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1. INTRODUCTION

The object of this article isto illustrate the incorporation of
spectroscopic information into the radiative transfer equations, and to
present a reasonable means of treating radiative energy transfer within
gases. Specific restriction is made to infrared gaseous radiation,
which results from molecular transitions involving both vibrational and
rotational energies, and emphasis will be placed upon the application
of molecular band models to radiative transfer analyses. In a sense,
the present chapter ney be regarded as a continuation of the chapter
appearing i n Volume 5 of Advancéés in Heat Transfer by C.L. Tien, within
which detailed information regarding vibration-rotation bands is included.
Consequently, the present chapter will only briefly review vibration-
rotation spectra, while the main objective will be to apply band infor-
mation to the formulation of radiative energy transfer within gases, i.e.,
to the application of local conservation of energy within a gas.

The chapter is divided into several sections, and the following
section, Section II, briefly reviews infrared band spectra, introduces
very simple band models, and proceeds to discuss the formulation of total
band absorptance information with the aid of these models. The basic
equations describing radiative transfer within an infrared absorbing-
emitting gas are formulated i n Section III, and these allow for radiatively
induced departures from local thermodynamic equilibrium. The final
section, Section |V, presents some illustrative radiative transfer
analyses, with emphasis upon physical interpretations and the relative
importance of thermal radiation versus molecular conduction as energy

transport mechanisms.




II. BAND ABSORPTANCE MODELS

The purpose of this section is to formulate and discuss spectro-
scopic models describing the total band absorptance for infrared
radiating gases. As will be seen in Section III, the total band -
absorptance plays an essential role in describing the equations for the
radiative energy flux. First, however, it will be necessary to review
briefly several aspects of the basic structure of vibration-rotation
bands. As previously discussed, no attempt at completness will be made,
since a description of infrared band structure has been given in the

P

article by Tien (1).

A.  BAND ABSORPTION

Infrared absorption and emission of thermal radiation is a consequence
of coupled vibrational and rotational energy transitions. Quiteobviously,
a diatomic molecule is the simplest molecule which will undergo such transi-

tions. However, symmetric diatomic molecules, such as 0, and N have no

2 2°
permanent dipole moment, and thus they are transparent to infrared
radiation.l For unsymmetric diatomic molecules, such as CO, the infrared
spectrum will consist of a fundamental vibration-rotation band occurring
at the fundamental vibrational frequency of the molecule; i.e., the band
arises due to an energy transition between two adjacent vibrational energy
levels. Vibrational transitions spanning three vibrational levels produce

the first overtone band located at twice the fundamental frequency of the

molecule, and subsequent overtone bands occur at higher multiples of the

]'Symmetric diatomic molecules may have pressure-induced bands which can
play a significant role in atmospheric radiation. For example, infrared
transmission by hydrogen is important in the atmospheres of the Jovian
planets (2,3).




fundamental frequency. In general, the overtone bands are quite insig-
nificant relative to the fundamental band.

The picture is much the same for polyatomic molecules, except that
these have more vibrational degrees of freedom. For example, carbon
dioxide is a linear triatomic molecule and thus possesses four vibrational
degrees of freedom. The two bending frequencies, however, are identical,
while one of the stretching modes is symmetric and thus has no permanent
dipole moment. Consequently, carbon dioxide has two fundamental bands.
In addition to fundamental and overtone bands, the infrared spectrum of
polyafomic molecules also includes combination and difference bands which
occur at linear combinations or differences of the fundamental frequencies.
Again choosing carbon dioxide as an example, the important infrared bands
are the 15u and 4.3p fundamental bands and the 2.7y combination band.

While the location of a vibration-rotation band is described by the
associated vibrational transition, the band structure is governed by
simultaneous rotational transitions which accompany a vibrational
transition. As a consequence of the unequal spacing of rotational energy
levels, the coupled vibration-rotation transitions occur at discrete
frequencies located about the vibrational frequency. The resulting
band structure in turn consists of an array of discrete rotational
lines.

Before proceeding, it should be mentioned that while a vibrational
transition is always coupled with a rotational transition, rotational
transitions do occur by themselves. Since the transition energies are
very small, the resulting spectrum is normally in the microwave region
and has no influence on infrared radiation. There are exceptions, such

as water vapor which possesses a pure rotation band in the far infrared.




Often, however, this pure rotation band is treated in a manner similar to
a vibration-rotation band.

In order to describe the absorption characteristics of a vibration-
rotation band, it is first necessary to consider the variation of the
spectral absorption coefficient for a single line. For infrared
radiation, the most important line-broadening mechanism is pressure
broadening (1), and the variation of the spectral absorption coefficient

with wave number is given by the Lorentz line profile as

n
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Here " denotes the volumetric absorption coefficient, and w is wave
number (E)w = v/c where ¢ isthe speed of light and v the frequency).
The rotational quantum number is denoted by j, such that the subscript
j refers to a specific line within the band. Thus the wave number
location of theline is wj, -and Yj and Sj refer to the half width
and intensity of the line, respectively. For the time being, no

distinction will be made between total and partial pressures. The line

intensity is defined as

K .
s, = Jo % —w, 2
3 /. 5 d (w wj) (2)

and this is consistent with eq. (1). The line intensity may be described

in terms of the molecular number density and Einstein coefficients, and

for a perfect gas it follows that Sj is a function solely of temperature.
From kinetic theory, the line half width may be shown to vary with

pressure and temperature as




Y. " 2 (3)
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Wae detailed quantum mechanical calculations again show the linear
dependency upon pressure, but indicate that the inverse square-root
variation with temperature is often true only for the band wings (large
values of 3j). Agan considering CO2 as an example, Yamamoto, Tanaka,
and Aoki (4) have shown that the temperature dependency of the line
half width may be described by Y5 " T_nj, and that nj approaches 0.75
for small 3j, decreases with increasing j to approximately 0.3, and
then increases with a further inarease ii § to the kinetic theory value
of 0.5.

The Lorentz line profile, as described by eq. (1), is illustrated
in Fig. 1. There are two points worth noting. The first is that in-
creasing pressure broadens the line, and, with respect to a complete
band consisting of many lines, this will at sufficiently high pressures
lead to a smearing out of the discrete line structure. The second point
is that the maimum absorption coefficient, which occurs at w = wj’ is

invariant with pressure, since
(u)

from eq. (1), while Yy P.

It remains to describe the variation of line intensity with rotational
quantum number, and for present purposes the simple model of a harmonic
oscillator and rigid rotor will be assumed. Following Penner (5), and
assuming a large number of lines (large j), the variation of Sj with
j is

;s : 2

- ShcBj _ heBj
Sj T eXP ( P ) (5)
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where h is Planck's constant, k Boltzmann's constant, and B the
rotational constant of the molecule. Furthermore, S denotes the inten-
sity of the total band, such that

K
Tw d (w—wo) (6)

(o3
{ze]

S = [f

where W is the wave number at the band center. 1t should be realized,
of course, that the integration limits in eq. (6) imply integration
over the entire band, as opposed to eq. (2), where the limits indicate
integration over a single line.

A further consequence of the rigid,rotor approximation is that the
lines are equally spaced, with the spacing d = 2B. Consequently, the

line locations maey be expressed in terms of wave number by

w - w = % 2jB | (7

Combination of eqgs. (6) and (7) allows a continuous representation of
Sj with wave number, and this is illustrated in Fig. 2. In actuality,
for a real band the two branches (F and R branches) are not symmetric,
while vibrational modes involving bending exhibit a third central
branch (Q branch). Nevertheless, the present simplified model will
serve the purpose for which it is intended; i.e., to illustrate the basic
features of the total band absorptance.

With regard to the variation of «,  over the entire band, this
will consist of the superposition of the contributions from the individual

lines, such that

P S.v. » :
|<=2_'<.=-z_.__3_l__. (8)
x| ™3

It is further apparent that




.,.uouo.ngwwn.damagm:wowoUHcospmnmpom mm moao.mpmwhm\w,.w.wﬂ

1eM [
2y/m-m

v.N | 1 0 |- . 2-

-




where the factor of two is included to account for both branches. Again

assuming a large number of lines, the summation may be replaced by

integration, and employing eq. (5)
5=2/,54dj=5

which illustrates that the separate applications of the assumption of
a large number of lines are mutually compatible. Since Sj isa
function solely of temperature, the above equation additionally illustrates

that the band intensity is a function only of temperature.2

B. BAND ABSORPTANCE

The spectral band absorptance is defined as

@ = l-e ¥ (9)
The physical interpretation of @, is that it is the fraction of energy
which is absorbed when a beam of radiant energy passes through an iso-

thermal slab of gas of thickness y. The total band absorptance is in

turn
= r° - ‘ (10)
A { o d (w wo)

where the imtegration over the single band is again implied. The physical
interpretation of the total band absorptance is not as simple as for its

spectral counterpart a,- For present purposes, it will be sufficient to

2While the conclusion is correct, the situation isreally not this simple,
since summation over vibrational quantum number has been ignored.
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state that the total band absorptance will be needed |ater to generate
the kernel function in the radiative flux equations.
A convenient form of eq. (10) follows to be
oD KW
A = {w [1-exp(- j;-Py)] d (w—wo) (11)
Fromeqg. (8) it isevident that k /P depends both upon pressure and

temperature, such that
A = A(Py, P, T) (12)

It is important to note the dual role that pressure plays. |ts appearance
in the'pressure path length, Py Is due simply to the fact that absorp-
tion is dependent upon the number of molecules which are present along a
line of sight. The second dependency upon pressure is a result of the
line structure of the band being a function of pressure. For sufficiently
high pressures the line structure is smeared out, and in this limit
pressure enters solely through the pressure path length py. Thiswill

be illustrated in quantitative terms later.

In the following two subsections, simple band models will be employed
to illustrate certain basic features of the total band absorptance. There
is, however, one important limiting form of A which is completely
independent of the band model, and this applies when k y << 1; i.e., for
the conventional optically thinlimit in radiative transfer. Upon expand-

ing the exponential in eq. (11), then

K
A =Py [ & d(w-uw) = PyS (13)

This is the so-called linear limit, and the important feature of this

limit is the fact that the total band absorptance is independent of




1

rotational line structure.

A second limiting form for the total band absorptance is that of
strong nonoverlapping lines. Although the actual limiting result for A
depends upon the band model employed, the conditions for achieving this
limit may be discussed in general terms. The limit requires that two
separate conditions be satisfied. The first is the requirement of strong
lines, for which total absorption occurs in the vicinity of theline
centers. From eq. (9), this is equivalent to requiring that Ky3Y >> 1 for
w=mj, and upon combining this with eq. (4), the strong line condition

becomes

S.Py
— >> 1 (14)
]
The second condition pertains to nonoverlapping lines, and the

motivation for this limit is to be able to employ the expression

A. (15)

A=13
53

where Aj is the total absorptance of a single line

Aj = {: (1~e—ijy) d (w—wj) (16)
with the integration being performed over the individual lines. Equation
(15) is, of course, applicable only if the integrands in eq. (16) do not
overlap, since eq. (15) constitutes simply a summation of individual
line absorptances. Wha is required, then, is that the integrand in
eq. (16) approach zero for W—Wj = 0(d), where d is the line spacing.

With reference to eq. (1), the nonoverlapping line limit will be satis-

fied providing

] << 1 . (17)
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" At this point, it should be noted that if we were to allow Yj 2 0(d),

then eq. (17) would yield

¥

’8.P
5y

P << 1
Y.
YZ)

and this is a direct contradiction to the strong line condition of eq. (1&).
Hence, to avoid this contradiction it is necessary to require that & << d.
The conditions which must be satisfied in order to achieve nonoverlapping

lines are thus

Y. . .
F<r, =L« - (18)
7d

where the second condition follows from eq. (17). The above conditions,
together with eq. (1), describe the strong nonoverlapping line limit.
The application of these three conditions in deriving thislimit will

be illustrated in the following subsection.

C. ELSASSER MODEL

The simplest band model that accounts for line structure is the
Elsasser model, for which equally spaced lines of equal intensity and
equal half width are assumed. A portion of such a band is illustrated
in Fig. 3, where the broken curves represent the absorption coefficient of
the individual lines, while the solid curve is the absorption coefficient

as given by eq. (8), and this may be rephrased as

K S.vy o
TR B 1 (19)
P w

j=o Y2+(w—moijd)2

The subscript 3 has been dropped from Y3 in accord with the previous




Fig. 3.
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aésuihption, but it isretained in Sj’ even (though Sj is'independevnt of
j, inorder to denote that this is aline intensity. Carrying the
summation to infinity does not preclude restriction to afinite band
width (finite number of lines), but is merely consistent with the earlier
assumption of a large number of lines. The above series may be expressed

in closed form as (6)

K S.
= b inh(g8/2) ‘ 20
-E- a [coshi%lé?.?g—cos(nz/ﬂ] (20)
where .
B = %Y‘ s 2 = _q(wawo)_

The quantity B is a particularly significant parameter, since it
represents the role of line structure. Recalling that y v P, thelimit
of large pressure corresponds to B + », Thisis thelimit for which

line structure is smeared out, and eq. (20) reduces to

Ky il
] (21)
The ratio Sj/d also has an alternate interpretation. If an average

absorption coefficient is defined over a line spacing as

K d/2 K
- 4 w
p -3 flapn 7 d (0-ug)

it follows from eq. (20) that E'w/P = Sé/d.
The wave number width of the total band will be denoted by Ao, and

letting n be the number of lines in the band, then Al = nd. Furthermore
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and the total absorptance of the Elsasser band follows from egqs. (11) and

(20) to be

A ' '
_ 0 2 . _ u sinh(nB/2)
A = 2 fo {1-expl cosh(wB/2)-cos(mz/2)

1}dz - (22)

where u is a dimensionless pressure path length defined by

- SPy
U=
[o}

Equation (22) has a form that is characteristic of all band models,

namely that the total absorptance may be expreséed as

g

A=A, A(u,B) | ‘ ~ | (23)

where A(u,B) is a dimensionless function. Recall from the previous

discussion that pressure enters into the band absorptance in two ways, both

through the pressure path length and a line structure effect. This dual
role is clearly illustrated by eq. (23), since u is a dimensionless
pressure path length, while g is a line structure parameter.

Consider now limiting forms of the total band absorptance. The linear

limit, applicable for u << 1, readily follows from eq. (22) to be

A=uj; u=<<l (24)

and this is consistent with eq. (13). Note once again that line structure
plays no role in the limit of small path lengths. In the large path length

limit, u>>1, and eq. (22) yields
A=1; u>1 (25)

Physically, of course, this represents total absorption within the finite-

width band. It should be emphasized, however, that more realistic band
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models yield considerably different results, aswill be illustrated in
the next subsection.
A third limit corresponds to strong nonoverlapping lines, and following

Penner (5) or Goody (6), eq. (22) mey be reduced to

R = err G V0 (26)

subject to certain constraints. As discussed by Penner (5), these consist
of B << 1 and u/B >> 1. With reference to egs. (14) and (18), the remain-
ing requirement for the strong nonoverlapping line limit is Bu << 4, for

which ‘eq. (26) yields iy -

A= vBu;.B<<d, u/B >> 1, Bu << 1 (27)

This is also referred to as the square-root limit.

A final Iimiting form of eq. (22) is that for which line structure

i S smeared out, and letting B -+ =, then

7\-=l-e_u;B>>l (28)

A's should be expected, this is simply Beer's law.

The Elsasser band absorptance is illustrated in Fig. 4, and the various
limiting forms are clearly evident. For u << 1, the linear limit, A = u, is
obtained, with the band absorptance being independent of line structure.

The three constraints on the=$quare-root |imit are also apparent. This
limit requires g << A, but it still departs from the complete solution
for either large or small u. The departure for small u denotes a
violation of the requirement that u/g >> 1, such that the strong line
condition is no longer satisx;,i;ad. For large u, the condition Bu << 1 is

not fulfilled, and eq. (15) is no longer applicable. The present large
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path length limit, A = 1, simply denotes total absorption within the
band, and this is a consequence of the Elsasser model having a pre-
scribed finite width. For a more realistic band model, as described in
the following subsection, the total band absorptance will asymptotically

approach a function of u rather than unity.

D. RIGID-ROTOR, HARMONIC-OSOLLATOR MODEL

Assuming the molecular model of a rigid rotor and harmonic oscillator,

the distribution of line intensities is given by eq. (5), while the line
spacing corresponds to eq. (7). < Lorentz line shapes will again be
assumed. In contrast to the Elsasser model, there is no defined band
width, since the line intensities approach zero asymptotically in the
band wings. Thus, the bandwidth parameter Ao will not correspond to
a simple specified width, but instead will arise as an effective width
resulting from the line intensity distribution of eqg. (5). No attempt
at a complete formulation of the total band absorptance will be made,
however the limiting expressions will be presented. Since the linear
limit is completely general, then eq. (24) is applicable to the present
band model.

Considering the large path length limit (u >> 1), it will be
convenient to initially assume a high pressure such that line structure
is smeared out, which corresponds to the limit g - . Thus, in accord
with eq. (21), and upon combining eqgs. (5), (7), and (9), the spectral
band absorptance is described by

_gz
a, = 1 - exp(-ute ~ )

where again u = SPy/AO, while

(29)

- meeres et
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& =k(w—wo)/Ao

A, = VKBT/he ' ' | (30)

Furthermore, since the band is symmetric, and with A= A/Ao, then
A= 20 aw(g)dg (31)

Combination of eqgs. (29) and (31) thus describes the total band absorptance
inthelimit as B - =, and numerical results are given by Penner (5).
Concerning an asymptotic expression for large u, one procedure is to
combine eqgs. (29) and (31) and perform #n asymptotic expansion. A
physically more useful method, however, with reference to the inclusion

of line structure, follows that employed by Edwards and Menard (7). Upon

defining
gl = Y1lnu
eg. (31) mey be written as
A= 2T, + 2T, (32)
where
El _€2
I‘l = J 7 [l-exp(-ute )lag
(o]
2
I‘2 = J° [l-—exp(—uge“‘E )lag
51
It may readily be shown that for u>> 4
ry > Y1nu ' (33a)
r, <1/2 : (33b)

2
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Thus, the large path length Iimit follows to be
A=2Vlnu ; u>1 (3w

While eq. (34) has been derived subject to the condition B + =, it

is easily shown that this restriction may be removed. With reference to
Fig. 5, I'l denotes the area of the saturated portion of the band, and the
inclusion of line structure will not alter eq. (33a) as a proper asymptotic
l[imit. Thus, only I‘2 will be affected. Again with reference to Fig. 5,
if the region 5 > t:lis considered to consist of a series of Elsasser
bands, it follows that the incIL];sion of line structure will result in
a. decrease in I‘2- and eq. (33b) is again valid. Equation (34) therefore
constitutes the asymptotic |imit for the total band absorptance regardless
of the value the line structure parameter B.

The third limit is the square-root limit, and recall that this

corresponds to strong nonoverlapping lines. For strong lines, the Lorentz

line profile, eq. (1), may be expressed by (6)

K . S.y.
). JJ
P 2
(w"'wj)

and upon substituting this into eq. (16)

. Aj'= 2¢SijPy

In turn, from eq. (15)

VS,

* [+¢] [
‘A= 2T A, = 4 I VS.y.Py =4 v¥Py

j=o

W8

3

where y' is a rotationally a"ve:r_aged mean line width defined by
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Again employing the assumption of a large number of lines, then
A = 4/yPy I: /S—jdj

ad upon combining this with (5), and noting from eq. (7) that d = 2B,

it follows that

A= 23" r(3/u)/spon(uy/d) (36)

At this point it should agai‘r'1 be emphasized that summation over
vibrational quantum number has not been taken into-account. While
this has no direct bearing on the linear and large path length limits,
since the band intensity S already denotes a summation over vibrational
quantum number, it does affect the interpretation of the mean line width,
Equation (36) is true only when all transitions have the same lower
vibrational state, Upon letting v be the quantum number of the lower

vibrational state, then eq. (36) should be recast as

- ,3/4
A, =2 r(3/4)¢BvaAo(uy/d) (37)

where SV represents the distribution of intensity with vibrational
quantum number, such that S =V:E°o SV. It has been assumed in eq. (37) that
the rotationally averaged line width y is independent of vibrational
quantum number v, and this has been confirmed by Yamamato, Tanaka, and
Acki (4) for CO2.
Following Edwards and Menard (8), and Edwards (9), it will further

be assumed that rotational lines resulting from different vibrational
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levels do not overlap, and the total band absorptance may thus be written
as

[+4]
A= vgo AV ) (38)

From eq. (37), it follows that a vibrationally averaged mean line width

may be defined as (8, 9)

T = y( I /BTS2 (39)

V=0 V

Thus, upon letting B = 4y/d, the square-root |imit follows from egs.

{37) and (38) to be
A= 2.06/Bu 3 B <<, u/B>> 1, u<<1 (40)

At sufficiently low temperatures, for which only the vibrational
ground state is populated, eq. (39) will reduce toy = y. As temperature
increases, however, the summation in eq. (39) will become a significant
function of temperature, and the temperature dependence of Y mey differ
substantially from that of y. To give an illustration, consider the
4.3y fundamental band of COZ' Employing the Yj(T) results of Yamamoto,
Tanaka, and Aoki (4) in eq. (35), the temperature variation of y(T) may

be expressed by

Y = yer (u1)
o]
and for temperatures of roughly 300°K and lower, this should adequately
describe Y(T). Edwards and Menard (8), on the other hand, have found an
aver age temperature dependence for the range 300°K to 1390°K of

N 1/2
Y = VTG (42)
. |
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The discrepancy between eqs. (41) and (42) implies a rapid change in the
temperature dependence of Y as temperature iS increased.

The primary utility of the present molecular model of arigid rotor
and harmonic oscillator has been to illustrate limiting solutions of the
total band absorptance for a semi-realistic molecular model. One important
conclusion is that line structure appears only in the square-root [imit,
and thus thislimit has been employed to describe the mean line width
as defined by egs. (35) and (39).
E. BAND ABSORPTANCE CORRELATIONS ’

While the preceding subsection dealt with limiting forms of the
total band absorptance, it is necessary to have at hand an expression
for A(u,B) which is applicable for all values of u and B. Several
such expressions are available, and they are all based upon constructing
an expression for A(u,B) which satisfies certain limiting conditions.
For present purposes, the same |imits as employed by Edwards and Menard

(7) will be used, and these are

K =u 3 u=<<l A ‘ (43a)
A=2/Bu ;3 B<<1l, uB> 1, Bu<<1 (43b)
A=1lnu ; u> 1 (43c)

While Edwards and Menard interpreted the above in terms of a reordered
exponential distribution of line intensities, a slightly different explana-
tion will be given here. The first limit, eq. (43a), is simply the

general linear limit, while eq. (43b) is essentially eq. (40) for the

rigid rotor and harmonic oscillator. The third limit is of a different
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form than that of eq. (34) for therigid rotor and harfnonic oscillator.
For moderately large values of u the two expressions are in reasonable
numerical agreement, but for increasingly large u they begin to diverge.
The rational for using eq. (43c) is twofold. First, Edwards and Menard
have shown that a logarithmic limit is attained for nonrigid rather than
rigid rotation, and second, existing emperical correlations are of the
same form as eq. (u43c).

The first band absorptance correlation to satisfy all three limits
is that proposed by Edwards and Menard (7), and this consists of an

analytic interpolation of the form "

B < 1: A=u ; A<B
A= 2/ug - B ; B<,K<(2“B)
A = 1n(Bu) + (2-8) ; A > (2-8)
B> 1
A=u ;s A <1
A=lnu+ 1 i A>1

By comparing the above correlation with experimental data over a large range
of pressure and temperature, Edwards and coworkers have empirically
determined the necessary correlation quantities S(T), AO(T), and B(T,Pe),
where Pe is the effective broadening pressure, for the important bands

of CO, CO H.0, and CH4. In determining B(T,Pe), both self broadening

22 72
and nitrogen broadening were considered. These results are summarized by

Edwards, et al (10)3. In particular, for the CO fundamental and the 6.3u

3The correlation quantities ¢, and C, of reference (10) correspond to
the present nomenclature through Ay = Cy and S = C;/RT, where R is the
gas constant.
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fundamental of HZO’ it was found that

/2

Ao = l.gl(kBT/hc)l (44)

and this is in excellent agreement with eq. (30).
A continuous band absorptance correlation has been proposed by Tien

and Lowder (11), and this is of the form

A= 1n{uf(e)[5;—;—;-’(2—5] + 1} (45)

where

£(B) = 2.94[1-exp(-2.608)]

The choice of eq. (45) was based on the specification of five conditions,
and the form of £(B8) was chosen so as to give agreement with the correlation
of Edwards and Menard. The square-root limit, eq. (43b), was not, however,
one of the specified conditions, and eq. (45) does not satisfy this
requirement.

A continuous correlation for A(u,8) has also been proposed by Goody
and Belton (12), and in terms of the present nomenclature this may be
written as

/B u ]
Yutlip

A =21n[1+ (46)

Although this correlation satisfies the three limits as specified by egs.
(43), there appears to be one shortcoming. Upon letting B + «, which

corresponds to smeared out line structure, eq. (46) reduces to

A = 2 1n (1+u)

and for large u thisyields21lnu, while in the linear [imit 2u 1S obtained.

The linear and logarithmic limits are, however, independent of line structure,
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' such that egs. (43a) and (43c) should be achieved irrespective of whether
one does or does not let B8 -~ «, Thus, it would appear that the use of
eg. (46) should be restricted to relatively small values of 8.

A fairly simple correlation, which does satisfy the above constraint,

in addition to all of eqgs. (43), is of the form

A =2 1n[l + 1 ] (47)
2 + Yu(l+1/8)

Preliminary comparisons indicate that eq. (47) does an excellent job of

correlating band absorptance data for COZ‘

»
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III. BASC EQUATIONS

In this section the basic equations will be developed which describe

the radiative flux vector within an infrared absorbing-emitting gas.

Knowledge of the radiative flux vector, Is of course necessary in

ch’

any conservation of energy analysis, since the energy equation for a

radiatively participating gas is of the form

DT 4 + D2 _ g
ot = div(igrad T) 5t - div qr§ (u8)

where p, and A denote density, specific heat at constant pressure,

CP’
and thermal conductivity, respectively. "With reference to eq. (u48), it
IS necessary to have a description of ar in terms of temperature within
the gas, and this is precisely the purpomse of the present section.
Strictly speaking, eq. (48) applies only to a molecular continuum
under the condition of local thermodynamic equilibrium (LTE). The energy
equation may, however, be extended to radiatively induced departures from
LTE, and such extension is particularly appropriate to infrared transfer.
This simply requires replacing s in eq. (48) by its non-LTE counterpart.
At the same time, however, it mu;'t be assumed that any departure from
equilibrium population distributions will not significantly change the
internal energy and transport properties from their equilibrium values.
As discussed by Zel'dovich and Raizer (13), this assumption is justified
providing the characteristic vibrational temperature hv/k (where v is a
band frequency) is greater than the vibrational temperature. Thus, the
temperature appearing in eq. (48) will be regarded as the kinetic temperature.
Radiatively induced departures from LTE occur when the gas molecules

either emit or absorb radiative energy at such a high rate that collisional
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equilibration cannot maintain a state of equilibrium between translational,

vibrational, and rotational energies. Rotational energies, however, require

only a few collisions to attain equilibrium, and significant departures

from LTE will first involve soleiy vibrational energies. It may further

be assumed that even for non-LTE, vibrational energy levels are populated
according to the Boltzmann distribution. However, this distribution does
not correspond to the local kinetic temperature, but instead is governed
by a separate vibrational &éﬁp;r;ature.

In summary, the purpose of the present section is to develop an
expreséion for the infrared rad:;z::ative flux vector, and to allow in this
development radiatively induced departures from vibrational equilibrium.
In describing the radiative flux, the Kernel function will be expressed
in terms of the total band absorptance. This approach is analogous to
the LTE formulations of Goody (6), Gille and Goody (1u4), and Wang (15, 16),
for which the Kernel function is expressed in terms of a modified gas
emissivity. For present purposes, the physical model and coordinate
system is that illustrated in Fig. 6. This consists of a gas bounded by

two plates whose surfaces are assumed to be gray and to emit and reflect

in a diffuse manner.

A. RATE EQUATIONS AND RELARATION TIME

In considering radiatively induced vibrational nonequilibrium (non-
LTE), it will be necessary to have information pertaining to vibrational
rate equations and the vibrational relaxation time. The rate of 'change of
vibrational energy of a system:of oscillators may be expressed as

dE e . - dE v

a._l’.=(.a_tl’.)‘ g (a-f— (49)

fcoll rad
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where the terms on the right represent contributions due to collisional
and radiative processes, respectively, and E, denotes the vibrational

energy per unit volume. Furthermore,
- div qp = (=) (50)

where, due to the small separation of rotational levels, the contribution
of rotational energy has been neglected.
The divergence of the radiative flux is also related to the specific

intensity Iw and for the present one-dimensional problem this is given
7

by thetexpression .

daq dal )
© =R _op® 4T Tw
o Iy do =/ [ = o5 dfdw (51)

div q, = /
23

where @ isthe solid angle and s a coordinate measured along the pencil

of rays. Combination of eqgs. (49) through (51) thus yields

dE,  dE, . w up 91,
T ° (T - g5 ddw . (52)
coll

This relation clearly illustrates the influence of radiation, through the
second term on the right side, upon vibrational energy.

The vibrational relaxation of a system of oscillators undergoing
collisional relaxation mey be described in terms of the Bethe-Teller

relation

v _ E-Ey (53)

where Ev* represents the equilibrium value of vibrational energy, and n
is the vibrational relaxation time. A simple derivation of eq. (53) is

gi ven by Zel'dovich and Raizer (13), and by Vincenti and Kruger (17),
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while anharmonic effects have been investigated by Bazley and Montrol (18),
and Northup and Hsu (19) have discussed the extension to multiple quantum
transitions. Goody (6), however, suggests accepting eq. (53) simply as
an experimental rather than a theoretical expression.

Information on collisional relaxation times is available only for a
limited number of gases (20-26). For diatomic gases, an empirical relation

is given by Millikan and White (22) as

-1/3 /4

Pn = exp[A(T _0.015u% )-18.42] (54)

Values 'of A and p for carbon monoxide are A = 1.75 and u = 14. Note

that m decreases rapidly with increasing temperature.

B. EQUATION OF TRANTER

The formulation of the equation of transfer for vibrational non-
equilibrium is treated in detail by Goody (6), Gilles (27), Gilles and
Vincenti (28), and Tiwari (29), and the complete derivation will not be
repeated here. The formulation is based upon the assumption of a harmonic
oscillator as well as two level transitions between vibrational states
which restricts the analysis to fundamental bands. However, under conditions
for which the assumption of LTE is not justified, combination and overtone
bands do not contribute significantly to the radiative transfer process (29).
When t he assumption of LTE is valid, the equation of transfer reduces
directly to the conventional macroscopic equation, and the restrictions to
harmonic oscillation and two level transitions no longer apply.

Following Goody (6), the equation of transfer may be written as

dI , ,
dsm - Kw(Jm-Im> =2
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where the source function, Jw’ is expressed by

B (56)

and Bw denotes black-body intensity. For EV = EV*, this of course
reduces to the equation of transfer for LTE

The important point concerning eq. (55) is that Ko is the equilibrium
absorption coefficient; i.e., it corresponds to the local kinetic temper-
ature. An explanation of this is given by Goody (6). More recently
Gilles (27), and Gilles and Vincenti (28) have pointed out that thisis
strictiy a low temperature approrximation". At elevated temperatures,
however, collisional relaxation is very rapid, and it is doubtful that
physical situations exist at elevated temperatures for which non-LTE
effects would be important.

For illustrative purposes, it will be convenient to temporarily
restrict attention to diatomic gases, such that only a single fundamental

band is considered. Under steady-state conditions, combination of egs.

(52), (53), and (55) yields

E E & E *

v v bwoq ™ v L o
= —— d Id
EV*)[ i /o s k B dul el S, A Sk I dw

Further, upon defining a time constant

E*
n, = (57)

- M0 B dw
(o] O ww

the source function, Jw, may now be written as

n_+nX
J =B [=

+
W w nr n

] (58)

where
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fg“dn f:lewdw

X - ——2 (59)
J 7 dQS « B dw
(0] o W w

The time constant n, isthe radiative life time for vibrational states,
and by assuming that, within the narrow band, BW may be taken as independent

of wave number, then it may be shown that (&)
1/n_ = 8rew *(P/n)S(T) (60)

where n is the molecular number density, 0 is the wave number at the
band center, and S(T) is the band intensity. Employing the perfect gas
law P.= nkT, and since 8(T) n T for al‘fundamental band, it readily
follows that the radiative life time is independent of both temperature
and pressure.

Now, since Bw and Jw are isotropic and slowly varying functions
of wave number within the band, then upon combining eqs. (51), (55), and
(58), the nonequilibrium source function may be expressed as

w w

J =B +=n (61)
2 'n
(o] (o] r

where
s7 (dq. /dy)dw
o] Rw

H=- — (62)
21f k dw
[0 K1)

and Jw and Bm denote quantities evaluated at the band center.
o o
Since Jw = Bw for LTE, eq. (61) clearly illustrates that the degree
o o
of nonequilibrium is characeterized by the parameter n/nr. When n/nr is

small, the source function Jw reduces to the black body intensity Bw ’
o o
and the assumption of LTE is justified. On the other hand, in the [imit

of large n/nr the divergence of the radiative flux becomes zero (6).
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This physically corresponds to the situation for which. vibrational transi-
tions are radiatively controlled, such that all photons absorbed by the
gas will in turn be re-emitted. There will thus be no net addition (or
loss) of radiative energy to any gas element. For intermediate values of
n/nr, the divergence of the radiative flux will have a lower value than
that corresponding to the condition of LTE Consequently, the internal
transfer of radiative energy within the gas will be reduced as the result
of vibrational nonequilibrium. It is important to note from eqgs. (61)
and (62) that, regardless of the magnitude of n/nr, the assumption of

LTE is'always justified for the case of tadiative equilibrium (i.e.,
dqR/dy = 0). This conclusion, of course,-applies only for the present
restriction of a gas having a single band. The preceding analysis may,

however, easily be extended to multiple band spectra.

C. RADIATIVE rLUX EQUATI ON
The equation of transfer, eq. (55), may be integrated in the conven-
tional manner so as to yield the expression for the spectral radiative

flux, QR,,? with the result (30)

Qp, = 2Blw E3(Kwy) - 2B2wE3[Kw(L-y)]

M
(63)

+ 2n{IZ Jm(z)KmE2[:<w(y—z)]dz - II}; Jw(Z)Kszth(Z—y)]dZ}

where B, and B are the surface radiosities, while E_(x) is the
lw 2w n

exponential integral

_ A n-2 -x/u
En(x) = fo i e du

The expressions for the surface radiosities are further given as (30)
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N L .,y .
Blw =.€,%0 * 2 (1 elw)[BQwEs(KwL) + 7 Io Jw(z)Ksz(sz)dz] (64a)

L g
- = € - -
B2w 202 + 2 (1 EQw)[BleS(KwL) + W fo JU)(Z)KUJE2(KU)L sz)dz] (64b)

The spectral absorption coefficient, Kp? has been taken to be independent
of temperature in eqgs. (63) and (64), and this effectively constitutes a
linearization for small temperature differences. Note that for black
surfaces Blm =e. and B,, = e, » whereas for LTE Jm(y) = Bw(y) = ew(y)/'ﬂa
with e, denoting Planck's function.

An often employed approximation in radiative transfer involves approxi-
mating the exponential integral E2(x) by an exponential function, such that

B2(X) = g exp(-bx). Several combinations of a and b have been

utilized, and for present purposes the approximation will be chosen as

R

E,(x) % exp(- 325) (65a)

1 3x
-f E2(x)dx =5 exp(- ——2-) (65b)

ES(X)

The total radiative flux is further given by

= /7 q_ d » (66)
R = 7o R :
In the subsequent discussion, attention will be directed solely to black
bounding surfaces, although surface emittance effects will be discussed

in Section IV. Thus, upon combining eqgs. (63), (65), and (66), the total

radiative flux is given by

- - 3.y -
= e e, + > fo [wao(z) €1 s

3
QR 1 9 Ko exp[ - £y Kw(y—z)]dwdz

Aw
° (67)
-3 fL [#d (z)-e. 1.  «k expl- 3 k (z~-y)]dwdz
2y wy 2wo Ao Sw SFPLT 7 KGVETY
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where e = oTu, with o denoting the Stefan-Bolizmann constant, while Aw
indicates integration over the single band, again recalling that JW and
e, are slowly varying functions of wave number over the single band.

The primary motivation for employing the exponential kernel approxi-
mation in the present formulation is that it allows the kernel function in

eq. (67) to be expressed in terms of the total band absorptance, since,

from eq. (11)

dA _ ., _ w
—dy = A'(y) = wa Ky e dw

and this is the form of the kernel function in eq. (67). Thus, letting

=¥ - SPL
g—L’uo Ao

and employing the dimensionless band absorptance, A(u,8), as defined by

eq. (23), the final form of the radiative flux equation is obtained by

combining eps. (61), (62), and (67) as

3 € "vg -
ap(E) = ej-ey + Z A (/] [emo(g')'elwo]A_[z u, (g-ghlde!

1 - -3
,I'g [ewo(g')—eQwo]A'[—Q— uo(«i'-g)di'}

(68)

3 n g AV 3 g
§ GG Cap/as R uy(e-e1)1ae

- Iy (dag/de B[ ug(5'-6)1dE ")

where A'(u) denotes the derivative of A(u) with respect to u. Note that
rotational line structure is included in eq. (68) through the band absorp-
tance. Furthermore, eq. (68} describes the radiative flux for non-LTE

in terms of the band absorptance for a gas in LTE. As previously discussed,
following eq. (56), this is appropriate since K is an equilibrium absorption

coefficient even under non-LTE conditions.
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The non-LTE influence in eq. (68) is through the latter terms which
are proportional to n/nr, and which vanish in the limit of LTE (i.e.,
ninr + 0). Although eq. (68) applies only to a single band spectrum,;
for LTE the extension to multiple bands requires simply a summation of
the important bands. Thiswill be illustrated in Section IV.

Equation (68) possesses two convenient limiting forms. One is the
conventional optically thin limit, while the other, the large path length
1imit,; corresponds to u, >> 1, and for infrared radiation this limit
differs considerably from the optically thick or Rosseland limit. These

two limiting forms of eq. (68) will be treated in the following

subsections.

b. OPTICALLY THN LIMIT

As discussed by Sampson (31), the influence of non-LTE iS most
pronounced i n the optically thinlimit. Following Cess and Tiwari (32),
thislimit nay be obtained by employing the linear limit for the band
absorptance, eq. (43a), since the optically thin limit corresponds to
B << 1. In the optically thin limit one is generally concerned with
t he divergence of the radiative flux (30), and upon differentiating eq.
{68) and employing the linear limit A'(u) = 1, then the appropriate
expression for u, << 1 becomes

R A -
i (1 + m nr) 3Ao uo[ewo(g) elwo] (69)

An alternate approach to the optically thin limit is given in ref. (33),

which does not make use of the exponential kernel approximation as given

by eq. (65), and it is shown that the factor of 3 appearing on the right
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side of eq. (69) is replaced by 4 in the exact formulation. Further
comments on the application of the exponential kernel approximation to
infrared radiative transfer are given by Grief and Habib (3u4).

It should be observed that eq. (69) is independent of rotational
lime structure, and this is consistent with the previous discussion on
the invariance of A(u,B8) with the line structure parameter B in the linear
limit. The obvious simplification of the non-LTE influence in eq. (69)
should also be noted. As such, all optically thin analyses based on the
assumption of LTE may be modified to include the effect of non-LTE
simply by multiplying the divergence of 'the radiative flux by a constant

involving the monequilibrium parameter n/nr'

E. LARGE PATH LENGIH LIMIT

Even though the optically thick (Rosseland) |imit does not apply
to vibration-rotation bands, since optically nonthick radiation will
always occur in the band wings (33, 35), a large path length |imit does
exi st and is achieved for u, >> 1. Employing the method of steepest
descent, it may be shown that the asymptotic form of the integrals
appearing in eq. (68) corresponds to the use of the logarithmic limit for
the band absorptance, eq. (43c). For illustrative purposes it will again
be convenient to treat the divergence of the radiative flux vector. Thus,

wpon differentiating eq. (68), performing a subsequent integration by

parts, and utilizing the asymptotic formulation A(u) = Inu, one obtains
de
dq ® . dq '
__..gR =a st T 21, . ) e ———d;f L (70)
o r (g-g")

In arriving at eq. (70), continuity of temperature has been assumed
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between the gas and the bounding surfaces. This is physically realistic,
since u > 1 implies that the central portion of the band is optically
thick, which would insure temperature continuity. A more quantitative
treatment of this point will be given in Section IV.

Since the large path length Iimit is an asymptotic limit for large
Uss it readily follows that the second term in eq. (70) may be deleted,
with the result that

o dg!

dg' E-gf (71)

and this is precisely the result for LTE The vanishing of the non-LTE
influence in thislimit can further be illustrated by consideration of
the source function. As previously discussed, non-LTE effects enter
sol el y through the source function, and from eq. (61) this may be

expressed as

e (&)
‘ w : dq
_ 0 1 n R
Jw (2) = ™ T 4mu A (n ) dg (72)
o) oo r

Employing eq. (70) and taking the limit for large ug yields to result
that Jm (g) = e, (£)/m, which is the source function for LTE In the
large p(;th Iengtﬁ limit, optically thick radiation occurs in the central
portion of the band, whereas the wing regions constitute a continuous
transition from optically thick to optically thin radiation. Vibrational
energy levels are evidently dominated by the optically thick portion of
the spectrum, which suppresses non-LTE effects (31), such that this is
the reason for the existence of LTE in the large path length limit.

A second significant simplification associated with eq. (71) is

that, as for the optically thinlimit, the radiative transfer process is
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independent of line structure, since the line structure parameter does

not appear in the equation. The reason for this is that the band
absorptance becomes invariant with line structure for large u_, and it

is this asymptotic result for the band absorptance which yields eq. (71).
Note also that eq. (71) is independent of both pressure and band intensity,

and this will be discussed in more detail in Section IV.
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IV. RADIATIVE TRANSFER ANALYSES

This section presents several analyses illustrating the application of
conservation of energy to the determination of the temperature profile
within an infrared radiating gas, with primary emphasis upon the basic
features of the radiative transfer process. For this purpose, simple
illustrative physical models will be considered. Referring to the coordi-
nate system of Fig. 6, Sections IV-A, IV-B, and IV-C consider the symmetric
case for which T, =T

2 1
Q, within the gas. In Section IV-A, radiative transfer is assumed to be

and there is a uniform heat source per unit volume,

the sol e mechanism of energy tr;msfer through the gas, such that the
energy equation constitutes a balance between the divergence of the
radiative flux and the source Q. The same situation is considered in
Section IV-B, except that molecular conduction is included as an energy
transfer mechanism in order to illustrate the relative importance of
conduction versus radiation within the gas. In both these sections
restriction is made to LTE, while the influence of vibrational non-
equilibrium is treated in Section IV-C. A brief discussion of radiative
equilibrium is included in Section IV-D for purposes of illustrating a

physical system which is not symmetric.

A. RADIATIVE TRANSFER

The first illustrative solution is that for which radiative transfer
is the sole mechanism of energy transfer within the gas. The local
temperature distribution is thus a consequence of the uniform heat
source, Q, adding energy to the gas which in turn is transferred through

the gas to the bounding surfaces by radiative transfer. The two bounding |




43

surfaces are assumed to be at the same temperature, T, = Tl’ LTE is

2
assumed to prevail, and for the time being the bounding surfaces are
taken to be black.

The energy equation for this situation is

(=7 T

<o
|4
]
o

and since the problem is symmetric, then

2 QL -
Qg = 5 (2¢ - 1) (73)

where again £ = y/L. For ‘a sin(::]Ie—band spectrum, the radiative flux is
described by eq. (68). As previously discussed, however, when LTE
prevails eq. (68) may be extended to multiple band spectra by summing
eq. (68) over the individual bands. Furthermore, since small temper-
ature differences have been assumed in arriving at eq. (68), one may

additionally 'employ the linearization

de
w.

1
e -e = o)
w; log (dT )Tl (T-T1 (74)

where the subscript i refersto the ith band, such that ws is the

wave number location of the band. The subsequent extension of eq. (68)

thus yields
de

n ‘“5_ . g s
i-ElA o2 Oi(dT )T JUOET(E')'Tl]A'[-fuoi(g-g')]dg'
) 1

N

IR
(75)
Leocer N "~ '

where n represents the number of vibration-rotation bands in the spectrum.

Upon combining eqgs. (73) and (75), conservation of energy is described
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by the integral equation

H.u 3u .
1.3 F (===t t Tk (¢
e-5=5 2 TH UG eER T (el
(76)
1 — 31'lo;i.
- fg o(ENA'L 3 (g'-g)Jag' }
where
de
“i
Hy = AsilGT >T (77a)
1
n
H= ¢ H (77b)
i=l 1 '
T-T,
¢ = oo/ (77¢)

Employing the band absorptance correlation of Tien and Lowder (11),
as expressed by eq. (45), together with the empirical correlations for
8,(T), A;(T)s and B,(T,P,) given by Edwards, et al (10), eq. (76) was

solved numerically for CO,, H,0, and CH,, (35). These solutions were

2
obtained by the method of undetermined parameters, in which a polynomial
solution for ¢(g) is assumed and the constants evaluated by satisfying
the integral equation at equally spaced locations. Both quadratic and
quartic solutions were utilized, with the two solutions yielding virtually
identical results. Before discussing these results, however, it will be

convenient to first investigate the optically thin and large path length

solutions.

Ad. Optically Thin Solution

Following Section III-D, the optically thin solution to eq. (76) is

achieved by letting A'(u) = 1, and it readily follows from eq. (76) that

# g
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or

T-T 0 = o Q (78)
3Pi§lsi(Tl)(dewi/dT)T

1

The fact that eq. (78) predicts the gas temperature to be independent of
location is consistent with the result that in optically thin limit each
gas element exchanges radiation directly with the bounding surfaces, and
this exchange process is thus independent of position (30).

As discussed in Section III(-D, eq. (78) is independent of the line
structure parameter Bi. Ore mey further note that the optically thin

limt is also independent of the band width parameter A An indica-
oi’

tion of the relative ability of gases to transfer radiative energy is
clearly given by eq. (78), since a lower gas temperature implies a
greater capability to transmit energy. Thus, the appropriate gas
property that serves to measure the ability of a gas to radiative energy
isthe quantity4

K= .5 S,(T)(de /dT) (79)

i1 1 we -

0, and thus cO

2 2
will have the greatest ability of transferring radiative energy in the

For example, CO2 has a larger value of K than does H

optically thin limit.

2. Large Path Length Limit

As discussed in Section III-E, the large path length [imit is achieved

l“I'he gquantity K may be related to the linearized Planck mean coefficient,
as defined by Goody (6), and Cogley, Vincenti, and Gilles (36).
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when u . >> A for each band of importance, and this limit corresponds to
employing A'(u) = |/u in eq. (76), with the result that

£- 5=/, o) S (80
Aside from the obvious simplification in form in going from eq. (76) to
{80), there are other more striking consequences associated with eq. (80),
For example, of the three correlation quantities Aoi’ Bi’ and Si’ only
Aoi appears in eq. (80) through the definition of ¢(g). The dependence
apon this single correlation quantity in the large path length [imit has
also been illustrated by Edwards, et al"(10) in dealing with laminar flow
between parallel plates. The absence of the line structure parameter
Bi bas been discussed in Section III-E, while the invariance of the band
dbsorptance Si is physically logical, since the central portion of the
band is saturated in the large path length limit, and consequently the
radiative transfer process should not depend upon the total band area.

A further simplification associated with eq. (80) is that the temper-
ature profile within the gas is independent of pressure. This is not the
case with respect to the general formulation, eq. (76), for which pressure
appears both in the dimensionless path length us and in the line
structure parameter si. This invariance of temperature profile with
pressure can also be found from the results of Edwards, et al (10), and
experimental confirmation has recently been presented by Schimmel,
Rovotny, and Olsofka (37).

Equation (80) constitutes a singular integral equation with a

Cauchy type kernel, for which the solution is (38)

$(2) = 2 122-0)1"2 + creqr-)17?
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where C is an arbitrary constant which arises since the solution of
eq. (80) is not unique. However, to satisfy the physical requirement

of finite temperature everywhere within the gas, C = 0, and

1/2

$(8) = 2 [£(1-5)] (81)

Note that this temperature profile yields the result that the gas tem-
perature at a surface is equal to the surface temperature, and this
absence of a temperature slip is characteristic of optically thick
radiation (30). As discussed in Section III-E, this is a consequence
of the fact that optically thick(.radiation is occurring in certain
spectral regions. Optically nonthick radiation exists, however, in
other spectral regions (33), with the result that eq. (81) differs
substantially from the temperature profile which would be predicted

using a Rosseland type (or diffusion) equation.

Upon recasting eq. (81) as
QL oyt
T - T, = [6(1-6)]

it is apparent that the gas property which measures the ability of a gas

to transfer radiative energy in the large path length limit is
de
n w

i
i=1 oi (dT ) ( )

as opposed to the optically thin transport property K, defined by eq.

(79).

3. Results
For the sake of brevity, numerical solutions to eq. (76) will be

presented solely in terms of the centerline temperature; i.e.,
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Té = T(§ = 1/2). In the case of a single-band gas, the summation sign is
removed in eq. (76) and results may be expressed in terms of the single
pair of parameters u and B. This is illustrated by the solid curves
in Fig. 7, and the results apply to any situation for which radiative
transfer within the gas is the result of a single band. For small u, i
the results approach the optically thinlimit as described by eq. (78). i
The maximum influence of the line structure parameter exists for inter- 1
mediate values of u s while in the large path length imit the solution
again becomes independent of 8.

Also illustrated in Fig. 7 is a solution employing the box model,
for which a constant absorption coefficient « is assumed within a finite
band width A The relation between this width and the bandwidth parameter
A, was taken to be Aw = (214/38) As which is appropriate for co (33),
and the value of the mean coefficient is in turn k¥ = SP/Aw. Clearly,

such a model does not account for line structure. Since the box model

preserves the band intensity, it reduces to the correct optically thin

limit, but a significant departure between the two solutions takes place
for increasing u . This is easily explained on physical grounds. In
the central portion of the band the box model underpredicts the value of
the spectral absorption coefficient, and it thus will yield optically
thin results for greater values of Uy than will the solution employing
the band absorptance. At large values of U, the box model overpredicts
the centerline temperature due to the neglect of the band wings. For
large path lengths the wing regions contribute primarily to radiative
transfer. Since the box model neglects the wings, it underestimates the
ability of the gas to transfer radiant energy for large U values,

and consequently it overpredicts the centerline temperature.




49

*se8 pueq oT8uls e a0j s3Tnsax yo uostaedwo)d L °8TJ

Eo<-o
d—gs = "

000 00l Ol o1 10 100

I D

— \\‘ ,
i

/

-/

¥e0002=l—~ _—-
o v _—

¥.0001=11
S/

[Tr 1+ T [tr1 1 [rr 1 1T [Tr 71 1 o

\.\ w——

7 o=
yd
o|al
NG
Tl
o
o p;
dv=3 ‘00 ‘SYO AVNY —-— . —0I -
J1300W X089 -~~~ -~ . -

300N IONVLAHOSEY GNvE

11

____.._ ._.__;_‘_ Lt 1 ‘_ﬂ_:_ L__"lool




50

The inapplicability of the optically thick (or Rosseland) [imit should
again be emphasized. From the box model, it readily follows that
(T -T)) v L? for large u_ (83), and this corresponds to optically thick
radiation occurring throughout the finite width band. From the large
path length solution of eq. (81), however, (Tc—Tl) v L, such that the
occurrence of nonthick radiation within the band wings significantly
influences the nature of the radiative transfer process for large .

Also shown in Fig. 7 are gray gas results (33), where, for lack gf

a more rational choice, the mean absorption coefficient has been chosen

as the Planck mean coefficient, which is defined as

I7k e (T)dw
Ko = o w W
P qu
Specific comparisons are made for CO. It is quite obvious that the gray

solution constitutes a rather large departure from reality.
With respect to multiple band spectra, dimensionless centerline

temperatures for CO_, H.0, and CHu, as obtained from eq. (76), are

2> 72

illustrated in Figs. 8 through 11. Since the abscissa variable is the
pressure path length, the separate influence of pressure upon the center-
line temperature is due solely to the alteration of the line structure

of the bands due to pressure broadening. As the pressure is increased,
the discrete line structure is eliminated, and, as illustrated in Figs.

8 through 11, pressure ceases to be a separate parameter in the high
pressure limit. This of course is analogous to the large B limit

of Fig. 7.

In the large path length |imit, the dimensionless centerline

temperature follows from eq. (81) to be
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T -T
c
QL/H

1

= ' ¥
=5y = 0.150 | - i '(83)

Figures 8 through 11 consequently serve to illustrate the conditions
under which the large path length |imit constitutes a useful means of
describing the radiative transfer process. Although these figures
correspond to a specific physical problem, the limits of applicability
of the large path length limit should be qualitatively indicative of
other physical situations. Additional numerical results are given by
€ess and Tiwari (35).

A féomparison of the relative 'ability" of various gases to transmit
wradiative energy ey be obtained by comparing the dimensional quantity
(Tc-Tl)/QL. This is shown in Fig. 12 for a temperature of 500°K and a
pressure Of 1 atm. Recall that a lower centerline temperature implies
agreater ability of the gas to transmit radiative éner‘gy, and that in
the optically thinlimit the radiative transfer capability of a given gas
is dependent upon the magnitude of K given by eq. (79). For the four
gases considered, 002 has the largest value of K, followed respectively
by HQO, CHM’ and CO. This is consistent with the results shown in Fig. 12

for small path lengths, i.e., CO, has the lowest centerline temperature,

2

etc. As the path length is increased, however, CO, undergoes a transition

2
from the nost capable to nearly the least capable transmitter of radiative
emergy, since CO2 has a small relative value for H, as defined by eq. (82),
imdicating that it is a poor radiator for large path lengths.

With respect to gases other than those considered here, the large path

length property H nmey be evaluated solely from knowledge of the appropriate

bawd locatiomns and rotational constants by employing egs. (30) and (82).
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iy

It should be emphasized that the large path length limit, as treated here,
IS not an exact asymptotic limit, since it makes use of the logarithmic
asymptote for the band absorptance, which in itself is an approximate

l[imiting expression.

4. Effect of Surface Emittance

The effect of nonblack surfaces upon infrared radiative transfer will
nov be investigated, utilizing the same physical model as previously
considered. Restriction will, however, be made t o single-band gases,
so the}t this constitutes an extension of the results of Fig. 7. Both
surfaces are assumed to have th(‘e' same emittance, €, and it is not necessary
to postulate gray surfaces, since £ may be regarded as the spectral
emittance at the wave number of the single band.

following Tiwari and Cess (39), the combination of egs. (63) and
(64), under the condition of LTE, yields

ee1/2) 22 = 1 p(ENE I (emg') e
3uo o 2

1 — 31lo
- fg ¢(g"A[—= (g'-£)1dg!
(8u)
P a3 o™ RS (e
o] AL m=o € 2 A
T 3uo
- A'[—— (g'-g+1+m)]}de"
as the appropriate energy equation. This of course reduces to the single
band form of eq. (76) for ¢ = 1.
Numerical solutions of eq. (84) are available (39), and the dimension-

less centerline temperature is illustrated in Fig. 13 for g = =. As

should be expected, a reduction in surface emittance gives rise to a higher

nm.’pm
O MONY gaccs =
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centerline temperature, since a lower surface emittance corresponds to a
reduction in the energy transfer capability between the gas and the
surfaces.

The optically thin limit readily follows from eq. (84) to be

#(e) = 5%;

and this «coincides with the single-band form of eq. (78) for black surfaces.
The invariance of surface emittance upon gas temperature is also observed
for a gray gas under optically thin conditions (40). To explain this,
recall that under optically thin.conditions the surface radiosity is
evaluated as if the gas were completely transparent (30), and since this
corresponds to an isothermal enclosure for the present problem, the
surface radiosity is equal to black body radiation irrespective of the
value of the surface emittance.

In the large path length limit, eq. (84) reduces to

I R
£ - 1/2 =/ ¢(£)5_5,

mtl

1 vy 1
+ s a(en § (1-e) 1

[—Ll 1
(g'+g+tm) (&'-g+1+m

The solution to this equation is also illustrated in Fig. 13, and note

that this 1imit does depend upon the surface emittance. On the other

hand, for a gray gas or any gas with a nonvanishing absorption coefficient
over the entire spectrum, the radiation in the optically thick (Rosseland)
limit is independent of surface emittance (30, 41). W.ith reference to

the psesent large path length solution, it is radiation occurring in the
band wi ngs which is neither optically thin nor optically thick that produces

the influence of € upon the temperature profile within the gas.
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It may further be noted from Fig. 13 that as ¢ is decreased, the
range of applicability of the limiting solutions are appreciably reduced.
In particular, for e o 0.1 an extremely large value of u would be.

required in order to approach the large ug limit.

B. RADIATION-CONDUCTION INTERACTION

With the exception of atmospheric applications, molecular conduction
within a gas must be regarded as a possible energy transport mechanism,
and, in fact, for small physical dimensions it will dominate radiative
transfer. The purpose of this siibsectio'l'a is to investigate the relative
importance of radiation versus conduction as energy transport mechanisms,
and the physical model of Section IV-A is again employed for illustrative
purposes.

From conservation of energy, the temperature profile within the

gas is described by

2 dg
)\fd-'—-—g-—a—R-+Q 0
dy y

where A is the thermal conductivity of the gas. Upon integrating this

equation once, and noting that dT/dy = 0 and ag = 0 fory = L/2, then

=2 4L -
% Trg tAy-L/2) (85)

For a gas containing n vibration-rotation bands, the radiative flux is
again described by eq. (75), such that eq. (85) yields the introdifferential

equation

aoe sLn

Sre-12=28na (lee)E (0 (ggn)Tag:

2%
=17 (86)
3u
- f O(ENA [—— (5 -g)Jag'}
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“where
T—Tl
0 = 5
QL /A

and the quantity R, is defined by eq. (77a). Since the presence of
conduction implies continuity of temperature at the boundaries, the
boundary condition for this equation is ©(0) = 0. When radiative trans-
fer within the gas is negligible, the solution of eq. (86) follows to

be
0= (c-e?) (87)

In the optically thin limit (uoi << 1), eq. (86) may be expressed as

@Y _3n = -1 (88)
dg

subject to the boundary conditions

e(o) = 0, O©'(1/2) =0

and for which

PL 2 dew

= S _...a._j;

N == i=1 Si(Tl)(dT (89)
T

Equation (88) possesses an elementary solution, from which the centerline

temperature is found to be

1
T,~Ty o exp(- -2-/5\1—)
- S aN {1-2[———1}
QL"/A 1+exp(-vY3N)

It readily follows that the dimensionless gas property N characterizes
the relative importance of radiation versus conduction within the gas under
optically thin conditions. For particular values of P and L, it is

actually the dimensional quantity
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(90)

which characterizes this relative importance, and values of N/PL2 are

illustrated in Fig. 14. For €O, CO HQO, and CHq, eq. (90) was evaluated

2°
employing the band intensities of Edwards, et al (10), while for N20 and
NH3 the intensities where taken from Tien (1). The appropriate thermal
conductivity values are from Tsederberg (42). It should again be
emphasized that N/PL2 characterizes radiation-conduction interaction

only in the optically thin limit.

For the large path length limit (u&.L >> 1), eq. (86) reduces to

de ag!

. —
atE- 1/2 = M/ o(g! ) (s1)
where ©6(0) = 0 is again the appropriate boundary condition, and
HL L n L
M T e = - Z o 92
A A =1 Aoi(dT )T (92)

1
The dimensionless parameter M constitutes the radiation-conduction
interaction parameter for the large path length Iimit, and the

dimensional quantity M/L is illustrated in Fig. 15. For CO, CO 0,

2> Ho
and cHu, this quantity was evaluated by using the AOi values of Edwards,
et al (10), while for N2O and NH3 the Aoi values were calculated from
eq. (44).

A comparison of Figs. 14 and 15 shows a considerable difference
in the radiation-conduction interaction for the optically thin limit
as opposed to the large path length |imit. For example, in the

optically thinlimit CO, possesses a large radiation interaction

2
relative to the other gases, while the reverse is true in the large

path length [imit. On the other hand, just the opposite trend is
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observed for H20. Since the thermal conductivities of the various gases
do not differ appreciably, this behavior is due to differences in
radiative transfer in the optically thin and large path length limits,
and a discussion to this effect has been given in Section IV-A.

Equation (91) does not appear to possess a closed form solution.

A numerical solution has thus been obtained, and the dimensionless
centerline temperature is illustrated in Fig. 16.

Numerical solutions of eq. (86), which is applicable for all )
values, have been obtained for several gases (32), and certain of ch;e
resulfs are illustrated in Figs.. 17 thréugh 19 for o, and H0. The
large path length Iimit, as given by Fig. 16, is also shown. From eq.

{87), the centerline temperature for pure conduction follows to be

Tc_Tl

oL/

= 0.125

and thus Figs. 17 through 19 serve to illustrate the influence of radia-
tive transfer upon the temperature profile within the gas. As would
be expected, the importance of radiation becomes more pronounced as the
plate spacing is increased.

For the sake of brevity, comparisons involving the optically thin

1imit will be made only for CO, at a pressure of one atmosphere.  These

2
are illustrated in Figs. 20 and 21 for wall temperatures of 500°K and
1,000°K, respectively. In Fig. 20 it is evident that, when radiation is
of importance, the radiative transfer process very nearly corresponds to
the large path length limit. Conversely, this indicates that when the
radiation is optically thin, it is in turn negligible relative to conduc-

tion, such that the optically thin limit does not constitute a useful

limiting solution for the conditions illustrated in Fig. 20. Thisis




-«

- 66

0.125
0.12

0.10

0.08

(Te-T,) 7 (QL%/N)
o)
O
()

004

0.02

0 1 L1 l 1
O.I. - 10

M=HL/\

Fig. 16. Conduction-radiation results for the large path length limit.




0.125
0.12

0.10

<
~ 0.08
N,
o
s
= 006
|
[&]
004
0.02
0]

~ Fig.

67

LARGE Uoi LIMIT
(& P=10 atm) |

B N
L
| i1 l | | L1
0.l | {10
L,cm
17. C¢nduc§ion—radiation results for CO2 with 'I‘l = 500Q°K.



68

0125 .
0.2 - —
0.10 | ~
—~ 008 -
~<
~
N
O
Z 006 _
= LARGE Uoi
f
QO
= o004l
0.02 |
0] | ] ‘I l | | ] | 1
0.l R o 10

L,cm

-

Fig. 18. iPConductithx;‘adigt_ion results for CO2 with 'I‘l = 1,000°K.




69

0.125 = | T I l .
012 =_ -
P=0.latm
0.10 |-
—~ 0.08 -
<
~
o g
o
~ 006 -
=
t
2
~  0.04 |-
0.02 -
.0‘ | ] |1 I [
0.1 , : |

L, cm

Fig. 19. Conduction-radiation results for H,0 with T,

10

50Q°K.




(T-T,)7(Q/N)

0.125
O.12

O.10

0.08

0.0¢

0.04- -
OPTICALLY THIN \
LT \
0.02}- ‘\ —
0 | ! L 1 B e
0.1 I 10
L,cm

Fig. 20. Comparison of conducticen-radiation solutions for

COZ'w}tp }'

latm at T

1

= 500°K.




0.125

l
0i2 }
010
0.08:
<
S
T 006
=
=
|
l__c)
~ 004
OPTICALLY THIN \ N
LIMIT | \ N
002 |- | \ ) N
N
. '\s
0 l | | B
81 |
L,cm

Fig. 21. Comparison cf conduction-radiation solutions for

002 withh F =.1 am and Tl = 500°K.

71



not the case at higher temperatures, for which a greater departure from
the large path length [imit exists. This is evident from Fig. 21,
where the optically thin limit is seen to be the appropriate limiting
form for small values of L.

Comparative results for CO, CO HZO’ and CH4 are shown in Figs. 22

23
and 23 for a pressure of one atmosphere and wall temperatures of 500°K
and 1,000°K, respectively. In Fig. 22, with the exception of 002, the
results do not correspond closely to the large path length limit,

although the relative positions of the curves coincide very nearly with
that indicated by the interaction parameter for large path lengths

(see Fig. 15). The only exceptions are the CO and CH4 curves showing
less of a radiative interaction effect, relative to COZ’ than is
indicated by Fig. 15. This is evidently a consequence of departures

from the large path length limit for these two gases.

In Fig. 23 the relative order of the four curves, for small values
of L, is characteristic of the interaction parameter for optically thin
radiation (see Fig. 14). As the value of L is increased, the
relative positions of the two curves turn into those discussed for
Fig. 22.

From Figs. 17 through 19, it is evident that the large path length
limit constitutes an upper bound upon the influence of radiative transfer
on the temperature profilezwithin the gas. The same conclusion applies to
the optically thinlimit, since self absorption is neglected. This fact
that both limiting solutions constitute upper bounds on the radiative

interaction can be employed to estimate whether or not, for a given gas,

the interaction of radiation may be of importance.

ey e b
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A final comment pertaining to radiation-conduction interaction involves
the experimental measurements of Schimmel, Novotny, and Olsofka (37).
The apparatus consisted of two parallel plates spaced 2.55 an apart and
maintained at different temperatures, such that there was net energy

transfer from one surface to the other. Temperature profiles were ob-

tained with a Mach-Zehnder interferometer for pure CO2 and N20, and for
mixtures of COZ—CH4 and COZ—NZO. The data were compared with analytical

results based upon the method of solution as employed in the present
section. Agreement between the experimental and analytical results was
excellent. In particular, the invariance of the temperature profile

upon gas pressure in the large path length Iimit was clearly illustrated.

C. VIBRATIONAL NONEQUILIBRIUM

In most radiative transfer analyses the assumption of local thermo-
dynamic equilibrium is employed. There are, however, physical situations
for which such an assumption is not justified. The purpose of this sub-
section is to investigate the possible influence of vibrational non-
equilibrium upon infrared gaseous radiation. The illustrative physical
models are the same as previously considered in Sections IV-A and IV-B.

Only a limited number of nonequilibrium analyses are available in
the literature pertaining to infrared radiative transfer. Goody (6)
utilized the nonequilibrium transfer equation, eq. (55), to derive an
expression for the heating rate due to a vibration-rotation band in a
plane atmosphere. The specific application involved the 15u carbon
dioxide band. The linearized form of the nonequilibrium transfer equation

was employed by Gilles (27), and Gilles and Vincenti (28) to obtain an
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expression for the radiative flux, with application td acoustics and flow
through shock waves. Since an average absorption coefficient was used,
their analysis is analogous to a modified gray gas analysis and does

not account for the actual band structure. A formulation for energy
transfer by radiation and conduction, in the presence of vibrational
nonequilibrium, has been presented by Wag (43). It was indicated that
the source function, in general, satisfies a time-dependent equation
involving Planck's function, the mean intensity of radiation, and a
parameter representing the relative importance of collisional and
radiative relaxations. Other nenequilibrium studies pertaining to atmos-
pheric applications are given by Thomas (44) and Oxenius (45, 46), and
an application involving radiation gas dynamics is presented by
Mermangen (47).

In the present investigation, the radiative flux equation, eq. (68),
formulated in terms of the total band absorptance and the nonequilibrium
parameter n/nr, is employed. Results are presented for diatomic gases
in general and carbon monoxide in particular. The method of analysis
may, however, be extended to multiple band gases. This extension to
include vibrational nonequilibrium will be illustrated for the physical
systems described in Sections IV-A and IV-B.

For the case in which radiation is the only mode of energy transfer,

a combination of eqgs. (68), (73), and (74) yields

- 31.1o £ 1 N e Suo
= — & - — (— —_— (! 1
£ - 1/2 = = LLeR(E") - = GRIE [ E-6")1dg
: (] r (93)
3u 3u
o 1. .. _ 1 LIRS T o) _
- SleRED - g GRS e -0

where
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de

T—Tl T—Tl o

% = QA T qL/A, =7

) | ‘ (94)
T, '

For a single band gas, the definition of ¢* is identical to that of.¢

given by eq. (77¢c}. Thus, ¢* simply denotes a dimensionless temper-

ature profile for non-LTE. As would be expected, eq. (93) reduces to

the single band form of eq. (76) for LTE (i.e., n/nr = 0), and a

comparison of the two equations shows that

1
Lu
o

0%(g) = ¢(&) + (ﬁ‘—) (95)

r

Employing the LTE results for ¢ as"given in Fig. 7, the centerline
temperature is illustrated in Fig. 24 for 8 = », Since B is the line
structure parameter and is proportional to the ratio of mean line
width to mean line spacing, then B = w»denotes the limit of overlapping
lines. Results for other values of g, corresponding to situations for
which line structure is important, are qualitatively the same. Figure
24 clearly illustrates the maximum influence of non-LTE under optically
thin conditions, with the subsequent diminishing of the non-LTE influence
as u, increases. Note that the non-LTE results yield higher center-
line temperatures than the corresponding LTE curve. As discussed in
Section II1I-C, this is a consequence of non-LTE reducing the capability
of the gas to transmit radiative energy.

Specific results are illustrated in Fig. 25 for Tl = 500°K. It is
evident that non-LTE can exert a considerable influence upon the radia-
tive transfer process for low pressures. The reason for this, of course,
is that n/nr varies inversely with pressure. Similar results are

illustrated in Hg. 26 for T, = 1,000°K, from which it is seen that the

1
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mon-LTE influence is very small. This is a consequence of the strong

temperature dependence of , such that the value of n/nr at 1,000°K

is approximately two orders of magnitude less than the value for 500°K.
Considering now the inclusion of molecular conduction, a combina-

tion of eqs. (68), (74), and (85) yields the appropriate energy

equation as

do

SMu £ _ Su 1 _ Su
B {foe(g')A'[T (g-g')lag' - fge(g')A'[——2—~ (g'-g)ldg'}
3 b (96)
24 _ 3 2. _ 3u
- 2 (Dyula s EHR =2 (-e)1de! - 130+ S2pE2 (81-0)1de')
o0 ap 2 5 ap 2

where M is defined by eq. (92), while

T-T
0 = 1

i QL2/}\

Eguation (96) constitutes the non-LTE counterpart to the single band form
of eqg. (86).

Numerical solutions of eq. (96) have been obtained by the same
method previously employed for LTE (48), and centerline temperatures are
shown in Figs. 27 and 28 for carbon monoxide with T1 = 500°K and 1,000°K,
respectively. Recall that non-LTE effects are most pronounced for small
path lengths. With reference to Fig. 27, however, this corresponds to the
situation for which conduction is the predominant mode of energy transfer.
Thus, for a g—iven pressure, the non-LTE influence upon total energy
transfer Within the gas will vanish for either small or large values of

- 'The former corresponds to negligible radiative transfer, while the

latter denotes the large path length limit. In other words, if non-
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equilibrium radiation is to have a significant influence upon the energy
equation, then the physical dimension of the gas system must be suffi-
ciently large for radiation to play a dominant role, but it cannot be so
large that the large path length Iimit is approached. In addition, of

course, both pressure and temperature must be relatively low.

D. RADIATIVE EQUILIBRIUM

The preceding analyses have dealt solely with the situation for
which net energy transfer is between the gas and the bounding surfaces;
i.e., there is no net radiative transfer from one surface to the other.
It will thus be of interest to consider briefly the opposite extreme
for which the net radia,tiv‘é‘transfer is strictly between the surfaces.
This is the case of radiative equilibrium, for which, with reference
to Fig. 6, the surface temperatures T1 and T2 are not equal, and there

is no other mechanism of energy addition or transfer within the gas.

The energy equation is thus

For the sake of brevity, consideration will be given only to the
large path length limit,-.and upon summing eq. (68) over all bands,
linearizing the resulting equation through the use of eq. (74), and
taking the large path length limit for which A*(u) = 1/u, the integral

equation describing the temperature profile for radiative equilibrium

follows to be (49)
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1 do dg' _
I AT - O (97)
where again ¢ = y/L, while
. - T—T2
T1°Ty

As with eq. (80), the summation over individual bands vanishes in

the large path length limit. The solution to eq. (97) yields (38)
Ll . -1
o(g) = 5t (1/m) sin — (1-28) (98)

This temperature profile is illustrated in Fig. 29 together with the
result for the diffusion (Rosseland) limit.

The net radiative heat flux between the plates may in turn be
determined by employing eq. (98) in the expression for the radiative
flux Qg> with the result that (49)

n de,. 3S . PL

q

R 1 i i

=1 - I A .( ) 1n( ) (99)
3¢m _ ©3 4=z1 oi dT BA .

uoTl (Tl T2) uoTl Tl oi

This has been evaluated for several gases and is illustrated in Fig. 30.
Since the ordinate value of unity corresponds to the transparent limit,
the effectiveness of each of these gases in reducing the net radiative
flux is clearly illustrated. Furthermore, for conditions under which
the large path length Iimit does not apply, it may readily be shown that
eq. (99) constitutes a lower |imit on radiative transfer.

Itis iﬁteresting to note the difference between the present
results and those of Section 111-A which dealt with a uniform heat
source within a gas bounded by symmetrically heated plates. Again these
constitute two opposite extremes in that the net radiative transfer is
solely between surfaces in the present situation, whereas it is between

the gas and the bounding surfaces in the former case, and recall from
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Section 111- A that the band intensities S do not appear in the large
i

path length limit. This absence can be traced to the fact that the
central portion of a band, since it is saturated in the large path
length limit, has no effect upon the net radiative transfer between
the gas and the bounding surfaces. In other words, net radiative
transfer takes place only in the wing regions of the bands, and the

extent of the wings depends only on This is not the case in the

A ..
o1l

present situation, however, since the reduction in the net radiative
transfer between surfaces will depend upon the extend of the saturated

central portion of the bands, and hence eq. (99) contains both of the

band parameters A ., and S..
oi i
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V. CONCLUDING RAEVIARKS

The intent of the present chapter has been to investigate the basic
features of infrared gaseous radiation through use of extremely simple
and illustrative physical models, and no attempt has been made to describe
specific applications. There does exist, however, a body of literature
pertaining to the inclusion of spectroscopic information into radiative
transfer analyses involving the structure and dynamics of planetary
atmospheres. |In such investigations infrared gaseous radiation consti-
tutes an important mechanism of energy transfer, and for the most part,
as in the present chapter, the kernel function for the radiative flux
is formulated in terms of the band absorptance (or transmission function).
Normally, however, attention is directed towards numerical solutions for
specific planetary conditions, and little emphasis is placed upon the
basic features of the radiative transfer process.

A partial summary of atmospheric radiation analyses includes the
investigations of Manabe and coworkers (50, 51, 52, 53) for Earth;
studies of the structure of the Martian atmosphere by Prabhakara and
Hogan (54), Ohring and Mariano (55, 56), and Gierasch and Goody (57,

58); and the analysis of the atmosphere of Venus above the cloud tops
by Bartko and Hanel (59). A wealth of information may further be

found in the book by Goody (6).
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NCMVBENCLATURE

total band absorptance, em™ L

total absorptance of a single line

band width parameter (correlation quantity), an*
dimensionless band absorptance, A = A/Ao
rotational constant, crn_l
black-body intensity at local temperature

%y /em™t

speed of light

Planck's function, (wat‘cs—cm_Q)/cm—l

Planck's function evaluated at band center

Planck's function evaluated at temperature Tl
vibrational energy

equilibrium vibrational energy

Planck's constant

gas property for the large path length limit, eq. (82)
specific intensity

source function

Boltzmann constant

gas property for the optically thin limit, eq. (79)
distance between plates, cm

radiation-conduction interaction parameter, eq. (92)
radiation-conduction interaction parameter, eq. (89)
gas pressure, atm

equivalent (effective) broadening pressure

total radiative heat flux, wa'tts/cm2
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spectral radiative flux, (Watts—cm_z)/cm_

heat source or sink, wa‘tts/cm3

distance along direction of radiative propagation
total band intensity, atm Lan 2

line intensity

temperature, kinetic temperature, °K

reference temperature (equilibrium)

surface temperature

dimensionless coordinate, u = SPy/AO
dimensionless path length, ug = SPL/Ao

physical coordinate

spectral band coefficient

line struction parameter

rotationally averaged line half width, eq. (35)
vibrationally averaged line half width, eq. (39)
line half width, em™t

surface emittance

vibrational relaxation time, sec

radiative life time of vibrational state, sec
dimensionless temperature, eq. (86)
dimensionless temperature, eq. (97)

equilibrium spectral absorption coefficient, B

Planck mean coefficient, cm'l
mean absorption coefficient, K = SP/Aw
thermal conductivity, (watts—cm—2)/°l<

frequency

density

W evrae, m e s cms mserae B e Sedr e e S




Stefan-Boltzmann constant
dimensionless function, eq. (77¢)

dimensionless function, eq. (94)

- solid angle

-1
wave number, cm

-1
wave number at the band center, cm
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