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Abstract

The Self Consistent Ornstein Zernike Approximation (SCOZA), the Gen-
eralized Mean Spherical Approximation (GMSA), the Modified Hypernetted
Chain (MHNC) approximation and the Hierarchical Reference Theory (HRT),
are applied to the determination of the phase diagram of the Hard Core
Yukawa Fluid (HCYF). The liquid-vapor coexistence line and the freezing
line are determined for various Yukawa screening parameters A, which range
from A =~ 2 when the system reasonably mimics the Lennard-Jones fluid, up
to A = 9, when the Yukawa tail becomes so short ranged that the interactions
can be considered fairly similar to those present between macroparticles in
colloidal suspensions and protein solutions.

The comparison of the results obtained with computer simulation data
shows that at relatively low \’s all the theories are fairly accurate, and that
the SCOZA and HRT predict the binodal line and the critical parameters in
a quantitative manner.

At X\ = 4 some discrepancies begin to emerge in the performances of the
different theoretical approaches: the GMSA and the MHNC underestimate
and overetimate, respectively, the liquid coexisting density, while the SCOZA
and HRT liquid branches fall between the two former theoretical predictions,
both appearing to overestimate the critical temperature somewhat. At higher
X’s the GMSA and MHNC binodals further worsen, while the SCOZA remains
qualitatively predictive.

The determination of the freezing line, performed by means of a one-phase
freezing criterion (due to other authors) based on a multiparticle expansion of
the excess entropy of the fluid and on structural information at the two parti-
cle correlation level, is not particularly satisfactory within either SCOZA, the

MHNC, or the HRT;; calculations based on these theories do not reproduce in



fact the shift of the binodal line below the sublimation line which is known
to take place when the HCYF interaction potential becomes sufficiently shor-
ranged. The GMSA prediction for the freezing line at A = 7 and 9, is instead
able to follow in a qualitative manner the evolution of the freezing-sublimation
line of the HCYF as determined through computer simulation studies. Fur-
ther assessments of the freezing criterion predictions which could
be obtained through the use of computer simulation results for the
excess entropy and for the two particle distribution functions, seem
however necessary before drawing any definite conclusion about the
relative accuracy of the various approximations at thermodynamic states near

freezing.

I. INTRODUCTION

As is well known, the hard core Yukawa fluid (HCYF) is one of the simplest model
exhibiting a liquid-vapor critical point. There have been several attempts to describe the
phase diagram of this system in terms of integral equation of the liquid state; in particular,
the Modified Hypernetted Chain (MHNC) approximation [1] and the semi-analytic Self
Consistent Ornstein-Zernike Approximation (SCOZA, [2,3]) have been applied in the low-
value regime of the Yukawa screening parameter A [4,5], with a satisfactory reproduction of
the liquid-vapor binodal line; the SCOZA also provides a remarkably good description of
the critical point region including the nonclassical critical exponent that describes liquid-
vapor coexistence [5]. The liquid-vaﬁor coexistence line, including the critical region, is
also accurately described by the Hierarchical Reference Theory (HRT, [6]) in terms of the
nonclassical critical exponent.

One reason that prompts us to focus on the theoretical investigation of the phase dia-
gram of the HCYF is that when the Yukawa interaction becomes sufficiently short-ranged,

the liquid-vapor binodal line shifts beneath the sublimation curve, and hence the liquid-vapor



critical point and phase equilibrium disappears. One has only fluid-solid sublimation. Such
behavior, already documented by earlier computer-simulation results [7,8], seems particu-
larly interesting in the case of real systems characterized by very short-ranged interparticle
interactions as, for instance, certain colloidal suspensions for which it is not completely clear
whether or not stable liquid-vapor cdexistence occurs.

Also, it has been argued that the location of the binodal line just below the sublimation
line, a configuration in which the metastable critical point is very close to the vapor-solid
phase transition boundary, might represent the most favorable condition for a controlled
nucleation process in the fluid, and hence for a regular growth of crystals [9]. The latter
circumstance is certainly of great interest in protein solutions, systems in which the crystal-
lization procedures do frequently fail to yield crystals of enough large size and good quality
so to allow a confident diffraction study of the molecular structure.

Such a state of the art strongly motivates, in our opinion, an extensive investigation of
the phase equilibria properties of the HCYF, performed by using the most advanced theories
presently available (both semi-analytic and iteratively solvable) and simulation approaches,
aimed to cover a range of A’s much wider than hitherto considered; the analysis should
encompass, in particular, ) values high enough so to reproduce the features of the interaction
potential typical of complex fluids, such as the previously mentioned colloidal suspensions
and protein solutions.

We have extensively examined in the preceding paper (hereafter to be referred to as I)
the performances of the SCOZA, the MHNC, the HRT, and the Generalized Mean Spherical
Approximation (GMSA, [10]), in predicting the thermodynamic and the structural properties
of the HCYF. We have found all the theories are fairly accurate at low X values, when the
potential is sufficiently long-ranged, and tend to worsen in ways that differ in the different
theories for very short-ranged interactions. In summary, among the theories we studied, the
MHNC was found to have the best overall structural and thermodynamic accuracy while the
SCOZA yielded the best equation-of-state predictions, which remained accurate for larger

A’s even at the lowest temperatures and highest densities of our study.
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We complete in this paper the above theoretical scenario by undertaking the determina-
tion of the binodal liquid-vapor and freezing line of the HCYF over the same extended range
of Yukawa screening parameter investigated in paper I. The determination of the binodal is
performed according to convential procedures. The freezing line s determined on the basis of
a one-phase freezing criterion proposed by other authors [11]. The phase diagram predicted
by different theories, namely the SCOZA, MHNC, GMSA and HRT, are compared with the
available computer-simulation studies.

The procedures for determining the lines of coexisting phases and the freezing line are
briefly outlined in sec. II. Results are reported and discussed in sect. III. The conclusions

follow in sect. IV.

II. THEORETICAL PROCEDURES FOR THE DETERMINATION OF THE
PHASE DIAGRAM

The theories and the simulation procedures through which the thermodynamic and struc-
tural properties are calculated have been described in detail in paper I, and we refer the
reader to that work for the details.As far as the liquid-vapor coexistence curve is con-
cerned, this is determined straightforwardly in the HRT, since the condition of
chemical equilibrium between the two coexisting phases are implemented by
the theory itself. In fact, below the critical temperature this approach
yields a diverging compressibility and rigorously flat isotherms in a
certain domain of teh phase plane, which is then identified with the
coexistence region.

In the GMSA, MHNC and SCOZA the determination of the liquid-vapor co-
existence line is instead performed by equating the chemical potential at equal temper-
ature and pressures on the liquid and vapor side of the binodal, respectively. The chemical
potential is obtained from the Helmholtz free energy calculated either by integrating the

pressure along a supercritical isothermal path, or by integrating the configurational energy



with respect to the inverse temperature along an isochore path, starting from a temperature
for which the Helmholtz free energy is otherwise known (for instance from the hard-sphere
limit).

In implementing such a procedure it happens, as already mentioned in I, that both the
MHNC and the GMSA solution algorithms fail to converge to a thermodynamic consis-
tent solution in the critical point region; as a consequence, we cannot display results for
the binodal from these two theories on a restricted temperature range close to the critical
temperature. In light of earlier results that have already come out of both theoretical and
computational studies of HNC-type theories, this difficulty in locating a binodal and crit-
ical point may well be intrinsic to such theories rather than an artifact of our numerical
procedure. (In the HNC approximation, for example, there appears to be no critical point
at which the compressibility computed via the compressibility relation diverges [15,16].)
On the other hand, the study of the analytic structure of the GMSA made in [3] strongly
suggests that the GMSA is an approximation for which the binodal is well defined in the
critical region and at a critical point, which can in principle be located with arbitrarily high
precision, just as in the SCOZA.

We also locate the onset of freezing in our HCYF by monitoring the behavior of the

multiparticle residual entropy [11], defined as
AS = 8ez — 89, (1)

where s, is the the excess entropy of the system per particle in units of the Boltzmann

constant, and

2= =30 [o(r) nlg(r)] ~ g(r) + 1} . )

Our description of the freezing transition hinges on previous results reported in the
literature, from which it turns out [11] that the vanishing of As acts as a quite sensitive
indicator of the freezing transition in several one-component fluids. The possibility that this
same condition can be associated with structural rearrangements that herald other types of

phase separations has also been discussed elsewhere [12].
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II1. RESULTS

The phase diagram at A = 1.8 is shown in Fig. 1. As can be seen, all the theories
reproduce rather satisfactorily the binodal curve as obtained through finite size scaling
computer simulation technique [13].

In particular, as already reported in ref. [4], the liquid branch of the binodal is well pre-
dicted by the MHNC; this theory appears fairly accurate at low temperatures, while it tends
to slightly overestimate the density of the coexisting liquid phase. The opposite behavior is
shown by the GMSA. The results from the SCOZA, previously obtained elsewhere [5] and
from the HRT, turn out to be “bracketed” by the two former theories,‘and appear as the
most satisfactory. Both the SCOZA [5] and the HRT yield non-classical critical exponents
and in particular yield for the exponent that describes the shape of the binodal curve the
values 7/22(= 0.31) and 0.345 respectively. The best renormalization-group estimate of this
value is in the neighborhood of 0.332.

The performances of the different theories on the vapor branch of the binodal are also
very accurate, as seen in Fig. 1.

The critical parameters predicted by the various theories at A = 1.8 are reported in
Table I.

As noted in section Il and also discussed in I, the MHNC and GMSA iterational
algorithms becomes unable to yield a thermodynamic consistent solution for temperatures
too close to the critical one. For this reason the GMSA and the MHNC figures are deduced
from a power-law interpolation of the available points performed with a non-classical critical
exponent, together with the application of the law of rectilinear diameters.

At A = 1.8 the SCOZA [5] and the HRT are in quantitative agreeement with simulation.
The GMSA is also quite accurate. The MHNC [4] is quite good but slightly inferior to the
other three theories.

Some of the theoretical trends emerging at A = 1.8 herald more pronounced deviations

from the simulation results at A = 4. This is visible in Fig. 2, where it appears that on



the liquid side of the binodal the MHNC moderately overestimates, and the GMSA sensibly
underestimates, respectively, the densities of the coexisting phases. The SCOZA is again in
between the two theories; the same is true also for the HRT, but only up to intermediate
temperatures. In fact, above T = 0.55 the HRT binodal is external to the MHNC one. The
critical temperature and density predicted by the different theories are still quite satisfactory
(see Table I).

The case with A = 7 is now considered. The related results are shown in Fig. 3.

Note that the computer simulation results, known from previous studies, show the shift of
the binodal line beneath the sublimation line, a circumstance which implies the metastability
of the liquid-vapor equilibrium.

Some of the theories show now considerable discrepancies with respect to the Gibbs
ensemble Monte-Carlo (GEMC) data. The GMSA result, in particular, appears poor on
both the liquid and the vapor branch of the coexistence line. The MHNC now sensibly
overestimates on one side, and undestimates on the other, the coexistence liquid and vapor
density, respectively. As a result, the simulation binodal falls well inside the MHNC one.

The SCOZA, as for the other \’s, is between the MHNC and the GMSA, and maintains

a qualitative agreement with the GEMC results.

We now focus our attention on the freezing line. As noted in sec. II, previous studies
by other authors indicate that the locus of vanishing multiparticle residual entropy, As = 0,
corresponds with remarkable accuracy to the freezing line of several model fluids. A detailed
discussion of the physical meaning of the As=0 condition in relation to its “coincidence” with
the freezing and other coexistence lines, has been provided elsewhere [12]. We here restrict
ourselves to examine the related resulfs for the HCYF by performing whenever possible a
comparison with the simulation results.

Calculations of the As = 0 loci have been performed according to different theories and
are reported in Figs. 1-5.

As we can first see in Fig. 1, at A = 1.8 the MHNC, GMSA and SCOZA results fall quite



close to each other, and to density functional theory [14]. A calculation of the freezing line
performed by using the Hansen-Verlet freezing criterion with SCOZA structural functions
as input (whose results are not displayed in the figure), yields a freezing line which descends
almost vertical down to a demnsity p = 0.94.

The triple-point temperature, determined from the intersection of the freezing line with
the binodal line, is considerably below the critical one, thus indicating the existence of a
very well-defined liquid pocket.

It is interesting to note that on the vapor side of the binodal the MHNC and GMSA
As = 0 locus practically falls on the estimated coexisting vapor density line. We could
not verify whether anything similar happens for densities close to the liquid branch of the
binodal, because of numerical difficulties in that density region. A trend of As to vanish
seems however conjecturable on the basis of the results shown in Fig. 4 (See ref. [12] for
a discussion about the possible meaning of multiple vanishing of the multiparticle resisual
entropy).

Results for the As = 0 loci at A = 4 are shown in Fig. 2.

We can see that the GMSA falls fairly close to the computer simulation line of freezing,
by moderately overestimating the freezing density. The MHNC and the SCOZA lines are
instead still almost vertical, as in the A = 1.8 case. We have verified that calculations
with the Hansen-Verlet criterion do yield a freezing line hardly different from the one at
A=138.

Similar remarks as for the A = 1.8 case can be made for the vanishing of As along the
vapor side of the binodal, as obtained within the MHNC and the GMSA.

The MHNC and SCOZA loci at A = 7 (see Fig. 3) hardly differ from those at lower \’s.
The GMSA curve, instead, falls now very close to the simulation freezing line although it is
not able to follow the trend to flatten of the sublimation curve at low temperatures. It is
interesting to note, however, that a portion of the GMSA As = 0 locus can be obtained also
in the vapor region, and this is located well above the coexisting vapor density. We could not

follow the As = 0 behavior at intermediate densities due to numerical instability problems.
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An almost flat interpolation between the two branches could however be reasonably assumed.
Actually, as shown in Fig. 5, the GMSA locus, fully determined at A = 9 over the whole
density range, has a moderate dependence on the temperature at relatively low densities,
so to qualitatively resemble the simulation sublimation line. The MHNC As = 0 locus for
comparison stops at considerably higher densities and is located at lower temperatures.
It is also interesting to note that at A = 7 the GMSA binodal is located at temperatures
which are sensibly smaller than those of the As = 0 locus, in a manner which resembles the

relative location of the binodal vs. the sublimation lines obtained through simulation.

IV. DISCUSSION AND CONCLUSIONS

It should be noted that all of the integral-equation approximations we have studied here:
have only been fully defined for the fluid state and not the solid state. As a result, strictly
speaking, these approximations are silent as to the location of the triple point and freezing
line. They are also silent with regard to the location of the vapor-solid coexistence curve
defined for temperatures below the triple-point temperature. Although we believe it is of
considerable interest to combine the results of the fluid-state approximations with freezing
criteria such as the As = 0 criterion to predict freezing and sublimation lines that can be
compared to simulation results, the quality of such predictions clearly cannot be used to
rank the relative accuracy of the fluid theories per se. For this reason we shall summarize
the results for the binodal line before going on to discuss the freezing and sublimation results
and ways of going beyond them.

The binodal results extend and add further support to the general conclusion emerging
from the results of I that the SCOZA predicts with good accuracy the equation of state
over the whole range of potential ranges studied. This turns out to be especially true in
the liquid-vapor critical region and leads to the most accurate overall binodals among the
theories we have considered.

At low X’s (A = 1.8), that is when the potential is long-ranged, all the theories inves-
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tigated reproduce with considerable accuracy the simulation phase diagram; the SCOZA
and the HRT, as already known from previous studies, are also able to successfully describe
the critical point region and predict non-classical critical exponent. At higher A’s (A > 4),
that is when the range of the Yukawa tail reduces, significant differencies emerge in the
performances of the various theories.

The SCOZA is able to maintain good agreement with the computer-simulation binodal,
while the GMSA and the MHNC predict a somewhat wider liquid-vapor coexistence curve
than simulation. The GMSA and the MHNC somewhat underestimate and overestimate,
respectively, the coexistence density on the liquid branch; the HRT also yields too high a
critical temperature starting from A = 4.

We turn now to the solidification criterion. The freezing line, as determined either
according to a criterion based on the vanishing of the residual multiparticle entropy As, or
according to the Hansen-Verlet criterion, is not as satisfactorily predicted as the binodal
line. In fact, the SCOZA, the MHNC and the HRT yield a freezing density which is not
significantly sensitive to the variation of the potential range as is known, instead, to be
the case; in fact, simulation studies at A > 7, show that the solid-liquid coexistence line
actually becomes a sublimation line running above the (metastable) binodal line, with the
liquid-vapor critical point falling just beneath the vapor-solid transition line.

The GMSA As = 0 turns out to be able to follow in a qualitative manner the modifi-
cation with A of the freezing line. In particular, at A = 9, the locus of vanishing residual
multiparticle entropy shifts well above the liquid-vapor coexistence line in a manner which
fairly mimics the relative location of the freezing and binodal line in this A regime.

A natural way of extending the integral-equation theories we consider to the solid phase
is to incorporate in the theories the form that one expects of the direct correlation function
for the crystal symmetry (or symmetries, if more than one is in contention) associated with
the expected solid. One can then find the most stable phase for each p and T by comparing
the free energy of the solid or solids in contention with the fluid-free energy, and selecting

the minimum. This procedure is at the heart of those versions of density-functional theory

12



that incorporate Ornstein-Zernike formalism.

For the versions of the SCOZA and the GMSA considered here this would entail using
in place of the Yukawa of eq. (6) an appropriately parameterized functional form that is
consistent with the symmetry of the solid into which the HCYF fluid is expected to freeze.
For the modified SCOZA/GMSA given in paper I by its eq. (15), one would instead use a
Bys(r) appropriate to solid symmetry to characterize the solid phase. Similarly, the MHNC
can be modified to describe a solid phase through the use of a hard-sphere bridge function
appropriate to the solid in eq. (3) of I.

Such generalizations represent a formidable computational challenge. But our results
here indicate that on the basis of currently available freezing criteria, fluid-state integral-
equation theories cannot give reliable results for phase separation when the attractive term

becomes extremely short-ranged.
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TABLES

TABLE I. Theoretical and simulation critical point parameters. {: Finite-size scaling
Monte-Carlo simulation of ref. {13); §: Gibbs ensemble Monte-Carlo simulation of ref. [8]; {: MHNC

calculations with Verlet-Weis bridge functions of ref. 4]

A=18 A=4.0 A=170

Ter Per Ter Per Ter Per
MC 1.212 (2)t 0.312 (2)t 0.576 (6)% 0.377 (21)8 0.411 (2)8 0.50 (2)8
GMSA 1.199 0.312 0.576 0.324
MHNC 1.193 0.326 0.581 0.412
MHNC? 1.21 0.28
HRT 1.214 0.312 0.599 0.394 0.435 0.424
SCOZA 1.219 0.314 0.591 0.3895 0.419 0.4575
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