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On the Relative Time of Adaptive Processes 

Abstract-Adaptive control systems can be classiiied according 
to the response time of the adaptive loop Ta relative to that of the 
main servo loop T,. The response time Ta cannot be smaller than 
the time needed for making the required measurement on which 
the adjustments are based. 

In a slow adaptive system, Ta>>T,,,, and the adjustments are 
made according to the estimated situation (statistical parameters of 
the inputs changing plant parameters, etc.) or the estimated per- 

I 

forrnance (error, cost, intermediate parameters etc.). If Ta<<T,, 
usually a reference model is chosen and the system is forced to 
conform to the reference model. Sometimes the reference model is 
dimensionless so that the fastest response can be obtained. 

In both cases, T,>>T, and Ta<<T,, the system can be ana- 
lyzed by introducing suitable approximations. The condition of 
stability for the adaptive loop is derived in general terms. 

If Tan T,, both analysis and synthesis become difficult. The 
concept of "dual control" is introduced, but not developed in the 
paper. 

HIS PAPER is an attempt to provide a syste- 
matic viewpoint or understanding of the various 
methods of adaptive control advanced in the 

literature. A key factor which can be used as a coordi- 
nate on which to attach the various methods seems to 
be the response time of the adaptive loop T, in relation 
to the response time of the main servo loop T,. Meth- 
ods are distinctively different for the three cases with 
(I) T,> Tm, (11) Ta= Tm, and ('111) Ta < Tm. Cases 
(I) and (111) will be referred to as slow and fast systems, 
respectively. The classification is applicable to systems 
with continuous or discrete main servo loop and con- 
tinuous or discrete adaptive loop. 

Following previous literature, the term situation 
parameters will be used to denote the changing param- 
eters governing the plant performance, and the statisti- 
cal natures of the various inputs, desirable or undesir- 
able. The term adjustable parameters will be used to 
denote the adjustment which can be made on the con- 
troller. The term performance parameters will be used 
to characterize the closed-loop response of the main 
servo loop. The situation, adjustable, and performance 
parameters will be denoted by f ,  r ,  a respectively. 
These are generally vectors, as there are usually more 
than one parameter of each kind. 

In general T, is determined by the time required to 
make fairly good measurements on the situation param- 
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eter f or the performance parameter a. Once the meas- 
ured quantities become known or fairly well estimated, 
the controller is then adjusted in a more favorable direc- 
tion. Therefore T, is determined mainly by the time 
required for making measurements. Another factor 
which affects Ta is the time TE in which the situation 
parameter 4 undergoes considerable change. Obviously 
Ta can be increased if TE is large. On the other hand, if 
TE < T,, an adaptive system is not effective. 

As the purpose of the present paper is to .develop a 
theoretical framework for the different types of adaptive 
systems, the latter will not be described in any detail. 
Only the literature references of the individual systems 
cited as examples will be given. 

The block diagram of an adaptive control system is 
illustrated in Fig. 1. The controlled plant is described by 

where x is the state vector, u is the control vector, v is a 
random disturbance and 4, is a vector representing the 
unknown or changing parameters. 

Fig. 1. Block diagram of an adaptive control system. 
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Sometimes the disturbance v and desired output x d  

contain stochastic or random components which are 
nonwhite. Then v and x d  can be expressed as functions of 
parameters t,, and f ,  and white stochastic signals w, 
and w,; 

x d  = xd(wz, h) (3 
v = v(wv ,  t v )  (3) 

x 

The set of vectors f,, Ez, and 4, is denoted by 4. 
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The control vector u is a function of the state variable 
x, the desired state xd, and some adjustable parameter f ;  ' '501 ? 

24 = u ( ~ ,  xd, r )  (4) c- - --- i 

The merit of the control system is determined by the % 

value of a cost integral; E space 7 space 5 space 

I 
( 5 )  

Fig. 2. Mapping from E space to 7 and spaces of different types 
6 = l:*k(x, Xd, %)dr of adaptive control systems. > 

designing an adaptive control system, the func- 2) Peak-seeking systems. In  ~ e a k - ~ ~ ~ ~ ~ ~ g  systems, ,' 

tions and are known. ~h~ function %, and the no attempt is made t o  estimate 4. The  adjustable param- 

method of determining c from previous measurements eter for peak performance is sought e x ~ e r i l n e n t a l l ~  by 

are to be selected so that c is a minimum. the steepest descent method. T o  minimize H, f or 
f(n+ 1) - {(n) is made proportional t o  t he  measured > 

THE EXTREME CASE OF A SLOW ADAPTIVE SYSTEM > 
In the extreme case of T,>>T,, the variables 4 and 5- 

are very slow-varying and can be regarded as constants 
in calculating the performance of the main control loop. I 

Equations (1) and (4) can be solved for u, and 3: in magnitude and antiparallel in direction; 

(6)  
d B  

= 4(%, 8;  Em 0 f Z  = - k - (continuous) 
el-i 

(11) j 
x = x(x~,  8;  [P, t) (7) 

dH(S(n), T(n)) 
I 

The integrand of the cost function c in (5) becomes a ti(n + 1) - ti(%) = - k (discrete) (12) 
function of xa, v ,  4, and t'; ari(n> 

where k > 0. 
h(x, xd, U) = +(%a1 u; Ep, l) As dH/df depends on f ,  the adaptive control  loop is 

As xd and v are random variables, the only meaningful closed. However, the  stability of such a sys tem when  5 ? 

value of h is its expected value; is nearing Co(E) can be readily proved in genera l  terms 

(h(x, xd, u)) = (+(xd, V ;  tP, l)) = a([, t) (9) under the assumption t h a t  H({,  f )  is analytic in 5- i n  the 
vicinity of fO. Since H(4, 3-0) is a t  i ts minimum Taylor 's  

The last equality sign is interpreted as follows: The series expansion gives 
expected value of h is a function of 4, and f and the 
parameters 4, and 4, which govern the generating pro- H(h I )  = *(6 lo) 

I 
cesses of xd and v.  Consequently it can be written simply 1 a2H f 

as a function of 4 and 5. o - i o - 3 )  (13) 
There are three ways of adjusting (. 
1) Optimizing controller with estimated value of c :  Let 

The parameters 4 are estimated from measured value of x 
and 14. Let q denote the estimated value of 4. In general, 
q is a functional of the present and past values of x and t' 
u. and A denote the matrix having A,i a s  i t s  e l emen t s .  The 

condition that  H(4, fo) is a t  its minimum i m p l i e s  that  
110) = gl x(fl I 0, u(tl I t )  j (lo) none of the eigenvalues of A is negative. F o r  s implici ty ,  

The curly brackets are used to represent functionals. the rather remote possibility t h a t  one o r  more eigen- 
In adjusting (, the function {(q) is prespecified, and values of A are exactly zero a re  excluded, and -4 is 

gives the optimum setting of 5- for each q. Then { is ~SsUmed to be fiositive-definite. 3 

adjusted accordingly. aH  
Schematically, this method is represented by the -- - - Aij (10j - f 2 )  = - ( A  (lo - l)) i (14) 

solid line of Fig. 2. The actual setting of { is determined art J 

91- But since 7 is the estimated 4 and is generally dif- The expression on the right lland side of (14) is in 
brent from the actual 4, h is different from the true matrix form; lo-[ is a column vector, A is a and 
o~filnu"' 1 1 1 1 9  The adaptive control is open-loop and the ( A  (Io -f)), means the i th  component of the  colunln 
q l l ~ t i o n  of stability does not arise. An example of such vector A ( t o  substituting (14) into (1 1) and 2) a s!.stem is one proposed by Kalman [I]. gives the following matrix equations 

In  ( 3  
and 

Si 
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f = kA(lo - t) ( 1 5 )  Therefore one way to make 5 approach lo is to synthesis 

l ( n  + 1) = l ( n )  + kA(To(n) - l ( n ) )  the adaptive loop such tha t  

= (TI - kA) t (n )  + kA(S-~(n))  (16) 1: = - kB-l(a - ( y o )  ( 2 1 )  

n (16), II is the unit matrix with all diagonal elements 1 
nd off-diagonal elements zero. 
Since A is positive definite, the systeni represented 

by ( 1 5 )  is stable and r converges to 50. The eigenvalues 
~f the matrix 11 - kA are 1 - kh,, where X i  > 0 are eigen- 
ralues of A.  For 0 < k <2/h, where X, is the maximum 
~a lue  of X, I 1 - kX ,  I < 1 and the system represented by 
16) is stable. 

Therefore we come to the following conclusion: A 
leak-seeking system using the control law ( 1 1 )  and 
:12) with I7,>>Tm is always stable if the adaptive loop 
s continuous or if the adaptive loop is discrete and the 
proportionality constant iZ is sufficiently small. 

The derivative sensing system of Draper and Li is of 
this type [2]. 

3) Systeins with Intermediate Parameters: Some- 
times optimum or approximately opt imu~n performa~lce 
can be obtained by keeping a set of key performance 
parameters a t  certain preassigned values. In the final 
analysis, these performance parameters do not have 
much significance per se, and the ultimate goal is to  
nlinimize some cost function c. But c is minimized or 
nearly so if these parameters are kept a t  the preassigned 
values. These key para~rieters are sometimes referred to 
as  intermediate parameters. The mapping from ,$ space 
t o  r space is illustrated in Fig. 3. Let the intermediate 
parameters be denoted a, and their assigned values be 
denoted ao. Then 

Since the value of B varies with 50, and the value of ro 
varies with e, B is not a constant matrix. In synthesizirlg 
the system it is convenient to assign some fixed or 
nominal value of B. Let it be denoted as Ba. The actual 
equation for the adaptive loop is not ( 2 1 )  but  

where k and Bu are a constant and a constant matrix 
respectively. 

Consider the case in \vhicll and consequently lo 
have just undergone a step change; {#r,i, f o = O  and 
B = 0. Differentiating (19) gives 

Equation (23) holds not only a t  the nonlinal operating 
point bu t  a t  all operating points. The adaptive loop is 
stable if BBoel is positive-definite. I t  is noted that a t  the 
nominal operating point B =Ro and BBO-I is the unit 
matrix. There is a neighborhood of the nonlinal operat- 
ing point in which BBo-l is positive-definite. 

The above analysis is not limited to the special case of 
a and { having equal number of components. Generally 
the number of adjustable parameters is a t  least as large 
as the llumber of intermediate parameters; otherwise it 
is generally not possible to adjust a to a". Therefore B 
has more columns than rows. The  matrix Bo-I in ( 2 2 )  
can be replaced by a ~nat r ix  C with ?n rows and n col- 
umns, m > n ,  which satisfies 

(17) 
BoC = 1 (24) 

Equation (24) does not determine C uniquely. To  see 
this, one rnay add fit-n rows to  Bo to  make i t  into a 
m X m  matrix D. The elelnents of the new rows are com- 
pletely arbitrary except for the restriction that  D must 
be nonsingular. Then D-I can be found and C is the part 
of D-I as illustrated in Fig. 4. 

D D" = 1 

Fig. 3. Mapping from 5 space to space of systems 
with intermediate parameters. - - 

Let 

Fig. 4. One way of determining matrix C when i?z>n. 
Bd - ($1 

J r=ro 
(18) 

For a discrete adaptive loop, ( 2 2 )  and (23) can be 
and B denote the matrix with Bij as its elements. In replaced by 
matrix notation (1 7) becomes 

{ (n  + 1) - { (n )  = - kBo-l(cr(n) - 00) (25)  
a - ao = B(f  - l o )  (19) a(n + 1)  - a0 = - 

If B is a square matrix 
The system is stable if all the eigenvalues of II - kBBo-I 

l - T O  = B-'(a - (YO) (2'0) are less than one in magnitude. 
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An example of an intermediate parameter is the area 
ratio proposed by Anderson, Aseltine, e t  a1 [3] and 
Kuntsevich and Chugunnaya [4]. 

Each of the above-mentioned systems has its relative 
advantages and disadvantages. The  function r ( ~ )  of a 
type 1) system is difficult to  realize. Because the adap- 
tive loop is open, this function must be accurately simu- 
lated. I t  usually requires considerably more knowledge 
on the controlled plant and the statistical natures of xd 

and v than what is available in practice. For systems of 
type 2) explorative variations of { must be used to  
determine the gradient aH/d{. Consequently 1 must be 
different from bo a t  times and the so-called "hunting 
lossn is introduced. While systems of type 3) do not 
have the above mentioned handicaps, one prerequisite 
is that the intermediate parameters a! must exist and 
must be properly selected. 

In the above examples, the adjustment of [ is based 
entirely on the estimated situation or estimated per- 
formance of the system. These methods are slow be- 
cause i t  usually takes a measuring interval many times 
T,,, to obtain a good estimate. T o  illustrate this point, 
consider a system in which some plant parameter e, or 
over-all performance parameter a! is to be estimated. 
Usually there is load disturbance or some other source 
of fluctuation which cannot be measured directly. In 
order to obtain a fairly good estimate on 4, or a, the 
effect or error introduced by these disturbances must be 
in some way neutralized, and the only effective way 
appears to be correlating the input and output over an 
interval large compared to T,. Sometimes the adjust- 
ment is based on estimated input parameters t, and t,, 
and these parameters are defined and measurable only 
over an interval of time long enough to  contain many 
fluctuations of xa  and v. As the servo bandwidth must be 
larger than that of xa, and is approximately equal to the 
pertinent bandwidth of v, the required measuring inter- 
val for 4, and t;, is again many times T,. 

RELATIVELY SLOW SYSTEMS 151, [6] 

When the variation of is relatively fast, the meas- 
uring interval needs to be shortened. Three factors 
which have not been considered in the previous section 
become important under the present case: 

a) The finite time for measurement, 
b) The effect of 1 in previous measuring intervals on 

the system especially on H and a of the present 
measuring interval 

c) The statistical nature of the variations of [. 

AUTOMATIC C O N T R O L  Jan ua y 

Nearing a minimum value of H 

- lo(n - k)lla(k, kt) [I(n - k') 

k-m 

I, n) = aa + C b(k)[I(fi - k) - To(n - k)] (28) 
k-0 

There are many ways to  account for the statistical 
nature of the variations of t. One most convenient way 
is to note that  for each t;, there is an optimum value rO. 
When E is random, 5-0 is also random. What really counts 
in designing the adaptive loop is the statistical nature of 
(0. Without loss of generality, we may redefine f 0 as the 
variation from its mean value. Then the newly defined 
{O has zero mean, and its statistical property is repre- 
sented by a spectral density QrosoCjw). I t  is noted that  as 
5 is a vector of m components, QrdoCjw) is a matrix of 
m X m  elements. 

Because there is a random statistical error, the 
accuracy of the measurement improves with t h e  meas- 
uring interval. But if the measuring interval is made too 
long, the delay of one interval as mentioned under (a) 
becomes too much of a handicap. A compromise has to  
be made between the accuracy and timeliness of the 
measured results. Because of this inaccuracy, better 
results can generally be obtained by  making a n  opti- 
mum design based on present a s  well as a l l  previous 
measurements. For systems of type I),  the  ad jus tments  
may be made in two ways: 

b) Alternatively 5- is computed first, a n d  the actual  
adjustments are made according t o  a filtered Cf: 

+ 1) = F ~ k ) r ( n  - k) c.32) 
k=O 

The two cases are represented in the  block d i a g r a m s  of 
Fig. 5 (a) and (b). 3 

For systems of types 2) and 3), the a d j u s t m e n t s  a re  
based on all previously measured d H / d r  a n d  a - m u .  
Instead of (12) and (25) the adjustment e q u a t i o n s  are 

Mathematically, a) requires tha t  the adaptive loop 
be a discrete system. Also, since the value of a t  the I(72 + 1) - I(%) = - 

t-0 
(33) , 

present interval is determined by the measurements 
n-m made a t  previous intervals, there is a time delay of one 

interval. The condition b) can he expressed as follows: I(% + 1) - t(n) = - C f(k)(a(n - k) - CYO) 
k=O 

(34) , 
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a€ 
I 

Equation ( 35 )  can be rewritten in terms of z  transform, 

(a) where 

k=m 

A (z )  = C z k a ( O ,  k)  
k=O 

(37)  

Contmtlsr Multiplying ( 33 )  by z-("+l) and summing over n give 

(b) 

Fig. 5. Block diagrams of open adaptive loop 
control based on best estimates. 

measuring 
error 

main ~ e r v o  
loop Similarly ( 28 )  and (34)  give 

w 
( a  - ( Y O )  (2) = B (2) [ r ( z )  - l o  (2)  J (3  9) 

9 
Fig. 6.  Block diagram of peak-seeking system. 

main servo 
loop I 

Fig. 7. Block diagram of adaptive system 
with intermediate parameters. 

where ( d H / d l )  represents the gradient of H a t  the 
(n - k)th interval. 

In terms of z transform, F ( z ) ,  r ( z ) ,  and n ( z )  are de- 
fined as 

k - a  

l ( z )  = C l ( k ) r k  
k-0 

k=m 

7(z> = C r l ( k ) r k  
k=O 

Multiplying ( 2 9 )  by z-("+l) and summing over n give 

Similarly ( 32 )  becomes 

where 

I t  is to be noted that for actual systems, the measured 
values of d H / d r  and a-or0 must be used in ( 3 3 )  and 
( 34 ) .  They differ from the true values by the respective 
measuring errors. 

Summarizing the above these equations are repre- 
sented by the block diagrams of Fig. 6 and Fig. 7, re- 
spectively. 

In designing the adaptive loop, the function to be 
selected is F(z )  in all cases. The problem is reduced to 
one of minimizing mean square error with given data  on 
input spectral densities. As the solution is well-known, 
i t  will not be discussed here. The following is a table of 
required input data and the quantities to be minimized 
for each case: 

lf (2) = r l F ( z ) l ( z )  (32a) Sometimes i t  is possible to make continuous measure- 
Differentiating ( 27 )  with respect to r ( n )  gives ments on certain intermediate parameters [ 7 ] .  The 

system can be considered as a special case with the 
d B  k=m 

-- - 2 C 4 0 ,  k )  [ l ( n  - k )  - lob - k)1 (35) 
sampling interval approaching zero, and z  transform 

ar(n)  k=o approaching Laplace transform [ a ] .  

Error to be 
Minimized 

(lls -11)' 

( l s - f ~ ) ~  

(lo - 612 

(lo -112 

System 

Fig. 5a 

Fig. 5b 

Fig. 6 

Fig. 7 

Input Data, 
Spectral Densities 

t, at 

l o ,  l-fo 

lo, 8 

lo, 6 
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FAST ADAPTIVE SYSTEMS T,>>T, f - space 

January 

In some control systems, the time required for meas- P 
urement of 4 accurately is very short, and x and xa 
do not change much in such a short interval. Conse- 
quently, 5 is known most of the time. The system is still 
different from a time-varying system because f ; ( t )  is 
random and its variations cannot be predicted before- D 

hand. For simplicity, i t  is assumed that  E(t) is com- Fig. 8. Control range of a model reference system. r 
pletely known a t  tl for t<tl. 

There are two different situations. $ 

1) f varies appreciably within Tm, and in fact may &FfimTTT 
go through many fluctuations in Tm: A theory of opti- 8 
mum control of systems of this type has not been sys tem 

worked out. However, there is a widely adapted prac- '/nm 3 
tice, the model reference scheme [9]. The model is 
usually so selected that  its response can be duplicated (a) (b 
by some choice of u most of the time. Then the system Fig. 9. Two waF of implementing a model reference system. 
is forced to duplicate the response of the model. Figura- i 

tively, let i t  be assumed tha t  the attainable ranges of 
f(x, u, v, fp) for different values of tP are the ellipse, the where Y is the output, and m'<m+*. T h e  two syste'ns ? 
rectangle, and the triangle as shown in Fig. 8. Then the may have con~pletely different m' and k = 0 9  

common shaded area is selected as the range of f(x, zr ,  v, 1, - - . , m'. But  m and n must be the  same, and the 

,$,) of the reference model, and an optimum controller constants Ti must vary proportion at el^. 
is designed accordingly. The proof is as follows: Let a dimensionless time > 

There are many ways of implementing the nlodel and time constants X i  be defined as 
reference idea. Two examples are illustrated in Fig. .r 
9(a) and (b). In Fig. 9(a) the input x d  is applied to both 7 = t/T1 

the model and the control system. The outputs are hi = T ~ / T ~  i = 1, 2 - - m 
compared, and the difference or error is fed back to the 
control system to force x to as close to r m  as possible. The Laplace transform variable s is rep1aced by the 

In Fig. 9(b) the model response is linear and can be repre- new variable TIS- Equation (42) becomes 
sented by the transfer function H,(s). Then l/H,(s) is kdmf b 

introduced in the feedback loop. The success of these ~ ~ n - m J  ak~lkam'- l i  

methods depends on the loop gains of the two loops y(u> k=o 3- 
-- 

illustrated by the heavy lines. Many methods are de- i=m 
( 4 4  

vised to push the loop gain to the limit [lo]. 
U (a) 

an JJ (1 + Xi.) 
a-1 2) f varies very slowly and is approximately con- 

stant within T m :  Theoretically one can regard ,$ as B~ partial-fractioning (44), i t  is readily shown 
constant and determine u for optimum performance. 

k-nf m 2 In an adaptive system the optimum control law varies 
continuously as 5 is varied. While the concept is sim- y(7) = bkxk(7) (45) 

k-l 
plicity itself, i t  is difficult t o  implement with practical 
hardware. where 

Alexandro [ll] has shown that  under certain condi- 
tions two systems can be governed by the same dimen- 
sionless control law, and one need only to change the 
proportionality constants between measured state vari- 
ables and the dimensionless state variables used in the 
control law. The conditions are as  follows: Both sys- 
tems can be described by the same transfer function 

k-m' 

-- 

U(s> i-m 

sn n (1 + Ta) 

While the his are different for the two sys tems,  the hi's 
are identical. The same set of dimensionless s ta te  vari- 
ables x k  obeying the same set of differential equations 
(46) applies t o  both systems. Consequently t h e  same 
switching boundaries for reducing (XI, xi, . . - , xn+,) 
to zero in minimum time can be used for  b o t h  systems. 
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Gain odjuslments ,---- ----------- 
I 

I 
I r -  -d I.-__. 

I .---1: + I ,  - I 
desired I I I 
51018 Dimensionless : I I 

U I I : Measured slnle 
Control  P lan t  =. 
L a w  

Fig. 10. Block diagram of a n  instantaneously 
optimum adaptive system. 

Fig. 11. An adaptive system illustrating dual-control theory. 

Obviously the above discussion applies t o  the situa- 
tion where ak, urn and TI  vary at random and Ti's vary 
proportionately with TI. The  switching surfaces in x 
space remain unchanged, bu t  the  point in x space repre- 
senting the state of the system drifts as the  plant param- 
eters ak, u, and T1 are varied. T h e  adaptive system is 
illustrated in Fig. 10. T h e  system obeys the optimum 
control law a t  every instant, and may be referred to as 
an instantaneously optimum system. I t  is not as  widely 
applicable as  the model reference system. But  wherever 
it can be applied, i t  is a faster system than  the latter. 

Another way of looking a t  Alexandra's system is that  
the controlled system is made to conform to  a dimen- 
sionless model rather than  an  absolute model. Since the 
unit of time is now adjustable i t  is always set a t  the 
shortest practicable value to obtain fast response. 

In case T ,  is of the same order of magnitude as T,, 
very little can be done in the way of approximations or 
physical intuition. I t  seems t h a t  the  only recourse left is 
a brute force formulation of the  problem and leave the 
question of a solution t o  wherever it may  be. In Feld- 
baum's dual control theory [12], the author pointed 
out that each input to the  plant serves two functions; 
control of the plant t o  yield the desired output, and 
testing of the plant so t h a t  the  knowledge gained about 
the plant can be used t o  reduce future error. 

Figure 11 illustrates the system studied by Feld- 
baum. The desired output  is x* and the  actual output 
is X. A and B represent the controller and controlled 
plant respectively. H ,  H* and G represent the con- 
tamination of the output,  input and control signals dur- 
ing transmission, and h, h*, and g are random noises in 
the links. The  Markov variable z may be  a vector and 

represents both the load disturbance and the changing 
plant parameters, 

For instance one may write I 
then 21 is the variable gain and 22 is the load disturbance. 
The problem is to determine A for least expected value 
of the square error < (x* - x ) ~ >  or some other cost crite- 
rion. The difficulty lies in the fact that each different 
output u gives a different estimate of the Markov states 
x* and z are in. The only general result obtained by 
Feldbaum is that if B is memoryless, that is the nth 
sample of x is a function of the nth samples of v and z 
only, then A is a deterministic controller in the sense 
that  the best u to use is completely determined by the 
present and past samples of y* and y. But the best u as 
a functional of y* and y is very difficult to calculate 
except for a few simple cases. 

Many different types of adaptive control systems can 
be classified according to the ratio of two time con- 
stants, Ta of the adaptive loop, and Tm of the main 
servo loop. If Tm< T,, the system can be analyzed by 
taking sample or time average over the input and load 
disturbances first. Peak-seeking and estimating, adjust- 
ing systems belong to this type. If Tm>>T,, the chang- 
ing parameters of the plant are practically known. 
Model reference systems belong to this type. The most 
difficult case is the one with Tm= Ta, because no gen- 
eral approximation can be made. Feldbaum's dual con- 
trol theory applies to this case but it has yielded very 
little practical results. 
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