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Abstract

From a review of single particle behavior, it was concluded that both
drag and slip-shear forces determine the interaction between the phases.
Treating the particulate phase as a .continuum, the basic conservation e-
quations were non-dimensionalized in terms of the particle slip relaxation
time and/or slip relaxation distance. This resulted in identification of
a dimensionless constant to which the slip-shear effects are proportional,
énd.yielded a set .of "universal" two phase boundary layer equations appli-
cable to a class of barticulate suspensions. These in turn were solved
for the case of laminar mixing of a suspension stream with a clean fluid

_ stream. From perturbation solutions valid in the initial portion of the
mixing layer and in the far down stream regions, a description of the vel-
ocity field of both phases, the slip between the phases, and the particu-
late concentraticn within the mixing layer was obtained. It was shown that
fnixi_ng of the particul‘ate phase with the clean fluid is entirely due to
the effects of the slip-shear forces. However, that particle injection into
the clean fluid occur-s only within the initial portion of the mixing layer.
In this region particles exhibit two divectional migration characteristics.
In the far out mixing region the partiéulate phase is essentially frozen.
to the local fluid, with the slip shear forces again determining the par-

. . s orrelate
ticulate concentrations within the mixing layer. The results ¢

. on-
with hereto unexplained experimental observations, and consequently c

: . s i i henomena
tribute to a more accurate understanding of particle migration D _

in laminar.suspension flows.
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I. Introduction

The behavior of multiphase systeﬁs which are characterized by the
motion of:aggpegates of small solid particles and/or liquid drops rela-
tive to fluids in which they are sugpended covers a wide rangé of pheno-
mena of great technical importance. Many examples [18] can be citea, in-
cluding the collection of dust and mist from cﬁemical processes in order
to reduce or eliminate atmospheric pollution. Recently, however, as a

result of the pioneering work of Marble (1964) [11], Singleton (1965)

[17], and Soo (1967) [18] and others [2, 3, 9] the fluid mechanics of mul-

tiphase systems has been separated from particular detailed problems and

~ has found a Place in the general disecipline of fluid mechanics. Our aim

'is to contribute further to this effort by investigating tﬁe role of
slip-shear forces in laminar boundary layer suspension flows. In parti-
cular we are interested in gaining a better understanding of the experi-
mentally observed, Yoﬁng (1960) [21], Segre and Silberberg (1962) [15],
and Karmis et al (1966) [6],‘but hereto unexplained parficle migration
in laminar suspensioﬁ flows. In the ca;e of tube flows, the migration
resulted in accumulation of particles mear the wall [21], or on the axis
with a particle free zone near the wall [6], or in an annular region be-

tween the tuSe wall and axis [I5]. A comprehensive review of lateral mi-

_gration characteristics in tubes is given by Brenner (1966) [1] and Law-

ler and Lu (1967) [8]. The latter also treat the problem of particle mi-

 grati0n in rotating tubes. The general feature of this migration is the

movement of particles across fluid stream lines in regions where there
exists a fluid shear. Moreover, as was pointed out in [12] and [1%#], in

the absence of centrifugal forces, particle migration is probably due to

’
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an interaction of the particle with the walls which is inertial in nature,
in combination with slip-shear effects. Because very little is known con-
cerning the former, even in the case of a single particle, we‘have se-
lected a flow situation which is of significant practical importance, but
in which the drag and slip-shear effects entirely determine the migration
characteristics, i.e., laminar mixing of a suspension with a clean fluid.
Up to ndw, a theoretical or experimental étudy of this problem has
not been reported in the open literature. Soo (1965) [19] investigated
the laminar mixing of a circular suspemsion jgt, and the turbulent mixing

of a suspension with a clean fluid. The results of this theoretical study

‘are valid only for extremely dilute suspensions and in only those cases

- Where the slip between the phases is small. More significantly, this

anélysis neglects the effect of slip-shear forces. The létter, as we
shall show, play a key role in particle migration and primarily determine
the partlcle distribution within the mixing layer. Moreover, Soo neg-
lects the conservation of particulate phase momentum in the normal di-
rection.

We also, of coﬁrée, have to place some limitations on the scope of
this problem. Thus, we restrict ourselves to those suspensions in which

the solid particles are spherical and all of the same size. Moreover,

- We assume that suspension is sufficiently dilute so that flow field a-

~bout any particle does not interact with the flow field about any other

Particle. If the radius of the particles is of order 0.10 to 10.0 mi-
crons,—this being the range of imterest to us, the above restriction

still allows significant total particulate mass content per unit~vo;ume
of mixture, ?; - In particular we are interestéd in those situations

in which g]S}, s Where f’ is intrinsic density of the fluid, is of

’
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order unity. We do, however, assume that the fluid phase of both the
suspension and the clean fluid are identical, incompressible, and in
thermal equilibrium with each other and with the particulate phase through-
out the mixing process. Extensions of the result obtained to situations
where this is not the case is immediaté and of secondary importance on
particle migration which results from transverse forces acting on the par--
ticles. Migration which is due to the Brownian effects is neglected in
this study, since it cannot result in particle accumulation of the type
préviously mentioned. Moreover, we are not interested in the detail mo-
tion of individual particles, and consequently adopt the approach pre-
viously employed by [2, 11, 17, 191 in which the particulate phase is
treated as a continuum.

The general conservation equatioms, requifed in this approach, were
derived by Soo [18], Hinze [ 5], and Marble [11]. These, subject to the‘ ' e

restrictions placed on our problem, become:

Fluid phase:

S duy;
¥

=0 ‘ ' . ' (1)

s )2 % 4 Vi S - X,
—— 4 Uy Vo _ of < P (2)
S( >t Y DX} }x: 2 {1 _

Solid Phase: (designated by the letter‘4p)v
| . '- o (3)
b?p+ l (gP\LP)' =0 ' .
- DX -

YP(?_E.E.L.;. uPLaPL):,gr'FP-"'XP- ()



Where Xp ¢ 1s the interaction force (per unit volume) between the phases.
The intrinsic aensity of solid phase by which we mean the density of the
material making up the particles is denoted by f% and does not expli-

citly enter the above equations.
II. Interaction between the phases

Critical to any investigation of thé fluid dynamics éf suspensions.
is the modelling of the interaction between the phases. In general, the
total force on an individual particle within a suspension depends upon
the acceleration history of the particle, the proximity of other particles
and/or walls, the particle Reynolds number, Knudsen number; as‘well as on
the local acceleration, pressure gradient,.and shear gradient of fluid
field. A veview of the present state of knowledge concerning these ef-
fects is given by Otterman (1968) [12]1, Soo (1967) [18], and Torobin and
Gauvin (1959) [21]. It is concluded in [12] that our present knowledge
concerning these effeéts is such that at the very outset we must limit
our analysis to those cases where the Rarticle Reynolds number is small.
In addition it is shown that the Basset resi;tance-(which accounts for
the acceleration history) is small compared to the instantaneous Stokes
drag, provided that the time scéles of interest are of order Igb -, the
Stokesian slip relaxation time constant, and when»the particle accelera-
tion is not extreme.

| Particle motion in a spatially non-uniform velocity field results

in a transverse force on the particle, even when the particle is pre-
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“vented from fotati_ng. S-affman (1965) [14] in a récl:ent‘ study obtained the
net force acting ’on a small tr;anslating sphere which is simultaneousvly ro-
tating in an unbounded, unifofm, simple shear flow field; the translation
velocity being parallel to the Stream lines Three i.ndependept'par;c'icle

Reynolds number arise in the analysis:

slip: (Rﬁ‘)r _ Za (ur—uj

~/ | - (5) |
shear: (QQBK = 4___2;_—_\:(__ (6)
’v .
- ' .
rotation: (RQ)JL = ﬁ_‘_o_.:____f_l__. (7)

/

where, the particle relative velocity (up—u) is measured at its center,k
is the magnitude of the velocity gradient, and _(I. is the magnitude of

the angular velocity. The analysis, ﬁhich is valid when |
| r
(Re) R LRI L << [Re)_, (R, s> Ry

showed that in addition to Stokes drag force

D:L‘\F)Aa(ur-u) o | a (8)

the particle experiences a transverse force_ given by
: ‘/2. Yo .
(L), = 8Lz (sp) & (wp-u) 2

which is due to the combination of slip and shear, and a lift force
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flows are characterized by large velocity gradients, and because the

which is due to rotation given by:
——‘ X - »
(L)_n_ = l\’Ja, _Q (ulo—u'), (10)

The latter result was also obtained by Rubiﬁow and Keller (1961) [13].
However, Saffman's study shows that uniess the rotation speed is very
much greater than the rate of shear, and for freely rotating particle
S ==05k » the 1lift force due to particle rotafion is less by an order
of magnitude than that due to the slip-shear (Eq. 9 ). Moreover, as
(Re)fﬁo Brenner [1] showed that Saf‘man's conditions (Eq. 8) are always‘
met and the Rubinow-Keller theory is inapplicable.

Although direct ekperimental verification of Saffman's analysis is
Uup to the present not available, an analysis of the above cited migration
experiments shows that the lateral.force resulting from slip-shear ef-

fect plays a significant role in these phenomena. Since boundary layer

slip-shear 1ift force as given by Equation ¢ 1s proportional to the
?quare root of the velocityAgradient we would expect, and indeed find it
the case, that the pérticle velocities in the direction normal the main
flow direction are significantly affected by this force. However, up to.now
this effect has not been incorporated into continuum type [3, 9, 11, 16

19] analysis of suspension flows. The only eXception being the recent
Study of Lawler and Lu [8] in which they analyzed the behavior of a di-
lute suspension in the entrance region of a slowly rotating pipe. Their
result which follows from a 1inearized model shows once again the signi-
ficance of lift force on the particles.

In light of the above, we assume that the interaction between the

particles and the fluid is governed by Equations 8 and 9. Strictly



.speaking, these equations are applicaﬁle only for the case of linear
.shear field. Since the velocity profile in a laminar boundary.laygr is
smooth, and becaﬁse we are considering particleg of micron size, we as-
sume that Equations 8 aﬁd 9 can be applied locally with sufficient ac-
curacy. In terms of a force per unif volume of mixture, the interaction

between the particulate and fluid phases (Equations & and 9) becomes

p s

— > = RS o
X _ ? aQ-dUp L &S v_f/.\ coxd o X (Cf—-kip
P P Ce f% | cwrt W\ '

(11)

where

S ( 2 a") (12)
¥ 9 | . o



III. The Two-Dimensional Suspension Boundary Layer Equations

Glven the non-linear form of the interaction between the phases, Eq.
ll,.in addition to the non-linear form of the conservation of momentum
equations of both phases, Egs. 1 through 4, it is imperative to investi—
. 8ate what simplification of these equafions result in the case of large
Reyno;ds number flows. With tﬁis in mind; it is shown in [12] that the

standard boundary layer appfoximations are valid for the fluid phase, i.e.

2P )
PSR P
"provided that f}/f is of order 1. Moreover, it is shown that simplifi-
cation of the particulate phase momentum equations does not occur, and et
that the y-momentum equation cannot be neglected.

The two-dimensional boundary layer eqﬁations are specialized for | o
the case where viscous dissipations, particle vélume, Brownian motion and
electric or magnetic effecté are negligible; and where the fluid phase is
imcompressible, the particles are all of equal and unchanging size, and
the interaction between the phases is specified by Equation 11. Subject
to these restrictions the continuity and boundary layer momentum equa-
tions for the two phase; become:

. - o
2L o (13)

—
—

E=2 S

=

W \k}u T L S I3 & +«)}—-\L “ﬂg (4 o) (14)

ST WS dx M* S

-



>§_P,+ }gj‘ (%\l?\.;. %(?FG‘F =0 , (15)
< X - :
~t % Y 2, - |
) I
Sl
| ] IR E N
m_f’, +Llf>\_v_ﬁ-+di;}:§t~: (O‘Jl’\_,, &S ?"( s 1 F
»t dX A = e
(17)
We now introduce the following dimensionless quantities:
. - Y
b= /'zP ) X = x o (Qr'\/)
! T 2 o (18)
= -2 1
&ﬁ% R N A T

— 3
U\/d'

R ? | ) __8— /L et = stant
4:(“§; = constant,. /’: 45 (?AB ( ~ const

where,’ . (19)

A= ?—‘F

)
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is termed the slip relaxation length. Physically it represents the dis-
tance required for a particle to travel in order to reduce its slip ve-
locity by € . Hence, as was first pointed out by Marble [11], if
* ' ) ’

X<<\ -the particles have not had time to adjust to the gas flow and con-
. : +*

Sequently téke on large velocity slips. On the other hand, if X 35\
the particles have moved many times the required distance, and exhibit
small velocity slips. For the case where.the particles have a different
temperature from the surrounding fluid, gnalagous thermal_equilibratidn
;ength can be developed [16]._.

Substitution of Equation 18 into Equations 13 through 17 yields:

* .
N o | | (20)

< _ ¥
oF S5 Ne D (9u)-0 (22)
SE s et St

¥ € -—r' «

e G ¥ W (d ) (23)
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Thus, we have successfully combined all the physical parameters govern-
ing the motioh of a viscous suspension into two dimensionless constants,
A and /. Equations 20 through 24 represent a "universal" set of e-

quations which describe the basic fluid mechanics of suspension boundary

~

layer flows. These will now be solved for the case of laminar mixing of

a suspension with a clean fluid.

- 5:1
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IV.  Analysis

Consider two uniferm streams which moveipérallel to each ofher‘with
Veloclties_ul and h2’respecfively, say, in the horizontal direction. Let

the stream moving with velocity u > uy have particles suspended in

2> Y2
it. At x = 0, the suspension and the clean fluid begin to mix. Our pur-
Pose is to compute the steady-state growth of the mixing region, the slip
between the phases, and the particle concentration within the mixing re-
gion.
The governing equations for this problem are Equations 20 through
2% with the time dependent terms deleted. In addition, we assume that
mixing occurs at constant pressure, i.e.,
dp
U -::O
d¥

"For the present probleﬁ we define the characteristic velocity by:

—\:L— u, +U, (25)
: 4
and let
. _\
/\. = . i (26)
(i.*‘tha .
represent the average velocity difference of the two streams.
The bouhdary conditions are:
a & ¥ Y = \+ AL
\1(0)15-: Lir,(bjj )‘:: +
* * X
W(x o)= Q\a()()oo) = W+
4 (27)
-*
* *
9 ()()o::,S: ‘
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Unfortunately, Equations 20 through 24 with their accompanying
7 boundary conditons are not amenable to an exact solution for the entire
range of X . We therefore obtain a solution applicable in the initial

portion of the mixing layer, and one valid for the far out mixing region.

Both solutions are obtained in terms of the transform variables

€= X
g
1= =

VX
Where the initial mixing region solaticn is a ‘coordinate perturbation
solution in terms of §n , N being positive, and the far out mixing re-
. glon solution is likewise a coordinate perturbation solutibn where n is
negative. It is readily observed that for the initial mixing region so-
lution the boundary conditions, t}‘ (.o"‘g )= A » and \t( 72; °°3 =+ A
collapse into a single boundary condition at YL-—-—B e ., The question
. that now arises is what sort of initial ( ;30) boundary condition does
the far out mixing region satisfy. Clearly, for it to be a valid des-
cription of our problem in the far downstream region, and not some arbi-
trary large S (small slip) solution, it also must satisfy the boundary
condition i*L LO)-j):. \+_A. . That this indeed is the case, can be noted
from the fact that §‘= ->-‘; expansion in the limit as :..-s,oc is mathemati-
cally equivalent to one in which A~> © . Physically, the latter repre-
Sents a suspension flow in which the particles are permanantly frozen to
the surrounding fluid. The flow field of such a mixture, like that of a
,Pur'e fluid, is similar in the variable FL (which is independentof) )
and, moreover, satisfies the boundary conditi‘o‘ns at ;{- v, Consequently,
the zeroth order term of § -1 expansion also satisfies the initial con-

x
dition at X =© . Finally, it should be noted that the analysis . which
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follows is parallel to the one developed by Singleton [17] for flow over

a semi-infinite flat plate in which slip-shear forces were not incorporated.

The Initial Mixing Region

At the start of the mixing region, to zeroth order, the two phases

f - flow independently of each other. This suggests a solution in terms of
. ‘ A *

4 separate stream function for each phase. We define ¥ and ‘P} , the

dimensionless fluid and particulate phase stream functionsby:

X & ,
9 i * %——\E— ' ©(28)
w = % ) S = - ,})-—‘lﬂ -
R
+ +
AN & & e (29)

Note that the defined stream functions satisfy identically the fluid and
particulate phase continuity relations. Substituting Equations 33 and

34 into Equations 21, 23 and 2% we obtain:




Introducing the transform defined by:

15

- )% Bkef, >

}\\N B"X 347*‘

g — ;z (33)
+
VL — f(i“ (34)
Vi
into Equations30 through 31 we obtain:
N (zq» by WSO i T
> 63 25 Ny S T S "“ };"C
N =¥ ¢ oz 3
gr\.ﬂ, (wﬁ YA ).- (x_v_e) S
N 3@}1 AS ’b"(/ 2T g
LY B? *\"Z:PLB
f >
®5 WL DVL U (36)
ey }q) * = }.jé :
— — - —f.



o/?_
“|

X L3 % . - .
&.&(B%_£§£> g'/z
T 2§ -

16

;_é 28

% T * »- ' Ty
e ﬂ* f'/"ﬁé‘*i(é“’ _R 0% }

X@g 28 W 23 {,L

(37)
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The initial mixing is charactipized by §'<<' . Consequently, we assume
) ¥ >

the following expansions for %), W%,’ and gr .
+ v, 5
W= S (fQ s L0+ S fa GO e ) 69

/ S

A ( + -
B = S (\qb(@*gh\c@J*g - 3 (39)
* SAL |
Sp= \a S « £ Il o o)

Substituting these expansions into Equations 35 through 37 and equating
n
coefficients of f; to zero yields the following:

Equation 35 gives in the zeroth order
iy \ u
{0 v 4 1[9%; -0 o (41)

while Equations 36 and 37 yield respectively

H \\‘
L hohy =0
and

qhe ho =1 (W) o= o

Therefore,

\ Lt)
L\o (.Lo" %y, > ] =0
\
but since ho 74() , Equation 42 yields

ho= Cw_

where C is a proportion constant.
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\
Moreover, since, l’\o ()= |+ A , we obtain:

Iqo _(\+A) (@ (43)

Thus, to the zeroth order the two phases flow independently of each other.
The flow field of the fluid phase is governed by the Blasius equa-
tion (Eq.t1) which for the present case of laminar mixing is subject to

the following boundary conditions:

,gl (+oc)= A | (us)

,{;:)(.-o:ﬂ::\-‘-f\— o (u5)

Note that we are given only two boundary conditions for a third order
‘differential equation. In order to determine the solution exactly we

take
'?o (0\ =0 | : (46

Equation u6 specifies that YL;-:Q. is a stream line. Since, rL—.:o cor-
responds to the iine y = 0, in essence we have assumed that the inter-
face of the two streams remains located along this line. More likely,
this interface will bend and deviate from the originalbline of contact.
Suppose we now write the two phase conservation equations in terms of
curvilinear orthogonal céordinate system, whose x—axis.is in the direc-
tion of the interface, and y perpendicular to it. If we now assume that
the curvature of the interface is small, these equations reduce to the

. governing Equations 22through 26. We feel that this assumption is rea-

sonable, and represents an appropriate approximation for a "first round"
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theoretical solution to a problem for which experimental data is not a-

vailable.
Goertler (4) in a paper on turbulent mixing of two fluid streams

suggests the following method of solution for the Blasius equation sub-

Ject to the above boundary conditions. Let

=0
n
§°= Z‘Z/\*_ }“n(‘@ (47)
h=o ‘
where, ¥ = [/Z — r)\o
Substituting this expansion into Equation 41 gives:
' A (48)
]‘A:\ + Ls H\ =0
W | W (L&Q)
A N |
[\\Y W A\ \ (50)
.Ps.\—zﬁ. rk_s —_:—Z.(H\Pg_ ’\"\11\'\\\
subject to the folloﬁipg boundary conditions:
' (51)
}"L\ (03 =0
\ \ for ¥ —7 o< ()
}L‘ 5) = -\ for ¥ — =<
ol (53)
(\6\ =0 { for 5= *
M
nztl

(54)

RS
5
A
o
-/
it
0
\-h
o
"
>
\
‘\)
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.The solution of Equation 48 subject to Equations 51 and 52 is:
; ¥
W (%) = g @ () d% e
\ o ,
where % X
: 2 - F
W (x) = —*\[—;S e dz
| \ o,
(56)
= €1Y3F (J*\

We approximate the fluid phase velocity by the first two terms of the

expansion, i.e.,

\ .
I (\—»Ae—“frt‘/:ﬁ <7
o
as shown in Figure 1. 0T
The first order modification to the fluid phase stream function, 'f,(()

is obtained from Equation 35 which yields:

1L 0 - ) W Vo i s
RS S NG

We now define .
) l
d) - ’g‘ “C (59)
! NA

Equation 58 can now be written as:

n) 1]

Bl L0 a2 f = Cef (YD) o

i
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The boundary conditions are:

(’p“(aﬂ—-o |
-45‘(‘ \ ' | , (61)
v L° 0
&H (g\ =0

Equation 60 subject to the above boundary conditions was solved numeri-

)]

cally and the results are gi&en in Figure 2. Note that since the partir.

culate phase leads the fluid phase, the first order modification on the
) .

fluig velocity, .f,(T) , is positive. The first order functions h,CQL)

and Kj{Q)as obtained from Equations 36 and 37 are:

R = 2 fornfe) -

'(\+./QL(VC<:~2_K\\ =. VL‘H:‘ 2%, + 2 ( —g: "(H”./L)J (63)

whereJ

R, = (1+A) htQ | (1)

The complimentary solution of Equation 62 is:

Cng+ C,_VC

By the method of variation of parameters, i.e.,
3 | )
H.\(‘() - %-A(r(_)-t— 0 8((’

We obtain for the above particular solution
. =3 o-(_ x) -
A—hL)': = %:ﬁ:&é 3+ L —Ea~—~ ci)(
3 >(4
8 T

B = -Qgggi% - . | (66)

(65)




.......-..lllIIIIIIIII_III----._______

Therefore, the complete solution is

P4@)~ S‘ {Cﬂ &K+C“LfC1{

H!(tOz ‘L& +°CX3 _ZQ(‘L\ C-\-%CLVL
TR

Note that

Lim el A
===

and . .
LA’YV\ JE‘LEE;: - - A=

e

|
2

Since,l4latb = 0, we obtain C, = 0 and Ci = -(1 +A), consequéntly,

(0 éng _&(x) I - l%_%%)_(u-_/\_}

The above expression seems quite reasonable, since in the regime of

large particle slip, the particles do not have sufficient time to ad-

22

(67)

(68)

(69)

(70)

(71)

‘just to local flow conditions, and thus the velocity would also depend

on their initial conditioms, (1 +A), and on integrated effect of their

motion through the flow field. This is in sharp contrast to what will

occur in the regime of small slip, where we shall find the particulate

Phase velocity only a function of the local flow conditioms.

Finally,
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we can show that
'hL(M-, l,‘ll(le = - A+ AD (72)
L

A graphical representation of h;/("f)‘ as obtained bj ’numer'ical integra-
tion is given in Figure 3. Thé‘ first order'partiéulate phase velocity

in the horizontal direction; h; ("U » 1s negative becuase the’ deceJ.era":-
ing fluld phase exerts a drag force on the particulate phase. In 'addi—
tion, the latter experiences a drag force; in the y-direction. The re-

- Sulting velocity is given by:

\ ,—S_F(\\ _ g'A— ( ’(/LL\: _BALl\  (79)

*
A plot of \.yp(l) is given in Figure 4. Observe that the effect of this

" velocity is to transport the particulate phase away from the clean fluid
region.
The first order modification to the free stream particulate phase

density is given by Equation & 3. The latter, after substitution for

! "
L‘l(‘L) and l\( C‘L_) becomes:

K -zkiso o

which after integration yields:

K= G - (75)

Since Kl(ﬁo ) = 0 it must be that Cl = 0, consequently,
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(\(O -0 | (78)

i.e., at the start of the mixing region where £ << ;rthe'dpag ef-
fects do not result in a change of the particulate phase density. This
implies that in this regioﬁ, the increase in the particulate phase den-
sity resulting from the slowing down of the phase in the ﬁ—direction, is
identically counterbalanced by the removal of the particles from the
boundary layer in the positive y—diréction;‘ The higher ordef terms of

Equations 37 and 36 are respectively:

1

W
! — _ 5 S (77)
P<:L - %E“- Ko = hl’ z.ﬂ~?2'

- | 7/ \ 1
S APOINFETRE el NS S IS
e = T ™ 1A <
Equation 77 is immediately integfatable and yields:

Ky = ha O o

\ -

Since K2(¢O ) = h 2(09 ) = 0. Defining,

W, (1A
\xl- 4 3.
A

(80)

Equation 78 becomes:

LR e g

where



—

FeO = 4—(k *%o\ (ﬂfo‘w/
/Y
(\__ Qr—g (%/ZAX ° | (82)

(’“\" /4~

The solution to the homogenous part of Equation 81 is:

| £ 7/’*13( ) (83)
Ho00 =y TAcQ + 7B -

Again, using the method of variation of parameters, we obtain:

0O

F )
= ‘ (81
A(‘(} = g,L_ X S/a X "
. \ o=/ F:(.Y-) .
R = — 3 L —;;;/“; dx . | (85)

Therefore, the complete solution is

3/;& o) Iy ”Z& ‘C_/ FLK) I L_C“(’J,CL'L

7(5'/;__ x 7o
L (86)
and hence
> VL <
S £ ok - ZAS FoOdy vz 2R ™
\* CK,\" AL-YK, -ijL- 4# j{/ x>
SinceAH'nga ) =0, cl = C2 = 0, we hawe
[ =
VoL 3 :/5 F gy -1 VL% g LY (87)
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the clean fluid region. The corresponding decrease in the particulate
phase density of the suspension is determined by Equation 88. We can
show that N

2 Lfm IECE

Lfma KL = 5 e

1::?0 Y:;% w“‘

Since F (O)’; EF)-?H , K, is singular at v = O.i This result is in
-agreement with our notion that in the neighborhood of (O O; the basic
assumption of a particulate continuum would become invalid, due to par-
tlcle denletlon For VL>° K ( \Lz is well behaved. as is :Lllustrated
in Figure 6. Finally, observe that f (VL) -g ('L)/—-/LA ;\ (U/—-/\_
(I+J\-\"\ (‘L/D\— > and X ( Z/) are universal functlons of n » once
calculated provide the first order solution (in the context of the as-
sumptlon made in the analysis) for the problem of mixing of any solid

particle-fluid suspension with a clean fluid.

The Far Out Mixing Region:

In the limit as’ £ -9 <o , the slip between the phases approaches
zero and the suspension flows as a single continuous phase. Therefore,
to the zeroth order, the region specified by (§;’Z 20 s characterized by

the flow of a fluid stream of density$ (HA) and viscosity M. On the
other hand, the particulate demnsity of the originally clean stream at
distances far downstream from the initial point of contact is small,
since the particulate phase which was injected into it has become di-
luted by the continual additicn of clean fluid. Consequently in the far
downstream region, the bproblem corresponds to the mixing of two sfcreams

of equal viscosity but of different demsity. We take this into account
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=+ o
by deflnlng a fluid stream functlon,\"} 1> for \z‘ 0, and another, \sz,

for VLL O Where,

¥ *
>0 *-_.B_j).‘; - Bj‘,\__ (92)
12° %= 37 Lo %%
% *
AL K -—B\\L (93)
w = % ) = x ‘

which identically satisfy the fluid continuity, Equation 20.

A continuum discription of the particulate phase in the far down-
stream region and for VL< 0, is not valid because of the vanishingly
small particulate density. For 12 0 we describe ;the velocity of the

pParticulate phase in terms of slip velocities,

¥ * I
u/’ - QP B (94)
% + ¥ ' _

since we expect that the latter are of order / € .The X- andY-momentum
equations of the solid phase (Eq/)s 23 and 24) in terms of the slip velo-

cities become:

*
-+ du/s }& 4 }L\A BU.
W, —= % == [~ = T
Aok DX DX X%
- >
x T I 22 2w
AR A LA v\ =
EN R R W

(95)
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+ D0 NJI. A (\\r R ) * (3 s
u ——-*3 +Uu |\ T= 4
( 22X D% R % & ‘l >
* * ,/2—
* * \W
L BN T(‘s,,, \
\QE \:* A k\
“\ (%)
and the particulate phase contlnulty equation becomes:
- * :
. "%" RN P(u o) PF (J-(—o’\ O (97)
PL K \a:f "X S

The respective fluid phase momentur equations for the r_egio‘ns(_g > o)

and(g L < O)' are:

. ) *- .
© S &
)\_H \g*j‘ .\é:_\_)\\q‘___’— '__’%3 ..\—A%)r . (98)
x__# >R Ef& }\\
Y

e —— ' (99)

— ' | (100)
Tz o ,

§ - ;g (101)
Equations 95 through 99 in terms of the transform variables become:
T
§V| \"‘Vv . \'_S_' +__ X\V’ ‘
Wzg*a »v:v»@ TR VA m\d\
~W
N b \'/I—-\‘k)“—c Bqﬁ < \4:‘ \
Yk NS
AN B\Pl ‘{_, aL\)l )(\:’:A A } ‘*\)‘ | ’J v . (102)
™ s mg 15“61 =- Ua .
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Rt C\ﬁ‘ \\\) }‘Vz- \"’"’ A \\\) (108)
> \OYL\OS Z.S > S > g/,., BVLA
e
We now assume the following expansions for the dependent variables KP

4- ¥

(PQS Y o Y and ?r.

C‘:V= 5 \'/" TS ;4%(@ <

e\

\
%L‘_(\Q _\,7..) (107)

5 - —1
$z_'=' «gé— (ébL‘”\_} ~ %3/4230’(} —+ §24L0+"' \ (108)

* -\ . _s‘* -y

W, = % W) + 2 hetd x § he U (109)
+ -slx =t/ - |
Up = < 3{@&1 + 5 ﬂ,,(‘@ « € & Q@ * - (110)

%
% \ %’3/'4(’(@ WK ry L*KS@—P‘- (111)_‘

Where the factor (s + 1)1/2 in Equation 107 accounts for the
fact that in the zeroth order the particles affect the fluid only through
their mass. Substituting the above expansions into Equ;tion 105and
equating the sum of coefficients of term of equal pewer in_g to zero

yields:

IS -GNV IS Cam
Vb

(113)

BTSRRI e
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Plus higher order terms. While the zeroth order part of Equations /02

and 103 are respectively:

1\ ' »
! ‘F‘O ‘Fo : (11%)

h4— = L (ARD

35': - F(¢[Z)(7Z;,I)’/2‘ | (115)

Combining Equations 112 and 114 we obtain:

(/3+\3/”1[D ~ (/m)_{; go =0 | e

- \l/ (117)
- x* U 117
| = U
Therefore,
As ‘% “E‘%D =0 (118)
6\3,5(‘3’ | 2~
Let,

(z) - E (f(’iB (119)

Therefore,

n — W , (120)

Thus, as expected, the zeroth order approximation of the suspension
‘flow corresponds to a Blasius distribution but in terms of a vertical
scale modified to account for the mixture density ratio. On the other

hand, the zeroth order approximation of the flow in the lower stream is

~given by:




20 (. ~ _\7_: Qo Za CO o (121)

Where the connected boundary conditions fop Equation 120 and 121 are
o |
F () =+ A
\
S (o) = \—A
F:o(e\ =2° (e)’—:O

(122)

'/1_.. \ W
(AxV) \':o‘(b\: £° D

The last listed boundary condition insures continuity of tangential
" stress, and cdnsequently of pressure across the interface. .It should
be noted that throughout this study we have neglected the shear contri-
bution of the par"ticle‘ layer located at the interface, since the latter
results in higher order modification of the fluid phase velocity fields.
For the far downstre::—lm region, this approximation is further justified

because the zeroth order slip velocity, k4_(°) = 0.

The velocity field formed between two fluid Streams of different
density and/or viscosity which is described by Equations 120 through
122 was investigated by Lock (1951) [10] and Kenlegan (1944) [ 7]. We
Shall' employ the results of the former since the iatter's analysis as-
' Sumes an appfoximate expression for the boundary layer thickness is not

generai and is developed only for the case where one of the fluid streams

is at rest. The results obtained from a numerical solution of Equation

120 'thro_ugh 122 by the method developed by Lock for the case of A =172,
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1, 3 and A =1.0 are given in Tables 1, 2 and 3. Note that the mixing
layer thickness of ‘the suspension is smaller than that of the clean fluid,
and that the interface velocity increases as A increases. Equations

114 and 115 can be written as:

half )= 3R G22)

N
\ — ! / :
— —_7:'_\" ( ’ » (124)

3§("t\ 3
Cped/+

The significant feature to observe here is that.the slip velocities are

proportional to the local flow acceleration, 1/2 Fo Fo'". These results
are quite reasonable since we would expect the particulate phase velocity
for §‘5>\ to be independent of previous history of motion, and governed
by the local flow conditionms. Moreover; the slip velocity transverse to
the main direction of motion is proportional to the local shear gradient.
This is in sharp contrast to the results obtained in the case of £<«d,
where the particulate phase motion was determined by the initial condi-
tions and by the infegrated history of the motion. Finally, it is worth-
while to note that this type of general behavior was predicted by Marble
in reference 12. )
Recall that the zeroth order solution represents the case in

which the two phases move as one phase, i.e., thg particles are frozen
to the surrounding fluid. Consequently, the parficulate phase to the
" 2zeroth order has a velocity in the normal direction given by:

_ o // |
T)’(O) - L——-(vzli—c.«f » S 29

f) —
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Note that the effect of‘this velocity is to transport the particulate
phase from the mixing layer into the main portion 6f the suspension
stream. Graphiéal'representation of Equations 123 through 12 for the
case where A.= 1 and A = 1/2 or 3 ave given in Figures 7 through 9 .
Observe that the slip shear forces result in a migration of the parti-
cles towards the interface of the two streams; However; because

_ gs(O) = 0, migration of particles across this interface dogs not occur.
The particulate phase density distribution is determined by Equation

107 which after substitution of Equations 107 through 111 yields:
\ \ : '
3 = Z C )

which can be written as:

’ \
o (,_:—x- %:Fo‘ Ky = 2-33‘ (Z) (126)

and which after integration becomes:

1

' |
.0 gg, Fo/(%) ﬂ%’ CX} C‘X

[ £

(127)

*
\{5 WD =

Note that the latter is determined not only by the local flow field,
but also by and integrated effect of the lateral slip velocity gradient.

In addition we can show that,

Lin K AN t%}jﬂ (128)
3&;‘;9’0 5‘\QJ) - > *i;co)

Figure 10 gives'K3( %f) as determined by numerical integration of Equa-

tion 127 for the case where /M =1 and A = 1/2, 3. Before interpre-
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tating this curve recall that:
+ VSR x
We Bl N
R3S R
Therefore, to the fifst order,
x . .
S W

*

X
Since Kq is negative at 1+ 0,the particulate phase tends to ac-
cumulate along the interface. Moreover, near the edge of mixing layer
where K'S( VL) = 0, the particulate phase density is diminished as a
result of being convected out of the mixing zonme.

The next higher order modification of the particulate phase density

' Ku( j{’) is due to drag effects and is determined by:

: *
' ‘ ' Ly (130)
EK + ')_ﬂ\(,,_r?_(jc(@-h. —{_\NX
which after simplification becomes: ' ,
' 1 1] -X" F\ F c*l +
Q\(K"—Fo \=F0F¢(VL°‘ o) \(,
. Since, F (0) = d, +
° K " 1 — dI
g Fo 0O ECO(X& - R ) (131)
¥% (o]
k«—(‘( Y= z
LR 6]
It can be shown that: . ' U \
| | o A_R)
Liaen K (,‘L‘ Yo & Lim r [ (132)
4 = *
'{‘90 L z-q ° Fb

= O
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A plot of Ku( :E.L ) is shown in Figure 11,
. ' |
Finally, the first order modification Fy ( ?L) to the fluid veloci-
-ty is determined by:

w ’ _n Py u
E +<'5§1\)7L1L/1F"5+%5Fs“l/‘*%%(]“ cm-\)’lt)

(133)
where

which is valid for the region (g ,2 > 0) and

L

W
A " 3 \ v = O
8 E8.9) ~ Tg, g- B o
which is valid in the r_egioh (g, v £ 0 ) .
The connected boundary conditions for Equations 133 and 135 are:
\ \ \
F?, (QD) = éb (-~
\*‘3 (&) = g,,(cﬂ = O R (136)
\, .
FS CO> = g‘ {o}
( A N e = g} ()

It %s evident, that there are a double infinity of solutions for Equa-
tion 133 through 136 depending on the parameters 4 and <\ . Because for'
_gilven values of these parameters it is not easy to find the appropriate
solution, a numerical solution has up to date not been obtained. Simi-

lar difficulties were reported by Singleton [16]. We do not persue this

L
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matter further since we are primarily interested in particle migration
characteristics and because the latter are not significantly effected by
the first order modification of the fluid phase velocity field. Tech-
niques for calculating the latter in regions of small slip represent a

sufficiently important problem to merit further investigation on its own.
Summary and Discussion:

An analysis of laminar mixing of a suspension stream with a clean
fluid stream which included the effects of both drag and slip-shear
forces was performed. It was shown that the former determine the inter-
action between the phases and the particulate velocity distribution in
the main flow direction while the latter primarily détermine the parti-
culate density field and the particle migrations in the direction normal
to the main flow. It was shown that injection of the particulate into
the clean fluid reg’ion‘is due entirely to the effects of the slip-shear

forces. Moreover, that this injection occurs only within "leading edge"

Porfion of the mixing region where £<<|. In this region particles

exhibit two-directional migration characteristics, where in general the

particles near the interface tend to move towards the clean fluid,

while those close to the edge of the boundary layer move into the un-

disturbed suspension stream. Equation 91 gives the vertical position

within the mixing layer at which the transverse velocity of the parti-

. 3 i w di-
cles is zero, i.e., the particles are mOVing only in the main flo

. 1ip- meter.
rection. This position is 2 function of J , the slip-shear pard

i h
In the far downstream region where § <>\, the slip between the

. spension
phases is small and injection of the particulate from the susp
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into the lower stream does not occur. However, the first order modifica-

tion to the-particle phase bulk transport velocity in the normal direc-
tion is again due to slip-shear effects.- Furthermore, in this £egime
the slip velocities are proportional to the local flow acceleration.
This is in sharp contrast to the results obtained For the case of §<<b
where the particulate phase motiSn was determined by the initial condi-
tions and by integrated effect the d:ag'forcesl

We have determined for the initial and far out mixing regions the
_growth of the mixing layer, the velocit§ field of the phases, and the
number of particles per unit volume. Unfortunately, direct comparison
of these results with eiperimental findings is impossible, due to the
unavailability of the latter. However; in this connection, consider a
series of experiments reported by Karmis, et. al. [6] in which a suspen-
sion was pumped through a tube. It was observed that in those cases
where the s&lid phase lagged the fluid, a particle free zone.developed
near the wall. During these experiments, the Saffman [14] condition of
(Re)k/(Re)p? >> 1 was not strictly fuifilled. The latter varied between
10 and 100 for runs in which the free particle zone was observed. How-
ever, in spite of this, it would appear reasonable in light of our
theoretical findings, that the particle free zone was caused by the com-

ip- s
bined effects of the inertial wall effect and the slip shear force

ine. In
which acted on the particles to move them towards the centerline

i il would
cases where the particles lead the fluid, the slip-shear forces

is indeed
tené to move the particles towards the walls of the tube. Thi

. However
was the case for particles located near the center of the tube ’

i In addition,
i ppated away from 1t.
particles very close to the wall migra

Y our 2 ¥ Y 3 .
b
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lead the fluid)vreported migration towards and particle accumulation at
the walls. . Serge and Silberberg [15] performed experiments on dilute
suspensions of neutrally buoyant spheres‘and observed that the ﬁarticles
migrated to an equilibrium position approximately half way between the
wall and axis of the tube. Whére the two-directicnal migration consisted
of particles near the‘ﬁall moviné inward; while those near the axis moved
outward. |

Recall that the herein predicted two-directicnal migration of par- .
ticles within the suspension stream resulted from the opposing effects
(in the transverse direction) of drag and slip-shear forces. However,
because the vertical component of fluid velocity for tube flow is zero,
transport of particles in the radial direction by means of drag forces
does not occur. Consequently, the phenomena observed by Serge and Sil-
berberg probably have resulted from the opposing effects of slip-shear
and wall forces.

Finally note that the problem of mixing of two streams presents a
unique opportunity to e;perimentally investigate the boundary layer flow
of a suspension in the absence of the wall effects, as such it represents
an ideally suited problem for investigation of thé drag, lift, slip-

shear caused particle migrations.
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NOTATION

particle radius ' _ ..
drag force acting on particle

coefficient in expansion of dimensionless fluid stream
function

coefficient in expansion of dimensionless particulate
slip velocity in the y-direction

coefficient in expansion of dimensionless particulate

stream function, or coefficient in expansion of dimen-
sionless particulate slip velocity in the x-direction

absolute value of velocity gradient

coefficient in expansion of dimensionless particulate
phase density function

transverse force acting on particle

fluid pressure

coefficient in expansion of dimensionless fluid stream function

particle Reynolds number

time |

Cartesian veiocity componénts

Cartesian coordinates

force per unit volume exerted by partiéle on fluid

dimensionless transform coordinate in the flow direction

dimensionless transform coordinate normal to the flow
direction

modified dimensionless transform coordinate normal to
the flow direction

dimensionless time
slip relaxation length for particulate phase
fluid viscosity

kinematic viscosity of fluid



rD =

. ’L‘P =
PE,)
Q =

Subscripts
Kk =

1

Fl
/6 =
Q=

Superscripts

3

Parametric Group

A=R/F
j\=a¢’2yﬁ¢u)=

.y
42(2) (@474-

mass density

slip relaxation time for particulate phase
boundary layer stream function

angular velocity of particle

fluid shear effect
particle
solid, also slip

rotation effect

dimensionless

average

particle density ratio at reference state
average velocity difference between the two mixing streams

particle parameter associated with slip-sheat effects
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Table I

Solution of Equations 120 through 122 for the Case of A=l, s=1/2

| -

X S % ), R 1, %

7 | RO RO | R
0.0000 ~0.0000 ©1.1300 - 0.5886
0.2000 1 0.1658 1.2131 0.5851
0.4000 0.3430 ~1.2951 0.5747
0.6000 0.5319 ©1.3753 0.5573
0.8000 0.7320 11.4523 0.5330
1.0000 - 0.9427 1.5255 0.5023
1.2000 1.1633 ©1.5943 . 0.466L
1.4000 ©1.3934 1.6572 0.4260
©1.6000 1.6319 1.7145 0.3827
1.8000 ~1.8780 - 1.7654 0.3383
2.0000 ©2.1310 ©1.8101 0.2934
2.2000 - 2,3839 1.8u485 0.2502
2.4000 2.6536 ©1.8809 0.2095
2.6000 2.9216 ©1.9080 : 0.1719
2.8000 3.1931 ©1.9299 0.1383
3.0000 ©3.4673 $1.9472 0.1096
3.2000 3.7436 1.9610 0.08u48
3.4000 - 14,0218 © 01,9714 © 0.0645
3.6000 4,3012 ©1.9792 0.0482
3.8000 © 14,5816 ~1.9853 ©0.0352
4.0000 ' 4.,8627 ©1.9894 © 0.0252
4.2000 - 5.1443 1.9923 © 0 0.0177
4.4000 5.4262 1.9945 ©0.0122
4.6000 5.7083 1.9958 0.0083
4.8000 5.9907 1.9968 " 0.0053
5.0000 6.2732 1.9975 0.0038




‘Table 2

Solution of Equations 120 through 122 for Case of A=1, s=1

> % ) K 7%

7 RG) | R | R
0.0000 0.9000 1.0971 0.6067
0.2000 0.1613 1.1828 0.6033
0.4000 0.33L45 1.2673 . ©0.5929
0.6000 0.5194 1.3501 0.5751
0.8000 0.7161 1.4297 0.5506
1.0000 0.9236 1.5054 0.5197
1.2000 1.1414 0.5764 0.4833
1.4000 1.3691 1.6416 0.4422
1.6000 1.6055 - 1.7011 0.3981
1.8000 1.8498 1.7542 - 0.3522
2.0000 2.1012 1.8008. 0.3064
2.2000 2.3588 1.8409 0.2617
2.4000 2.6215 . 1.8749 0.2196
2.6000 2.8886 ©1.9032 0.1806
2.8000 3.1594 S 1.9262 0.1458
3.0000 3.4331 ©.o1.9445 0.1156
3.2000 ©3.7091 . 1.9589 ©0.0897
3.4000 ©3.9869 - 1.9701 0.0684
3.6000 . 4,2660 o 1.9784 0.0509
3.8000 . 4.5463 ©1.98u7 0.0373
4.0000 "4,8272 0 1.9891 0.0267 -
4.2000 5.1087 1.9925 0.0191
4,4000 . 5.3905 ..1.99u47 0.0128
4,6000 5.6727 1.9962 0.0086
L,8000 " 5.9550 1.9972 ' 0.0059
5.0000 6.2375 1.9978 0.0040




Table 3

L7

Solution of Equations 120 through 122 for the case of A=l, s=3

*
7

E(7)

E7)

FS”Z%?)

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000
1.4000
1.6000
1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
3.2000
3.4000
3.6000
3.8000
4.0000
4.2000
4., 4000
4.6000
4.8000
5.0000

0.0000
.0.1506
0.3141
0.4904
0.6788
.8792
.0907
.3126
Skl
L7843
.0322
2.2867
2.5471
2.8124
3.0817
3.3543
3.6296
3.9068
4,1857
4L.4656
4.,7464
5.0280
5.3099
5.5922
5.8745
6.1571

NHHHBP O

1.0198
1.1113
1.2018
1.2902
1.3756
1.4572
1.5336
1.6046
1.6691 .
1.7270
1.7780
1.8222
1.8601
1.8915
©1.9173
©1.9379
1.9544
1.9669
1.9766
1.9837
1.9890
1.9928
1.9954
£1.9970
©1.9982
. 1.9990

0.6477
0.6443
0.6339
0.6162
0.5913
0.5597
0.5221
0.4795
0.4335
0.3852
0.3365
0.2891
0.2435
0.2016
0.1638
0.1302
0.1017
0.0782
0.0585
0.0430
0.0310
0.0223
0.0153
0.0103
0.00689
'0.0046
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