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AN EXTENSION OF ASCOLI'S THEOREM AND ITS 
APPLICATIONS TO THE THEORY OF OPTIMAL CONTROL 

BY 

S. S. L. CHANG 

I. Introduction. Ascoli's theorem deals with continuous functions and states 
that the space of bounded, equicontinuous functions is compact. The present 
paper extends it to the measurable functions. The space of bounded "equi- 
measurable functions," is compact, and it contains the bounded equicontinu- 
ous functions as a subset. 

The above theorem is applied to two problems in the theory of optimal 
control: 

1. To give an existence proof of optimal control among allowed control 
functions which are measurable and enter the system equations in a non- 
linear manner. 

2. To derive a necessary condition for optimal control in bounded phase 
space (Theorem 8). The condition is different and simpler than the one 
derived previously by Gamkrelidze [I]. It is proved to be also sufficient for 
linear systems, and its applications to engineering problems are given in 
previous papers [2]. 

In their classic paper [3], Boltjanskii, Gamkrelidze, and Pontryagin 
derived the "maximum principle" by assuming the existence of optimal 
control. Gamkrelidze [4] gave an existence proof for the linear case with 
discontinuous control. Markus and Lee [5] sketched an existence proof for 
the linear case with discontinuous control and also stated an existence 
theorem for the nonlinear case with continuous control satisfying a Lipschitz 
condition. None of these existence proofs are sufficiently general to form a 
basis for proving Pontryagin's maximum principle and the above-mentioned 
condition for optimal control in bounded phase space. 

The method used in deriving the latter is also different from that used by 
earlier investigators. In  place of the rigid bound, a cost function with a multi- 
plier K is introduced for regions beyond the boundaries in phase space. It is 
shown that in the limit of the multiplier K approaching infinity, both the 
added cost and the maximum excursion of the optimal path beyond the 
boundaries approach zero, and the condition for optimal control is thus 
derived. 

The generalized Ascoli theorem is useful in both the existence proof of 
optimal control, and in proving the existence of a limit as K approaches 
infinity. 

t Presented to the Society, January 24, 1964; received by the editors September 7, 1961 and, 
in revised form, July 18, 1963. 
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11. Equirneasurable functions. a mod1 
DEFINITION. A function f( t)  is said to be measurable if there exists a f i and 

sequence of step functions gk(t) such that 

lim (gk(t) - f (t) I -' 0 
k- m $(A) = 

except on a set of zero measure. uities 

An infinite set of functions F is said to be equimeasurable on a closed inter- \ as the 

val T if there exists a sequence of step functions gik(t) for each fi(t) f F such 
that the following conditions are satisfied: 

2.1. gik(t) has no more than k discontinuities. 
2.2. For every el > 0 and sl > 0, there is a finite number K(Q, 81) and for 

Ther 

every gik(t) with 12 > K(tl ,  sl) 
(1) Igik(t) - fi(t) 1 < €1,  i = 1,2, . . ., W, 

except on a set of total measure less than 
1 For 

is as 
THEOREM 1. The following sets of functions are equimeasumble: 11 
(a) functions with uniformly bounded variations on T (same bounds for all and 

the functions belonging to the set), bou 
(b) piecewise equicontinuous functions, gik(i 
(c) functions obtained by a finite number of addition, subtraction, and multi- z = 

plication operations on equimeasurable functions. the 

Proof. (a) Given a function f( t)  with bounded variation M in an interval 
T = [tl,t2], and K(cl, 63 is selected to be 

The interval T is divided into k subintervals ri of equal length. Let 

ai = SUP tEri f ( t)  , bi = inf t € r i  f ( t)  . 

The step function gk(t) is defined by 

b 
Since the maximum variation is M, the number of intervals with ai - bi 

2 2t1 is not greater than M/2el. Therefore, for any k > K(e1,bl) - i 
with the exception of at most M/2tl intervals, the total length, of which is 



a modulus of continuity $(A) can be defined [6] which holds for all functions 
fiand bET: 

@(A) = @ ( I  A 1 ) -+ 0 as I A 1 -+ 0 except a t  a finite number ( < lV) of discontin- 
uities which can be different for different fi. Given any el, 6,, a A1 is defined 
as the smaller of the two, All and A12: 

Then 

For each value of k, the interval T is divided into k equal intervals and gi,(t) 
isassigned themean value of fi(t) in each interval. Then (1) is satisfied. Q.E.D. 

In the following, the functions fi(t) are assumed to be bounded from above 
and below on an interval T. Consequently the step functions gik(t) are also 
bounded from above and below. Let Si denote the sequence of step functions 
gik(t), k = 1,2,. . -, w. Let Gk denote the sequence of step functions gik(t), 
i = 1,2, - . - , m. Let L denote the length of the interval T. In what follows, 
the length and measure of a subset T' of T are synonymous, and is denoted 
~ Y P ( T ' ) .  

LEMMA 1. Given any k, a sequence of functions gd(t) can be selected from 
Gk such that it converges in measure to some function Vk(t): 

Furthermore, each gd(t) is selected from the subset of Gk with i 2 n. 

Proof. Let ti,, Q, . -, tip denote all the points of discontinuity of gik(t) and 
 ti(^+^, .- - tik be any other points in T. These k points partition the interval 
T into k + 1 subintervals. Let ail, aia . . . , ai(k+l, be the values of grk(t) in the 
subintervals. The set til, ti% - - , tik, ail, ai2, - -, a i (k+ l )  defines a point Pi in a 
bounded (2k + 1)-dimensional space. It follows from the Weierstrass-Bolzano 
theorem that the set of points (Pi) representing Gk has a t  least one point of 
accumulation tl, t2, - , tk, al, a2, . . , Therefore, a sequence of points 
(Ptn, j can be so selected that 

7 

L 1 t(n)l - t~ 1 S - 1 = l,2,... ,k, 
nk' 
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The step function specifled by tiy t2, . - ' , tky ai, a2, - . , ak+l is Vk(t), and p(*, is 
the representative point of gnk(t) in (2). 

The condition i 2 n can be met as follows: After selecting each p@,, which 
is the representative point of gi~k(t), the next point P(n f+ l )  is selected from the 
subset {Pi.) with i" > if. Q.E.D. 

Selection of two-dimensional array ( ( gnk(t) 1 I. Let the sequence ( g&(t) J be 
denoted Hk. Then the sequence &+I is selected from Gk+l as follows. 

Each term g&(t) in Hk is identical with agik(t) in Gk. Correspondingly t h e r e  
is agi(k+l)(t) in Gk+l, and all the gi(k+l)(t) SO selected constitute a subset G L + ~  
of Gk+l. The sequence gn(k+l)(t) is selected from 4 + 1  in exactly the same way 
as gnk(t) is selected from Gk. I n  identical manner gn(k+2) is selected from the 
subset Gir+2 of Gk+2, etc. 

Using the above procedure, and starting from k = 1, one obtains the t w o -  
dimensional array of functions { ( gdt )  } }, k = 1,2, . . ., and n = 1,2, . . . , a>. 
Each member of the array satisfies (2) and the following condition: 

For any gnk(t), and k' < k, there is a gnfp(t) which belongs to the s a m e  
sequence Si. That is, 

and 
gn,,(t)=gikI(t) i z n ' h n .  

LEMMA 2. The diagonal sequence { gn,(t) ) of the array ( ( gnk(t) ] } is a Cauchy 
sequence in measure. 

Proof. Given e and 6, there is a K(e/4, 614) as defined by (1). Let I(€, 6) 
denote the least integer which is larger than all three: K(e/4, b / 4 ) ,  416 and 
4L/6. Consider any two functions in the sequence g,(t) and gm(t) with 
n > rn > I(€, 6). Because of the rule of selection, there is a gsm(t) with s 2 n 
which belongs to the same Si with g,(t) . 

Inequality (1) gives 

except on a set of total measure less than 6/2. Inequality (2) gives 

Combining (3) and (4) gives 

(5) Igm- &m(2 € 1  < 6. 
Q.E.D. 



A by-product of the above proof is that no two members of the sequence 
{g,) belong to the same Si. For each g , , ( t )  there corresponds an Sit and 
f&). Let fil(t) be redenoted fn,(t). Then all members of the sequence( fn(t) 1, 

f n = 1,2, - - , a, are distinct. I t  follows from equations (1) and (5) that 

i {f,(t) ) is a Cauchy sequence in measure. 

I THEOREM 2. Let { f , ( t )  J be an equimeasurable set of functions which are 
bounded from above and below. A n  infinite subsequence (f(,,(t)) can be selected 
from {f,(t) ) such that f(,)(t) converges almost uniformly to a measurable function 
v(t). 

Proof. By Lemma 2, a Cauchy sequence in measure { fn(t) } is selected from 
{ f i ( t )  1. A subsequence of {f,(t) ) is a Cauchy sequence [almost uniform] 171. 
Let it be denoted by { I  f(,)(t) ). By Cauchy's theorem [ 81, (f(,)(t) ) con- 
verges to a measurable function allnost uniformly on T. Q. E.D. 

DEFINITIONS. The norm of a vector a is defined as 

A vector function has a finite number of components. A set of vector func- 
tions {wi(t) } is said to be equimeasurable if conditions 2.1 and 2.2 are valid 
with (1) repla'ced by 

The norm of vector functions takes the place of the absolute values of 
scalar functions. 

COROLLARY 1. A n  infinite subsequence {w(,,(t) } can be selected from an equi- 
measurable set {wi(t) ) such that w(,)(t) converges almost uniformly to a measur- 
able function V( t )  . 

Proof. Let &(t) denote the j th component of wi(t). From each vector func- 
tion wi(t), a scalar function fi(t) can be defined: 

Then { fi(t) ) is an equimeasurable set defined on an interval of length NL. 
By Theorem 2, a subsequence ( f[,)(t) ) can be selected from { fi(t) ) such that 
it converges almost uniformly to U(t)  . By decomposing f(,)(t) and U(t),  w(n)(t) 
and V(t)  are obtained. Q.E.D. 

COROLLARY 2. Let B denote an enumerably infinite set of vector functions 
( w(t) ). Each w(t)  has m components wl(t), wyt) , . . . , wm(t) which are uniformly 
bounded on a closed interval T. The components &(t), 1 5 p 5 m ,  are equicon- 
tinuous; the components wU(t), m,  + 1 5 Y m, are equimeasurable. 

Then from B a subset of vector functions {w(,)(t) }, n = 1,2, . . ., m, can be 
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selected which converges to a limit V(t) in the sense that the components Wfn,(t) 
converge uniformly to VS(t) and the components wn)(t) converge almost uni- 
formly to V(t). 

Proof. As equicontinuous functions are equimeasurable, by Corollary 1, 
a subsequence { W(,,)(t) } can be selected which converges uniformly to V(t) 
except on a set T' of zero measure. Then VS(t) for t E T', p = 1,2, - -, m, 
can be defined as the limit of VF(t), t E T - T', from either side. The uniform 
convergence of { Wfn)(t) ) to W(t) on T' follows from Moore's theorem [9]. 
Q.E.D. 

111. The control problem. The controlled system is described by a set of first 
order differential equations 

where r and u stand for the two vectors (x" xx", - . . , xnl) , and (ul, u', . . - , u-) , 
respectively, and x will be used to note the vector (xu, x', . - ., xnl). The func- 
tions f together with partial derivatives af /axi, i, j = 0,1,2, . ., n1 are 
single valued, bounded, and continuous 'in all the variables z, u, and t on a 
product region X1 UITl where XI, Ul are open regions in the nl-dimensional 
x-space and n2-dimensional u-space, and Tl is an open interval of t, (see 
Note 1). I t  is understood that all the properties and relationships stated in 
the subsequent sections are on the XI U1 TI. 

Note 1. The existence of bounded and continuous derivatives in x is 
required for proving Pontryagin's maximum principle, but not required for 
proving the existence theorems. For the latter, it is sufficient to assume that 
f(x, u, t) satisfies Lipschitz's condition in x. 

I t  follows from the Carathiiodory existence theorem that if the initial x(t3 
and u(t) for a subsequent interval are given, z(t) is uniquely determined on 
the same interval. Thus an allowed control can be defined as a function u(t) 
satisfying the following conditions: 

3.1. 

where U is a closed bounded region in Ul. The closed interval [t,, tz] is 
denoted by T, T E TI. 

3.2. There is a finite K(e,6) for each E > 0 and 6 > 0, and K(e, 6) is the 
same for all ~ ( t ) .  A sequence of step functions gk(t) can be found for u(t) 
such that for each k 2 K(e,6): 

3.3. The x(t) resulting from u(t) satisfies 



where X is a closed region in XI. Note that in the special case of X being 
the entire accessible region (accessible under the constraint that (9) and 3.2 

( are satisfied by u(t) , the problem is reduced to one without bound in x-space. 
f The function x(t) resulting from an allowed control u(t) is called an allowed 
! path. 

I 
In the following sections the following distinction will be made: x, u imply 

x(t), u(t) for the entire path, t1 < t < t2; x(t3), u(t3), etc., denote the values 
at a particular instant t,. 

The set of all allowed controls is denoted by C. The set of all allowed paths 
is denoted by P. The set of all allowed control-and-path pairs u, x is denoted 
by A. 

A return function or functional R is defined in terms of the xu(t2) resulting 
from u 

There are two basic types of terminating conditions: (a) t2 is fixed, and (b) 
x(td is fixed, and tl 5 t2 5 T2 but t2 is otherwise unknown. The interval 
[tl, TZ] C TI. The condition (a) is referred to as "free end point." The condi- 
tion (b) is referred to as "fixed end point." 

An allowed control ul E C is said to be optimal if 

R [ul] = sup R (u) . 
u E C  

In any given problem, there may be more than one optimal control. The set 
of optimal controls under free end point conditions is denoted as So, and the 
set of optimal controls under fixed end point conditions is denoted as So(T2). 

THEOREM 3. A is compact. 

Proof. Let u, x be an allowed control and path pair. An (n, + n2 + 1)- 
dimensional vector function w(t) is formulated from the components of x(t) 
and u(t) : wi(t) = xi(t), i = 0,1, . . ., n,; wl+"l(t) = uJ(t), j = 1,2, . . ., n2. Let 
R be a set of w(t) with S n i t e  members. 

The components x are bounded and equicontinuous because f(x, u, t) is 
bounded and tz - tl is finite. The components u are bounded and equi- 
measurable by definition. Corollary 2 of Theorem 2 states that a sequence 
~(k)(t) can be selected from B which converges to a limit function V(t), V(t) 
= ( V", V1, . . , V"1+%). Because X is closed, and the vector (wh), $hl, - - -, 
w:;)) E X  for k = 1,2, -.., a, (V,  V ,  ..., Vnl) EX. Similarly, (W", a * . ,  

vl+*) E U almost everywhere except on a subset Ti of zero measure. Let 
&(t) be defined as 

fii(t) = vnl+ i(t), t E T - Ti 

and fi(t) be any vector E U, on the subset Ti. Then fi(t) E U on T. 
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Let %(t) denote the vector ( V'(t), V1(t), . . . , Vnl(t)). I t  remains to be shown 
that (8) is satisfied by (Et(t) , fi(t)) . If 

for any t3 E T, then a contradiction can be shown as  follows: 
Since f(x, u, t) is continuous in x and u on a closed set, it is uniformly con- 

tinuous [lo]. For any t2 > 0, it is possible to find a &(e2) > 0 such that 

I\f(r,u,t) - f(f,fi,t)(( < € 2  

for all x and u satisfying 

11% - 211 < 82(~2) 

and 

Let 

6, = inf { i, 82(~2)) , 

For saciently large k, the components ~ ( ~ ) ( t )  and qk,(t) of w(k)(t) satisfy the 
following inequalities: 

2a 
<63-2/3f+e2(t3 - t3 6 -  

3' 

As U(U and x(k, constitute an allowed control and path pair 

The inequality (14) is contradicted by (15), (16), and (17). Therefore 



Differentiating the above equation with respect to t3 and then setting t3 = t, 
(8) is obtained for it and fi. Q.E.D. 

t 
IV. Existence theorems. 
DEFINITIONS. Let the set of all allowed paths x satisfying x(tl) = gl  be 

I denoted by p(tl,tl). The set x(tJ, with t3 2 t, and x € p(tl, El), is denoted 
by Q(t3). It is the accessible region a t  t3 with the initial condition understood. 
The set of points x(t), with tl 5 t 5 t3 and x E p(tl, gJ, is denoted by Q(t S t3). 
I t  is the accessible region up to and including t3. 

The distance between a point x and a region R is defined as 

d(x, R) = inf Jlx - x'lJ. 
x' ER 

The set of x with d(x, R) < e is called the e-neighborhood of R, or simply 

N,(R) - 
A boundary point E of X is called returnable if there is a u(t) E U such that 

f(& u,t) points inward (of X). Consequently, if x(t) = r ,  the path x(t) can 
be continued to some larger value of t. 

THEOREM 4. O(t3) is closed. 

Proof. Let y be the limit point of a sequence y(k,, and each y(k) E Q(t3). By 
dehition of Q(t3), there is an allowed path x(k) E p(tl, t l )  that x(k)(t3) = ~ ( k ) .  

Theorem 3 states that a subsequence can be selected from f x(k) f to con- 
verge on an allowed path x. Therefore, there is a subsequence in y(,) which 
converges to a limit %(tJ - Therefore, y = e(t3). y E Q(t3). Q.E.D. 

LEMMA 3. If  x(t3) of an allowed path is either an interior point or a returnable 
boundarypoint of X ,  then given e > 0, there is a r(e)  such that x(t3) is in the 
e-neighborhood of Q(t) for every t satisfying I t - t3 1 < r(e). 

Proof. Lemma 3 is due to the boundedness of f. For sufficiently small e, 
r(e) = el&. Q.E.D. 

THEOREM 5. If all the common boundary points of Q(t 5 t3) and X  belong to 
the returnable set, then Q(t s t3) is closed. 

Proof. Let y be the limit point of a sequence y(k), and each y(k) E Q(t 5 t3). 
Then one can find a set t(,) SO that y(,) E n(tck,) for all k. Since there are 
infinite t(k) in the closed interval [tl, t3], there is at  least one point of accumu- 
lation. Let it be denoted i. Then a subsequence ylkl can be selected from 

I y(k) SO that 

limylkl--+y, lirntlkjdt. 
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Since [tl, t3] is closed, t E [tl, t3], and Q(2) C Q(t 6 t3). Also Q(2)  is closed 
because of Theorem 4. 

If y e Q( t ) ,  an t, > 0 can be found such that 

(19) d ( y , ~ ( t ) )  > €1. 
For sufficiently large k 

Lemma 3 gives 

Inequalities (20) and (21) contradict (19). Q.E.D. 

THEOREM 6. I f  there is an allowed control, there is an  optimal control with 
free end point. (So is not empty.) 

Proof. B y  definition (12) of R(u),  the problem is whether there is an 
x E P such that 

xO(tJ = M = sup xo(tz). 

If M is not equal to one of the xO(tJ in the set, there is a sequence xm E P 
such that 

(22) lim x& (t2) -+ M. 

By Theorem 3, a subsequence xlnj can be selected to converge to % E P 
Therefore lim xrnl(tJ + jZo(tJ . B y  (22), !tU(t2) = M. Q.E.D. 

THEOREM 7. I f  there is an  allowed path which terminates at t2 at some t2 5 T2, 
there is an optimal control among the allowed set which terminates at Q on or 
before T2. (So(TJ is not empty.) 

Proof. Let X denote the straight line 

in the ( n  + 1)-dimensional x-space. A point on A, is specified by  its value of 
xo. Let 

Each point on I is the terminal point of an allowed path and vice versa. I is 
not empty because of the condition of the theorem. 

As I is the intersection of a closed set X (X includes =t a), and a closed set 



[ ~ ( t  TJ (Theorem 5), I is closed. Therefore, there is a point 2 E I such that 

ito = sup xu. 
XEI 

i Since it E I C Q(t 5 TJ, there is a t  least one dlowed path leading to 2 on or 
within T2. Q.E.D. 

COROLLARY. If there is an allowed path terminating at t2, in finite time 
(z(tz) = EJ, there is a minimal time control among the allowed set terminating 
at h. 

Proof. Since there is no need to consider any allowed path which termin- 
ates at E2 a t  a later instant, T2 = t2. The corollary is reduced to a special case 
of Theorem 7 with f"(x, u, t) = - 1. 

V. Optimum control in bounded phase space. 
Definitions a n d  assumptions. 
DEFINITIONS. Subscripts are used to denote components of covariant 

vectors: 

(Note. A light face greek letter & or 11 without subscript is meant to be the 
enlarged vector ($0, $) or (10,~). A light face greek letter with a subscript 
is meant to be a component of the vector.) 

The concept of "magnitude" of a vector does not enter into the problem 
nor the theorems. However, in proving the theorems, it is desirable to have 
these concepts so  that bounds can be defined or calculated. The magnitude 
of a vector x is denoted as 1x1 and defined by 

(23) 1 x 1 ' ~  (XI)" (x2)'+ . .. + (xn)'. 
I The same is true for covariant vectors. In  the subsequent sections, "distance" 1 is redefined in terms of the magnitude rather than the norm. 

ASSUMPTIONS. The region X and functions f(x, u, t )  are assumed to satisfy 
the following conditions: 

I 5.1. X is n-dimensional. 
5.2. A unique normal exists on every bounded point xb of X. 

The unit vector in the direction of the normal at xb pointing outward is 
designated by *(xb). The component qo is identically zero. 

5.3. The partial derivatives drli(x)/dx' are uniformly bounded. 
5.4. Every point x within a certain distance di from X is on one and only 

( one of the normals l(xb). The normal &zb) therefore can also be identifled 

1 ast(%), where x may be any point on 1 within a distance di from the boundary. 
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5.5. There exists a distance d2, dl > d2 > 0,  and a constant ai > 0, such that 
at every point r within distance di from X there are a t  least some u E U 
satisfying: 

The closed region extending outward from the boundary of X up to distance 
d2 is denoted by Xo. 

(25) x + xocxl. 
A constructed problem. Because of assumption 5.4, a distance function v(x) 

can be defined as follows: 

Let the problem defined in $111 with the added assumptions be denoted as 
P. A constructed problem P(K)  is defined as follows: 

5.6. In  (8), the equation for i = 0 is replaced by 

(27) x" = f"(x, u, t)  - K [v(x) 1'. 
5.7. Equation (11) is replaced by 

The allowed controls satisfy conditions 3.1, 3.2, 3.3. The terminal condition 
is that t2 is fixed but x(tJ is free. 

VI. Optimal path of the constructed problem. An allowed path can be gen- 
erated by choosing any u(t) when x(t) is an interior point of X + Xo, and 
choosing a u(t)  which gives 

i - n  

C ~i(x)f'(x, us t)  < 0 
i=l 

when x(t) is a boundary point of X + Xo. From Theorem 6,  the optimum 
control exists. 

LEMMA 4. Given any distance d, 0 < d < d,, a sufficiently large M(d)  can be 
found such that if  K > M(d),  u(x) < d for every point r on an optimal path 
~ Q ( K )  of P(K).  

Proof. Since f is bounded there is a constant B1 such that 

(29) I f(z, u, t) I <  B, 



for all x, u, and t in the product region (X + Xo) UT. Then 
I 

The first and second terms vanish since i and x b  are perpendicular to the 
normal but r - xb is parallel to the normal. Therefore 

I Let the largest value of v(x) be denoted by dg. Since x(tl) E X ,  t2 - tl 
2 d,/Bl. Then 

Let R1 represent the return of any allowed path of P. The same path is also 
an allowed path in problem P(K)  with the same return. Let Ro(K) denote 
the return of the optimal ro(K), then 

But 

Therefore 

Let 

If 

then 

K di: -- S Bl(t2 - ti) - RL. 
3 B1- 

K di: dj: - - > lis[B,(t2 - t2) - Rl]. 
3 B1 , 

Since Bl(tz - tl) - R1 is always positive, (31) and (32) give d, < d. Q.E.D. 
In the subsequent paragraph, some properties on the displacements about 

a given path are derived. It is assumed that x E X + Xo but K = 0. Thus 
the calculated x is x(t, 0). The result can be applied to a problem with K # 0 

Y. 

by modifying only 6x0: 

I BROOH 
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Let E denote an infinitesimal quantity, and Ax, At, etc., variations of the 
order unity and are independent of e. Following an initial displacement 
ax(&) = t&c(td + . ., the subsequent change in x(t)  can be expressed as 

(34) 6x(t) = tAx(t) + 
where . . . means infinitesimal quantities of higher order in E .  From (8) 

where the subscript r means that the partial derivatives are evaluated 
along the original path. 

LEMMA 5. Let K = 0,  and x(t) E X + Xo. A t  any point x(td E Xo along 
an allowed path with 

it is possible to apply a u1 E U for an infinitesimal interval eAt to cause a 
subsequent displacement eAx from the original path satisfying 

and 

where MI, M2, and 7 are constants independent of x. 

Proof. From (30) 

From assumption 5.5, there is a u1 satisfying (24). Applying ul instead 
of u for an infinitesimal interval gives 

AxL(t3) = [fl(x(t3), U1, t3) - f'(x(t3), U, t3) ]at. 

From (24) and (38) one obtains 

From (35) 



Let 2X denote the upper bound of the eigenvalue of the symmetrical matrix 
with 

as its i ,  jth element. (An upper bound exists because d f / d $  are bounded 
for all i and j .)  Then for any given t, the right-hand side of (40) is shown 
to be bounded by 211 &(t) I %y a linear transform of &(t). I t  follows then 

The solution is 

Since 

1 m(t3)  ( 5 2BiAt, 

one has 

I &(t) 1 s 2BleA"-C'A~. 

Inequality (37) is satisfied by choosing an M2 as follows: 

M2 = 2B,eUt%-QJ if X > 0,  
(41) 

= 2B1 if A 5 0; 

The sum 

is the ith component of a covariant vector. Let CY denote the vector. There 
is a BZ > 1 a 1 on (X + Xo) UT, since fJ ,  q, dfl/dxL, and dqi/dxJ are all 
bounded. Equation (42) gives 

Let M 1  = a1/3, and 7 = a1/3B2M2, inequality (36) is satisfied. Q.E.D. 

LEMMA 6.  Let ro(K) be the optimal path in problem P(K).  For sufficiently 
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large K, it is possible to find a sequence of t of no more than 2(t,, t2)/7 members: 
ti, ti, . -, tL - - . , t& such that all the following conditions are satisfied: 

(i) t, 5 ti < th . - th< t2, N 5 2(tz - t j / ~ .  
(ii) Along r,(K) 

(iii) Along r,(K), v(2(t)) = 0 unless t is in one of the intervals t; $ t 5 t&+ T. 

Proof. Choose a K sufficiently large such that along an optimal path r,(K) 

The time interval tl < t < t2 is divided into subintervals of equal duration 
T/2. Let the subintervals be numbered in chronological order. If, in a sub- 
interval, there are some values of t such that 

(45) f (t) E X o  + boundary of X 

and (43) is satisfied, then the smallest t which satisfies (43) and (45) is 
selected as one of the t;. If (43) and (45) are not simultaneously satisfied 
for any t in a subinterval, no t; will be selected. The tgs are then numbered 
in chronological order. 

The total number of th is no more than the total number of subintervals, 
and (i) and (ii) are automatically satisfied. 

If there is a t; in the kth subinterval, condition (iii) is satisfied in the 
(k + 1) st subinterval. If there is no t; in the kth subinterval, either i is 
in the interior of X for the entire kth subinterval, or 2 is on the boundary 
or outside of X for some part of the subinterval, but v(f) is decreasing at 
a faster rate than what is permitted by (43). In  the latter case, since f is 
continuous in t, v(f) must be monotonically decreasing in t for as long as 
v(f) E XO. Since (44) is satisfied at the beginning of the period, f must 
be in the interior of X at the end of the kth subinterval. In any case f at 
the beginning of the (k + 1)st subinterval must be a point in X. Since in 
leaving X, (43) and (45) are always satisfied, and the smallest t in the 
(k + list subinterval satisfying (43) and (45), (if any), is chosen as a th, 
(iii) is again satisfied for the (k + 1)st subinterval. 

Since k can be any value from 1 to N - 1, and f ( t3  E X, (iii) is satisfied 
for the entire interval t1 5 t 5 tz. Q.E.D. 

LEMMA 7. For sufficiently large K, it is possible to find a M3 independent 
of K such that 



where &(t) describes an optimal path of P ( K ) .  

Proof. Inequality (46) can be proved by induction. Suppose 

(47) 

where Cm+l is a constant independent of K .  Following a change in u at 
t i ,  there is a 6x(t$ = d x ( t 2 .  At t = t2 

= ax0(t2, 0 )  - 2K v(2) viaxi dt, L i 

I Since &(t) is an optimal path, Ax0(t2, K )  5 0. Because of Lemma 6, it is 
possible for v(2) to differ from zero in the interval th5 t S th+l only if 

I t < tA+ 7 .  Substituting (36), (37), and (47), into (48) gives 

Let = t2. Inequality (47) is obviously true for m = N. Repeating 
(49) N times gives (46). Q.E.D. 

Choose K sufficiently large so that d < d2. The optimal path is in the 
interior of X + X,. 

Let O(t) and I(t, K )  denote an optimal control and optimal path pair 
for problem P ( K ) .  Due to a change of u(t) for an infinitesimal period 
~ A t a t  t -. 

The significances of E and AX,  at are stated in the proof of Lemma 5. 
From (35), x(t2, K )  is related to &(t, K )  by a linear transform: 
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Since 2(t, K) is an optimal path 

~x"(t2, K )  5 0 .  

Let the covariant vector AY(t2, t )  be denoted as +j( t ) .  The above inequality 
can be written as 

Let the Hamiltonian function be defined as 

1-nl 

(53) H($,  x, u, t )  C +i(t) f ' ( ~ 7  u, t )  
i =O 

Inequality (52) implies 

For problem P ( K ) ,  equation (35) is modified by adding - K [v(x) 190 
fO(z,  u, t ) .  With the modified (35), it can be readily shown that 

By definition of v(x): 

Substituting (56), into (55) gives 

A boundary condition for Jli(t) is 

Since fl(u, r, t )  is independent of xu, and ?,(r) = 0 ,  the equation for i = 0 
in (57) gives +, = 0. Therefore 



I The above shows that along a path ro(K)  which maximizes the integral 

I the control u(t) maximizes the Hamiltonian function at every point. 

1. VII. In the limit of K -+ m. In the subsequent proof, the variables asso- 
ciated with each ro(K)  need to be clearly designated. The symbols 4 (t, K), 
x(t, K )  , u(t,  K )  , etc., will be used instead of $ (t) , x(t) , u(t) . Whenever 
confusion is not possible, the short forms x, u may be used with (t, K )  

k 
i understood. The capped functions will be reserved for the limit functions 

whenever they exist as K --t a. 
DEFINITIONS. The following functions are defined along an optimal path 

r,(K) of P(K):  

J ( t ,  K )  = K Jt2 u ( t ) n  (x)  dt, 

I LEMMA 8. The functions Ji(t, K )  has uniformly bounded variations on T 
for all K,  i = 1,2, .. .,n,. 

1 

1 
I 

Proof. Choose any ordered set t3, t4, . . . , tZN such that tl $ t3 I t 5 . - a 

S t2n 5 - - 5 t2. Then 

n = N  n=N t 

n=2 
v(x)ni(x) dl16 2 ~ l ~ : ( x ) d t  < Mi- 

i The last inequality sign follows from (46). Q.E.D. 
I t  follows from Theorem 1 and Lemma 8 that (Ji(t, K)  ) are equimeas- 

urable. 

i LEMMA 9. The functions $(t, K )  of ro(K) are uniformly bounded (inde- 
pendent of K )  . 

Proof. Since $(t2, K )  is known, (57) is solved backwards. The homogene- 
ous equation ( K  = 0) gives for t3 < t: 

By superposition, the solution of the nonhomogeneous equation is, for i # 0, 
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for any given i, Ai(t, t3) is the jth component of a contravariant vector 
A/(t, t3). By differentiating (63), and eliminating J ,  with the aid of (57), 
A{(t, t3) is shown to satisfy (35). Using the same steps which lead to (41) 
one obtains 

(65) I Ai(t, t3) I < B4, i = 0,1, -, nl, 

where B, r sup { 1, eUt2-'l) ) . Thus (64) gives 

Q.E.D. 

LEMMA 10. The set of functions G(t, K )  are equicontinuous. 

Lemma 10 follows from the fact the integrand on the right-hand side of 
(62) is uniformly bounded. 

LEMMA 11. The set of functions +(t, K )  for all ro(K) is equimeasurable. 

Proof. Integrating (57) with respect to t from t to t, gives 

(66) J/i(tz) - Si(t, K )  + Gi(t, K )  = Ji(t, K )  - 
Since equicontinuous functions are equimeasurable, and the sum or differ- 
ence of equimeasurable functions are equimeasurable, Lemma 11 follows. 
Q.E.D. 

Let wck,(t) denote a vector function with components u(t,K), x(t, K ) ,  
G(t, K ) ,  J(t, K )  , + (t, K )  . Let Ai denote a set of ( ~ ( ~ ) ( t )  ) with K = KO, 
KO+ 1, - a - ,  m; where KO is sufficiently large K so that d < d2 is satisfied 
for the optimal path ro(K) .  Corollary 2 of Theorem 2 states that there is 
a subsequence w\Kj(t) E Ai such that wlKl(t) converges to a limit uniformly 
or almost uniformly in all its components 

where K means a selected set satisfying W [ K , ( ~ )  E { w ( K ) ( ~ )  ) . 
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LEMMA 12. The function %(t) E X for every t on T. 

Proof. Since X is 'closed, the distance 

(7'2) d(a(t,),X) > a > 0 

for some t3 if Lemma 12 is not true. 
Lemma 4 states that there is a finite M(a/2) so that for every K > M(a/2) 

d (~( t3 ,  K) 7 X )  < a/2 

T and (68) implies 

i for every K greater than some finite K(a/2). Thus (72) is contradicted 
by choosing a K sufficiently large. 

BROOK 
LEMMA 13. The limit fL E C and ti and ii form an allowed control and 

path pair. 

The proof is identical with that of Theorem 3. 
Extensions of y(t), $(t) . Equation (70) implies that J(t, K )  converges to 

y(t) on a set T - Tr ,  where T' is a subset of T having zero measure. Since 
y(t) is defined only as  a limit of J(t, K), it is not defined on Tr. 

Since T' is a set of no measure, and T is a closed interval, every point 
of T' is a limit point of T - T'. Lemma 8 and (70) assures 50) to  be of 
bounded variation. Therefore, one sided limit exists for y at each point of T'. 

DEFINITION. For each point t E T', 5(t) is defined to be 

with the above definition, J(t) is completely defined on T. 
In the limit of K -4 m, (66) converges to 

except on a set of zero measure. One may define a T(t) such that 

holds everywhere. Since T(t) and &(t) are different only on a set of zero 
measure, (71) holds for T(t)  also. One then discards $(t) and redesignates 
N 

#(t)  as $(t). Consequently (73) holds everywhere. 

LEMMA 14. The function j(t) can be expressed as 

T(t) = 0 if x is an interior point of  X, 

2 0 i f  x is a boundary point of  X .  
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Proof. Let t3 and t4 be any two points on T - T' with t4 > t3. Then by 
definition (61) 

y(t3) - f(t4) = lim [ J(t3, K )  - J(t4, K )  1 
K- m 

= lim a Kv(x(t, K))q(z ( t ,  K ) )  dt. 
K- rn 

Let 

3(t3,t4) = Y(t3) - Y(t,). 

b(t3, t4) can be separated into two integrals: 

f (t37 td = Jl(t37 t4) f J 2 0 h  t4) 7 

where 

and 

J2(t3,t>=lim K, ( r ( t ,K ) ) [q (x ( t ,K ) ) . - q ( f ( t ) ) ] d t .  
K--t m 1 

Since dqi/dxi are bounded for all i, j ,  q(x) satisfies a Lipschitz condition: 

5 M3B,sup I (  ( ~ ( t ,  K ) )  - 2(t) 1 1 ,  t3 5 t 5 t4- 

Therefore J2(t3? tJ = 0 and 

(77) J(t3, tJ = JI(t3, t J .  

Let J (K) denote 

it4 Kv(x(tJ ~ ) ) n ( f ( t ) )  dt. 

The interval [t3,t4] is partitioned into segments of no greater than 7. Let 
these intervals be denoted Ti,  and & denote an arbitrary point of f ( t )  
with t E T ~ .  

Then 

In the limit of K + m ,  (78) becomes , 
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H($, 2, a, t )  = sup H($,2, u, t) 
u€ U 

almost everywhere on T. The set T on which (85) does not hold has zero 
measure. 

Let C(t) be defined as &(t) on T - T' and one of'the u's satisfying (85) 
for every t on 2". Then the Hamiltonian is maximized by g(t) everywhere. 
Since P {  T' 1 = 0,  all the previously derived relations for &(t) ((67),  Lemma 
13, and (81))  are equally valid for Z(t). They are so replaced, and iZ is re- 
denoted &. Thus (85) holds everywhere for the new &. 

Substituting (80) and (81) into (73) and differentiating the resulting 
equation gives 

VIII. Theorem 8 and Corollary. The results of the preceding sections can 
be summarized into a theorem: 

THEOREM 8. For at least one fi(t) among the set of optimal controls with 
free end point in a problem defined by equation (8)  and conditions (3.1) to 
(3.31, and (5.1) to (5.5) there exist {( t)  and J ( t )  such that Cl(t), 2( t ) ,  f ( t ) ,  
and $0) satisfy equations (58), (75), (85), and (86). 

DEFINITION. An allowed control &(t) is said to be an isolated locafly 
optimal control if for every allowed &(t) with R(ul( t ) )  2 R(&(t))  a constant 
b > 0 and a time t,, t, 5 t3 5 t2 can be found such that 

where A(t) is the path resulting from fi(t). 

COROLLARY. For every isolated locally optimal control &(t) with free end 
point i n  a problem defined by equation (8)  and conditions (3.1) to (3.31, 
(5.1) to (5.5), there exists a function {(t)  and a function + ( t )  such that G(t), 
2(t),  and & (t) satisfy equations (58), (75), (85), and (86). 

Proof. A function F(x, t) is defined by 

(87) 
F (x ,  t) = 0 if I x - a(t) 1 < b/2 ,  

F(x,  t )  = (1 x - 5t(t) ( - b/2)' otherwise. 

The function Il(t) is treated as a given function of t. It is readily verified 
that F(x,  t )  is bounded in the accessible region in x-space, has continuous 
and bounded derivatives in x, and is continuous in t. A constructed problem 
is defined by adding - K,F(x, t )  to the f ' (x ,  u, t ) .  With sufficiently large 
KI, &(t) becomes the only optimal control in the constructed problem, and 
the Corollary follows from Theorem 8. Q.E.D. 



IX. Proof that the necessary condition is also sufficient for linear systems 
with convex allowed region X. The controlled system is called linear if 

Let the set &(t), fi(t), together with {(t) , and $(t) satisfy equations (81, (58), 
(75), (85), and (86). It is readily shown from equations (8), (86), and (88) 
that for any other allowed set u(t), x(t) 

Integrating (89) from tl to t2 and making use of (58) 

C C &(t) B;(t) [ak - uk] dt. +St2 i k 

I Due to the convexity of X, and (75) 

{(t) Ctli(&) [3' - xi] I 0. 
i 

Due to (85) 

C C j i ( t )  Bi(t) [ f i k  - uk] I: 0. 
' i  k 

Therefore 
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