ym+1 (or conversely). By definition, Ym

embraces all the elements embraced by Xo. Hence, Ym embraces Ym+1' (Conversely,

Ym +1 embraces Ym .)

3. x 0 embraces both Ym and Ym+1' We now invoke the fact that x 0 contains as an

element of itself no more than one exceptional element w, and the rank of w is lower

than the rank of xo. Moreover, w contains no more than one exceptional element u,

and u is of still lower rank. Continuing in this way, we find that Xo and all its

embraced exceptional elements form a sequence {x 0, w, u, . . . } whose elements have

strictly decreasing ranks. SO.Ym and Ym+1 must appear i,n,this sequence. This implies

that Ym embraces Ym+1' or conversely.

In all three cases, we obtain a contradiction to the fact that p~-1 and P~-;'1 are

totally disjoint according to Condition I1P (vii). QED

If (6.4) terminates on the left (or right) at Xa, then the (p -1 )-path P~ -1 of lowest

(of highest) index m will be cailed the leftmost (or rightmost) subpath of rank p-1

embraced by (6.4). Similarly, the (p -2)-path in that leftmost (rightmost) subpath of

lowest (of highest) index, if it exists, will be called the leftmost (or rightmost) subpath of

rank p -2 embraced by (6.4). This terminology is extended to subpaths of still lower

rank.

Proposition 6.3. If a p -path pP terminates on the left (right) at an extremity Xa

of rank q where q <p, then pP embraces leftmost (rightmost) subpaths of every rank

n , where n = q -1, . . . ,p -1.

Proof. Since pP terminates on, say, the left, it possesses a leftmost subpath pp-1
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of rank p -1. If pP -[ does not possess a leftmost subpath of rank p --2, then it can meet

Xa only with a (p -I)-pathlike tip. Hence. Xa must be of rank p at least. Thus, if xa '5

rank is less than p, pP -1 must possess a leftmost subpath of rank p -2. This argument

can be continued inductively to obtain the proposition. QED

Note: Since pP may terminate at Xa with an extremity of rank smaller than that

of Xa, the conclusion may also hold for some values of n smaller than q -1.

Proposition 6.4. Let g be the p -graph (6.2) and let 1<q <p. If gq-1 is a finite

set, then each £", where q <n ~p, is void. (Thus, Q is effectively a (q-I)-graph.)"-' "-'

Proof. The finiteness of £q-1 implies that Q has no one-ended (q-I)-path and"-' "-'

thus no (q-I)-pathlike tip. By Condition rp (i) and (ii), gq is void. Continuing this

argument inductively, we obtain Proposition 6.4. QED.

To each p -path pP there corresponds a set !!)PP ) of branches and a set !;i(PP) of

nodes. Those nodes are all the O-extremities embraced by pP. The branches of all the

O-paths embraced by pP comprise B(PP ).~

Proposition 6.5. If Pf and P~ are totally disjoint p-paths, then f1(Pf )nf1(p~)

is void.

This proposition follows directly from our definition of totally disjoint paths.

In order for Pf and P~ to be totally disjoint, it is not sufficient that

t{(Pf )nN(p~)"-' ~
be void. For example, ill Figure 2 the two I-paths

{Xa, Pa, C1, Pel' xI} and {xJ, PJ, C2} have nonintersecting node sets. However, they

are not totally disjoint because C2 embraces xI .

Let xa" be an n -extremity and xbqbe a q -extremity, where nand q are no larger

than p. xa" and xbqare said to be p -connected if there exists a finite p -path with x; and

Xbqas its terminal elements. Two branches are called p -connected if one branch is
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incident

to node xao, the other branch is lllodent to node Xbo, and xao and Xboare p -connected. A

graph is called p -connected if all its nodes are p -connected.

Proposition 6.6. If two extremities in a p -graph are q -connected, then they are n-

connected for each n = q +1, . . . , p.

Proof. Let

P q - {
I; P q-l q P q-l ... P q-l m}- xa' 0 ,c l' l' 'i, xb

be a finite q -path connecting the two extremities xal;and xbm. Thus, both k and mare

no larger than q. Then, pq+l = {Xl; pq xm }a' ,b IS a finite (q + 1)-path,

pq+2 = {x;, pq+., Xbm}is a finite (q+2)-path, and so forth. QED

For any 0< q < p, a q -section of a p -graph Q is a subgraph of Q induced by a, , , ,

maximal set of branches that are pairwise q -connected.

Proposition 6.7. An n -path can pass from one q -section to another q -section only

if n >q.

Proof. Suppose this is not so, that is, there is an n -path P n with n < q which ter-

minates at both ends at nodes having incident branches ba and bb lying in different q-

sections. By Condition TIP (i) for p =q, since P n terminates at both ends, a finite

number of integers suffice to index the terms of P n consecutively. Hence, P n is finite.

Thus, ba and bb are n -connected and, by Proposition 6.6, q -connected. By the maxi-

mality condition of q -sections, ba and bb lie in the same q -section, a contradiction.

QED

The last proposition implies that, if n < q, any n -path or n -loop is confined to a

single q -section. On the other band, the condition n > q is not in general sufficient for

the existence of an n -path bet wren two given q -sections because connections of rank
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larger than q may not be suitably located in g,

7. ",,-GRAPHS

The next step in generalization occurs when P is replaced by the least transfinite

ordinal ""; it requires some modifications in our constructions. We start with a graph

that has P -connections for every natural number p. Consider one-ended paths of the

form

{
qo P Po-1 Pl P PC1 Pz P pz-l ... }Xo, 0 ,e1' 1 ,cz, Z , (7.1 )

where the natural numbers suffice to index the elements consecutively as shown, x~o is a

P o-extremity, e~m is a Pm -connection, P ~m-1 is a nontrivial (Pm -1 )-path, q 0<p 0' the Pm

are strictly increasing (i.e., Po < P1 < pz < . . . ), and the members of (7.1) are pair-

wise totally disjoint except for adjacent members, which are terminally connected but

otherwise totally disjoint. These conditions imply that p~m -1 meets c~m+~lat an extrem-

ity of rank Pm or less and therefore p~,"+~C1 meets C~,"+~lwith a (Pm+c1)-pathlike tip

(see Proposition 6.2). Under these circumstances, we shall refer to (7.1) as a one-ended

D-path.

An equivalence class of all one-ended D-paths that pairwise differ by no more than a

finite number of terms is called an D-pathlike tip tiiJ. Then, an w-connection or a connee-

tion of rank"" is a finite or infinite set of the form

e w = {x 0' t 1;;;, t p, t F, . . . } (7.2)

where xo is an extremity whose rank q is a natural number. We require that every w-

connection satisfy the Conditions rw, which read exactly as do the Conditions rp except

that P is replaced by "" and p -1 by w. As before, an w-extremity is either an w-

connection or a singleton having an D-pathlike tip that does not appear in any w-

connection.
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Let g"" be a set of 0J-connectJOns.An (;..I-graphis the infinite set

G I"',~ C C )~ = t12,.~o, ~1I . .. --:-w~ ~ ~ , , , ,

A subgraph G' induced by a subsetli' of li is obtained by restricting the construction
~ , ,

of each of go, . . . , go; to g' .

Another way of representing a one-ended zJ.path is obtained by replacing every m

by -m in (7.1) and in the conditions imposed upon (7.1). Furthermore upon appending

the result to the left of (7.1) (and striking out the extra x6°), we obtain an endless zJ.

path. All the terminology for p -paths extend to one-ended and endless zJ.paths.

We can define an UJ-path as an alternating sequence

~ ~

{... C w po; c o; P w ... }, m' - m' m+1' m+1 , (7.3)

that satisfies Conditions nw, which read exactly as do the Conditions IlP with p

replaced by wand p -1 replaced by w except for one more change. In Condition no; (iv),

the zJ.paths must be one-ended or endless, not finite. An UJ-loop is a finite UJ-path, except

that oDe of its two terminal extremities embraces the other one.

With these alterations, Propositions 6.1 through 6.5 and their proofs hold as before

except for some obvious modifications. For example, in Proposition 6.4 we should

require that q < p = w because with q = w there is no ordinal q -1. Similarly, in Pro-

position 6.3 the possible values of n are now q -1, q, q + 1, . . . , but not p -1.

As for connectedness, let Ian and xbqbe extremities of ranks nand q respectively,

where 0 < n < wand 0 < q < w. These extremities are said to be UJ-connected if

there is a finite p -path, where max (n , q) < p < w, having Ianand xbqas its two term i-

nal elements. This definition may appear to be less demanding as compared to our prior

definition of p-connectedness, but, by virtue of Proposition 8.6, it is quite analogous.

Finally, an UJ-sectionis defined as expected.



. 26 -

8. GRAPHS OF STILL HIGHER RANKS

\Vith w-graphs in hand, we CJ.il proceed as in Section 6 to obtain (w+p )-graphs for

any natural number p > 0 by using (w+p-l)-pathlike tips to define (w+p )-connections.

Then, the method of Section 7 provides (w+w)-pathlike tips from which (w'2)-

connections and (w'2)-graphs can be obtained. This process can be continued to gen-

erate k -graphs where k is any countable ordinal that can be explicitly constructed as

above from lesser ordinals. The procedure of Section 6 (Section 7) is used when k is a

successor ordinal (respectively, liIDit ordinal). Thus, we have transfinite graphs of rank

k for quite a range of ordinals k) and these graphs have their q -sections for every q

from 0 to k .

9. (k, q)-PATHS AND TERMINAL BEHAVIOR AT EXTREMITIES

Again let p be a natural number larger than O. Given the p-path (6.4), we can

think of each P~ -1 being explicitly written out as a (p -1 )-path. This will yield an

expanded display of (6.4) involving the p -connections c::a and the possible terminal ele-

ments of (6.4), as well as the (p -1 )-connections, possibly other terminal elements, and

(p -2)-paths arising from the expansions of all the p~-1 in (6.4). (For an example

wherein p = 4, see the second line of Figure 3.) If a p~-l terminates at an i-extremity

d' (i <p-1) that is embraced by a p-connection, the notation d' is deleted from the

expanded version of (6.4). No such deletion is needed if p~ -1 meets the p -connection

with a (p -l)-pathlike tip. By virtue of Proposition 6.2, no more than one such deletion

need be IDade at each p -connection. On the other hand, if p~-1 is a leftmost (right-

most) subpath, its terminal element on the left (right) is compared in rank with the ter-

minal element on the left (right) in (6.4). If those ranks are the same, the two terminal

elements will be identical, accorrl.lng to our definition of a terminating path and Proposi-

tion 6.1, and just one extrem it." notation is retained. If not, we discard the extremity
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notation with the lower rank. In this way, no two extremities appear as adjacent terms

in the expansion of (6.4). (In the example of Figure 3, we have taken it that each of

P 03, P 02, POl terminate on the left with x 02.)

The rational integers may no longer suffice to index consecutively all the terms of

this expanded form of (6.4) Moreover, its terms, when ordered in accordance with this

sequence of sequences, are totally ordered but may not be well-ordered. Well-ordering

may be absent, for example, when one of the P::,-1 is an endless path. We will refer to

this expanded form of (6.4) as a (p, p-l)-path and will denote it by pP,P-\ we may

also refer to it as a transfinite path, even though in special cases the rational integers

may suffice for the stated purpose.

This process can be repeated, as is indicated in Figure 3. An expansion of all the

(p -2)-paths in the transfinite (p, p -I)-paths yields a transfinite (p, p -2)-path pp ,p-2.

Continuing in this way, we obtain for q <p the transfinite (p, q )-path pp ,q and finally

a transfinite (p, O)-path pp ,0, which is totally ordered but not necessarily well-ordered.

The elements of P p ,0 will be branches interspersed with extremities of various ranks.

Two adjacent branches will be separated by the node to which they are incident or by a

connection embracing that node. The higher-order extremities will separate various

finite or transfinite sequences, and the terminal elements of pp,o, if they exist (they will

exist if the original p -path had them), will be q -extremities where 0< q < p .

The (p , q )-loops are defined from the p -loops in just the same way and are called

transfinite loops if they have more than a finite number of branches.

Assume P P is a p -path that terminates on the left at a q -extremity x g where

q < p .Then, by Proposition 6.3, P P embraces leftmost subpaths P; of every rank n,

where n varies from p -1 down to q -1 and perhaps lower. Let m be the smallest n for

which pP embraces a leftmost extremity of rank n -1. (This is illustrated in Figure 3
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for p =4, q =2, and m =2.) In short, there will be a critical value of n, namely, m

such that pP embraces a leftmost subpath P3-1 of rank n -1 for every n = m, . . . ,

p, but not for n <:.m. This means that PO', PO' +1 , . . . , Pg all terminate at x g with

an extremity, that pO'-l meets xg with an (m -1)-pathlike tip, and that for n = 0, . . .

, m -2 there is no embraced n -path that terminates at or meets x g.

A similar pattern will exist at all the p -connections of P P at which (p -1 )-subpaths

terminate.

Now consider an w-path such as (7.3). Each P; in it has the form of (7.1) except

that it may be endless. Each p~m-l in (7.1) may be expanded into nested sequences of

paths and extremities of lower ranks. Ultimately, we obtain a totally ordered (but not

in general well-ordered) set of O-paths interspersed with extremities whose ranks vary

from 0 to w; this will be called an (w, O)-path. An (w, a)-loop is an (w, O)-path having

however a least term and a largest term (with respect to the total ordering) such that

one term embraces the other.

These ideas extend directly to k -paths, where k is any constructible countable

ordinal as before. We obtain thereby (k, O)-paths and (k , O)-loops.

10. k-NETWORKS

Now that we have constructed transfinite graphs, we shall assign an analytical

structure to every branch to obtain thereby transfinite electrical networks. First of all,

note that, since!!:: is a countable set, the natural numbers suffice to index all the

branches of a given k -graph g in some fashion. (It is when we try to index the

branches of a (k, O)-path in the order of a tracing along that path that the natural

numbers or even a well-ordered indexing system may not suffice.) Henceforth, we assume

that every branch has a natural number j as an index, where j = 0, 1, 2, . .. . Furth-



- 29 ~

ermore, we assume that every branch has an orientation, with respect to which the

polarities of voltages and currents wi!! be measured.

The jth branch's analytical structure is given by Thevenin's circuit, shown in Fig-

ure 4, where a pure voltage source of value ej volts and a resistance of value rj ohms

are connected in series, the two ends of the series circuit being the tips from which the

branch at hand was defined as an entity in the graph g. ej is a real number, possibly

zero, and rj is a real positive number. gj will always denote the branch conductance

1/ rj' Ohm's law and Kirchhoff's laws dictate that

Vj = rj Ij - ej (10.1)

where Vj is the value of the branch voltage and ij is the value of the branch current,

both being real quantities. (To simplify notation, we will use rj to designate the resistor

as well as its resistance value, and similarly for ej, vj , and ij .) In accordance with this

analytical structure, we will only examine purely resistive networks having no dependent

sources. Moreover, every branch has a positive resistance and therefore any current

source within a branch can be converted into a voltage source by a Norton-to- Thevenin

transformation.

In this paper an electrical network of rank k or simply an k -network is taken to

mean a k -graph every branch of which has the analytical representation shown in Figure

4 with its parameters satisfying (10.1).

Henceforth, the symbol E will denote a summation E Joo=oover all the branch

indices j, that is over all the natural numbers, unless something else is explicitly indi-

cated. We shall impose

Condition E.

All the branch voltage sources ej satisfy the condition of finite total isolated power,

namely, Ee/gj <00.
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As we shall see below, the total power absorbed in all the resistors, which will equal

the total power delivered by all the sources, is no larger than Ee/Lg;. Thus, Condition

E implies that the k -network will be in 3 finite-power regime.

11. THE UNIQUE VOLTAGE-CURRENT REGIME

Boldface notation will denote one-way infinite vectors whose elements are indexed

by the natural numbers; thus, i = (i 0, i 11 i 2' . . . ) is the vector of all branch currents,

v = (vo, Vl' V2' . . . ) is the vector of all branch voltages, and e = (eo, el1 e2' . . . ) is

the vector of all branch voltage-source values. R will denote the operator that assigns

to every branch-current vector i the vector (r 0i 0' r 1i l' r 2i 2' . . . ) consisting of the vol-

tages across the branch resistances (i.e., the voltage drops r j ij measured in the direction

of the branches' orientations).

£ denotes the space of all branch-current vectors i for which Ei/r j < 00, that is,

for which the total power dissipated in all the resistors is finite. The linear operations

are defined componentwise on the vectors i. Moreover, we assign the inner product (i, s)

to two elements i, S E~, where (i, s) = Erj ij Sj; II . II denotes the corresponding

norm. A standard argument [ 6; p. 21] shows that £ is complete under this norm and is

therefore a Hilbert space and that convergence in£ implies componentwise convergence.

The next step is to assign currents to various (q , 0)-Ioops where q < k . Any (q , 0)-

loop is confined to a q-section. A (0, D)-loop is the same as a O-loop and is in fact just a

finite loop, which perforce is confined to an O-section. We now assign an orientation to

every (q, °}-loop; it is one of the two possible ways of tracing around the loop. A

(q, a)-loop current or simply a q -loop current or just loop current is an assignment of

branch currents such that the currents ij in all branches are zero except for the

branches in some given (q I a)-loop L; in those latter branches the currents are
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Ij = :ti ~

where i is a real constant and the plus (minus) sign is used if the jth branch's orienta-

tion agrees (respectively, disagrees) with the orientation of the loop L.

Kirchhoff's current law asserts tha.t, given a node x 0,

l: :f::.ij = 0,
iEN

where N is the branch-index set for all the branches incident to x °, ij is the branch

(11.1)

current in branch j EN, and the plus (minus) sign is used if the branch j is oriented

toward (away from) the node. A loop current will satisfy Kirchhoff's current law at

every node except possibly when the node is em braced by a q -connection c q where

q >0. In the latter case, Kirchhoff's current law will still be satisfied if the loop passes

from one branch b 1 incident to the node to another branch incident to the node but will

not do so if the loop passes from b 1 to a pathlike tip embraced by c q .

A (q, O)-loop L will be called perceptible if E;EArJ < 00 where A is the index set

for all the branches in L. It follows immediately that a loop current will be a member

of J, if and only if its corresponding loop is perceptible.

For a given k -network, KO will denote the span of all (q, O)-loop currents~

(O<q <k) that are members ofL. Thus,1£oCL. 1£ will denote the closure of 1£° inL,
~ ~~,~ ~~

and so 1£CL as well. In fact, K is a Hilbert space by itself when it is equipped with the
~ ~ ~

inner product of J,. Moreover, convergence in ~ implies componentwise (i.e., branch-

wise) convergence.

In general, 1£ will contain transfinite loop currents that are not members of 1£°; in"'-' "'-'

fact, augmented connections may effectively be introduced when taking the closure of

4°. For example, refer to the I-graph of Figure 5. Assume that the branch resistance

values decay so rapidly as one prorE'eds to the right that Erj < 00. Figure 5(a) shows a
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I-loop current consisting of a. flow alQng the branches am 1 through a l~connection

C1 = {x, tao}, and back through a single return branch; x is a. node, to which the

return branch is incident, and taD is the O-pathlike tip having as a representative the 0-

path of am branches. Since this I-loop is perceptible, its loop current can be taken to be

a member of KO. Also, all the O-loop currents of part (b) can be taken to be members of
, ,

{;£Otoo. Furthermore, we may assume that the pathlike tip tb° corresponding to the bm

branches is not a member of any connection. However, if all the indicated loop currents

of parts (a) and (b) have I-ampere values, their superposition will be the I-ampere I-loop

current shown in Figure 5(c) and will be a member of K because that I-loop is percept i-, ,

ble too. Thus, an enlarged I-connection d1 = {x, taD,tbO} has effectively been intro-

duced even though d1 was not declared to be a connection for this I-graph.

We now turn to the voltage sources. Any branch voltage-source vector e defines a

mapping (i.e., a functional) from K into the real line R 1 according to~

<e, i> = Eejij , iE[£ (11.2)

whenever Eej ij converges.

Lemma 11.1. If e satisfies Condition E, then e defines a continuous linear mapping

of K into R 1 according to (11.2).~

Proof We first show that Eej ij converges absolutely. By Schwarz's inequality,

E l ei I = E Ig 1/2e. r 1/2i. I < [Eg . e 2 Er. i 2]1/2
JJ J JJ J - JJ JJ

The right-hand side is finite by virtue of Condition E and the fact that i EK.~

(11.3)

Since absolutely convergent series can be rearranged, the functional defined by

(11.2) is linear. Moreover, it is continuous because, according to (11.3) and the norm of

[£,

I<e, i> I :SE Iej ij 1 :S [Egj e/p/2 II ill.

QED



. 33-

Here at la:5t i:5the principal re:5ult of our paper.

Theorem 11.2. Given a k -network with a branch voltage-source vector e that

satisfies Condition E, there exists a unique i E 11 such that

<e - R i, 8> = 0 (11.4)

for every 8 E 11. This equatIOn implies the uniqueness of i in 4 even when 8 is res-

tricted to 11°,

Proof Since e defines a continuous linear functional on 11 according to Lemma

11.1, we can invoke the Riesz representation theorm to conclude that there is a unique

i E 4 such that <e,8> = (8, i). On the other hand, (8, i) = Erj Sj ij = <R i, 8>.

Thus, (11.4) holds for that unique i. Moreover, i is uniquely determined as a member of

1£ by the values of (8, i) for all 8 E 1£, and in fact for just all the 8 E 1£° since KO is
~ ~ ~ ~

dense in K. QED
::=::::::

Equation (11.4) is known in the electrical engineering literature as Tellegen's equa-

tion. It, rather than Kirchhoff's laws, is the governing equation that determines the

voltage-current regime for our k -network. Actually, the uniqueness of that regime arises

from the conjunction of the finite-total-isolated-power condition (Condition E), the res-

triction of the allowable branch-current vectors to 4, and Tellegen's equation (11.4).

Nonetheless, as we shall see in the next section, Kirchhoff's laws do hold in certain cir-

cumstances, even though they have been relegated to a secondary role in this theory.

Also, Ohm's law has been imposed upon every rj by virtue of the term R i in (11.4).

Corollary 11.3. Under the hypothesis of Theorem 11.2, the total power Ei/rj dis-

sipated in all the resistors equals the total power E ej ij supplied by all the voltage

sources and is no larger than the finite total isolated power Ee/gj available from all the

voltage sources.



- 34 -

Proof. Set 8 = i in (11.41 to ~et

",'.2 - P" "> - . -" .
u'J ,} - <H 1.1 - <e, 1> - Uej 'j .

Upon combining this with (11.3), we obtain Ei/rj < Ee/Yj. QED

12. KIRCHHOFF'S LAWS

A node in our given k -graph Sf will be called ordinary if it is not embraced by any

q -connection where q >0. A node x 0 is called restraining if the sum of the conduc-

tances of all the branches incident to x 0 is finite, that is, if E j EN gj < 00 where N is

the index set for all the branches incident to x o. A finite node is restraining, but an

infinite node mayor may not be restraining.

Proposition 12.1. If x 0 is an ordinary restraining node, then, under the voltage-

current regime dictated by Theorem 11.2, Kirchhoff's current law is satisfied at x0 abso-

lutely, that is, (11.1) holds where the series on the left-hand side converges absolutely.

Proof Let EN denote EjEN, and let iEl£. Then,

EN I ij 1= ENr//.21 ij I gF.2 <[ENrjl/ ENYjP/.2 < !I i II [ENgjP/.2.

Since x0 is restraining, the right-hand side is finite, which establishes the asserted abso-

lute convergence.

Next, as was noted above, every loop current satisfies (11.1) at Xo. Consequently,

so too does every member of KO since each such member is a (finite) linear combination::::::;

of loop currents. Since KO is dense in /S." we can choose a sequence {im},~=0 in KO'"'-' '"'-' '"'-'

which converges in ~ to the unique iEl£ specified in Theorem 11.2. Thus, with imj (or

ij) denoting the jth component of im (of i), we may write EjEN :!:imj = 0 and

IEjEN:!:ij 1= IEN:!:ij -EN:i:imj I <EN lij-imj I =ENr//.2 lij-imj ly//2

< [ENrjUj--imj).2 ENgjP/.2 < II i- im II (ENgj)l/.2 -- 0

as m --00. Thus, i satisfies Kirchhoff's current law at x o. QED
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Consider now Kirchhoff's yoitage law. This asserts that

~ :tv - 0LJ J-
J EA

(12.1)

w here A is the branch-index set for all the branches in a given oriented (q , 0)-loop L, vj

is the branch voltage in branch j EA, and the plus (minus) sign is used if the orientation

of branch j agrees (disagrees) with the orientation of loop L. The loop L is called per-

ceptible if E j EA r j < 00.

Proposition 12.2. If L is a perceptible (q, 0)-loop, then, under the voltage-current

regime dictated by Theorem 11.2, Kirchhoff's voltage law (12.1) holds around L, and the

series on the left-hand side of (12.1) converges absolutely.

Proof. Let s be the loop current corresponding to a unit current flow around L.

Since Vj = rj ij - ej for each branch, the substitution of s into (11.4) yields (12.1).

Let us now show that the left-hand side of (12.1) converges absolutely. As before,

EA will denote E j EA' We may write

" I . I -" 1/2 I . I 1/2 < [" ." 2. 'J1/2
'-'A eJ - '--Ar) Ie} y} - '-'Ar} '--Ae) y} .

By Condition E and the perceptibility of L , the right-hand side is finite. Similarly,

" I .'. I -" 1/2 I '. I 1/2 < [" .' 2" . ]1/2
'-'A ,} ,} - '-'Ar} ,} r} - '-'Ar},} '-'Ar} .

Since iE4 and L is perceptible, the last right-hand side is finite too.
Since

V. = r. i. - e. we are done Q ED
} }} } , .

13. SOME FINAL REMARKS

l. Pure sources. We have assumed that every branch has a positive (not zero)

branch resistance. However, we can allow some branches to have zero resistance, that is,

to be pure voltage sources; in fact, pure current sources can also be allowed. Our

theory can be so extended by using the technique of transferring pure sources into

branches with positive resistances and adapting the arguments employed in Section VII,
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VIII, and XII of [131.

2. Reciprocity theorem. The 'reciprocIty theorem continues to hold for k -networks.

That theorem states that the current in branch j due to a unit voltage source in branch

m is equal to the current in branch m due to a unit voltage source in branch j.

Flanders' proof of this fact (see Corollary 3 in [5])extends directly to our k -networks.

3. Other fundamental curreni8. The fundamental currents upon which the space

4° and thereby our existence and uniqueness theorem (Theorem 11.2) are based are the

finite and transfinite loop currents. Still greater generality can be achieved by allowing

other kinds of fundamental currents as well. An example of the latter are the "extrem-

ity currents" introduced in Section XI of [13]. This will expand 4° and may lead to a

different, but nonetheless unique, voltage-current regime for the k -network.
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LEGENDSFOR FIGURES

Figure l.

An infinite ladder network whose driving-point resistance RD as seen from the

input terminals on the left depends on the load resistance RL connected on the

right to the extremities of the network represented by two hypothetical nodes at

infinity shown by the small circles. The numbers are resistance values in ohms,

which continue in the indicated pattern infinitely to the right.

Figure 2.

G 1 is an infinite cascade of lattices connected at infinity to an infinite ladder G 2'~ ~

Each labeled line segment denotes a branch. c 1 and c 2 are I-connections; c 2

embraces the infinite node xI of the ladder network.

Figure 3.

Illustration of the possible terminal behaviors of a 4-path and its corresponding

(4, q )-paths (q = 0, . . ,3). The 4-path is assumed to terminate on the left at a

2-extremity x 02. The c 's, d's, e '5, f '5, and x 's denote extremities, and the P '5,

Q 's, R '5, and S's denote paths of the indicated ranks. The b 's are branches. The

terminal element d~ (i < 3) on the left-hand side of P 13 is deleted in the expan-

sion of P 13 in the second line because it is embraced by c 14.

Figure 4.

Thevenin's circuit for the j th branch. The branch's orientation is taken to be in

the direction of ii and the polarities of vi as a voltage drop and of ei as a voltage

rise.
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Figure 5.

Assume that the sum of a.1Iresista.nce values is finite, that c 1 is a l.connection, but

that d1 is n'ot specified a.s a I-connection. The I-a.mpere loop currents shown in

parts (a) and (b) can all be taken to be members of /1°. Then, /1 will contain the

loop current shown in part (c), which means that a new I-connection d1, an

enlargement of c 1, has been introduced in effect just by taking the closure of 1£°.-- . ,
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