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Abgtract

A perturbation téchnique is developed for determining the transient temperature ina ra!}a'b, insul-
ated on one face and subject to nonlinear thermal radiation at the other face.., The slab is initially
at a uniform temperature and is assumed to be homogeneous and isotropic; the physical properties are

aggumed to be independent of temperature.

Temperature distributions and heat flux at the radiating

boundary are presented in a dimensionless, graphical form for a wide range of parameters, and the
former are compared with previously obtained analog computer results.

| Das Abstrakt

Eine Perturbationsmethode fir die Ermittlung des Zeitverlaufs von Temperatur in einer Platte, die
“an elner Oberflache iscliert und an der anderen einer nichtlinearen Warmestrahlung unterworfen ist, wird
‘entwickelt. Es wird vorausgesetzt, dass die Platte urspringlich eine gleichmassige Temperatur hat, und
. dass sie homogen und isotropisch ist; ausserdem wird vorausgesetzt, dass die physikalischen Eigenschaften

von der Temperatur unabhangig sind.

Die Temperaturverbreitungen und die Warmestromung an der strahlenden

Oberfléche sind fir eine umfangreiche Parameterreihe in einer graphischen dimensionsfreien Form darges-
tellt, und jene sind mit den friher an Malogrechenmaschinen erhaltenen Resultaten verglichen. ‘
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‘ ' ocTH
B sTOM Jomialle pPA3palaTHBAETCHA NMepTypOanMOHHuit MeTOR JiA yCTAHOBIEHMA' 38BHCHUM .
TeMnepaTypH B ClO€, KOTOPHi M30IMpOBSH Ha OXHO! NMOBEDXHOCTH ¥ NOIBEDTHyT HenuHeltnoft Tep

uwueckoft pammanvu Ha xpyroft. Cnoit KBQ§HBHO ¥MeeT DABHOMEDHYX TeMnepa
CH, UTO OH ONHOPONHH} ¥ M3OTepMuUUeCKuit; KpOMe TOro, ero -
0TCA HO3ABNCHMHMY OT TEMIepaTypH. PacnpeleNeHMs TeMNepaTypH ¥ TeNA0-~NOTOKE Uepes paiuea

Yy ¥ npennoxaraeT-
SMYeCK¥e CBOXRCTBa mpennoinara=

OKOI'0 AMANa30HA napa=
IMOHHYD NOBEPXHOCTH S&JiaHH B Ge3pasMepHoit rpa¢wueckofl gopue nnA mup -
METPOR, ¥ NpUBELEHO CPABHEHMEe C Pe3yNHTATAMN NONYUEHHNMM S&paHee NpH MOMOmM BHYMCIUTEND
HHX nﬁmnn, ' .
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Introduction In problems of heat transfer involv-

g convection, radiation, or evaporation at the
surfacel of a body, the flux of heat at the sur-
face temperature is, in general, a nonlinear func-
tion of the surface temperafure. Furthermore, the
thermal properties of the body may also vary with
temperature. One commonly employed approxima-
‘tion to the real phenomenon assumes constant pro-
perties in the medium but with heat transfer at
the surface a given nonlinear function of surface
temperature. Mathematically such problems occupy
an interesting position between the classical
linear |theory and the general case in which both
the differential equation and the boundary con-
ditions are nonlinear.

"' Ini heat transfer between solids and gases 1t
AS.M.E. :

4

l
is commonly assumed that the rate of heat !excha.nge
across a gas-golid interface is proportional to
the difference between the temperature of the
solid surface and the surrounding medium which
gives rise to the boundary condition of the form'

-k (gg) = HAT ) )

where 3T/3x is the thermal gradient at the sur-
face; and H is a factor of proportionality, fre-
quently called the film transfer factor; k

is the thermal conductivity. If H is independent
of temperature the above boundary condition is
linear. For small tempsrature differences, AT,

1This is, of course, "Newton's law of cooling."



and where most of the heat transfer is due to con-
duction-convection, H varies but slightly with
temperature and may be approximated by some c¢on-
stant number. For Jarge temperature differences
radiation plays a dg¢ t role so that the film
tranafer factor is strongly temperature dependent.
When the conduction and convection may be neg-
lected, the film transfer factor is given by
Stefan-Boltzmann Radiation Law,
4
B = A€ T_:L
-

(11)

vhere T is the absolute temperature of the solid
at the surface, T, the absolute temperature of the
ambient gas, € th§ emissivity, and A is a con-
gtant depending wupon the units of measurement.

It is clear that when the film coefficient for the
radiating boundary (ii) is substituted in (i) the
resulting boundary condition is nonlinear. Since
a nonlinearity in either the differential equa-
tion or the boundary condition renders the entire
boundary value problem nonlinear, the solution to
the unsteady heat transfer problem with a radi-
ating boundary condition is difficult.

The present problem was studied by Mann and
Wolf (1); their investigation was, however, pri-
. marily concerned with the existence and unique-

* ness of the solution to the integral equation
assoclated with the problem and less concerned
with a practical: method for its solution. Jaeger
(2) solved the problem in terms of a power series
expansion which is adequately convergent only for
early times. Chambre (3) obtained a solution in
terms of an appraximating polynomial evaluated
by means of the "heat balance" integral. Abar-
banel (L) presents approximate solutions for the
surface temperature of slabg, spheres, cylinders,
and semi-infinite solids, for very small and
large values of time. Richardson (5) utilizes
the Biot variational method and a polynomial ap-
proximation to obtain an approximate solution for
a narrow range of exponents in the nonlinear
boundary condition. Fairall, et al, (6) present
some computer results for surface temperatures.
A great quantity of data for this problem has
been obtained by Zerkle and Sunderland (7) who
have obtained the numerical results by the use
of an analog computer and have plotted graphs
‘for a wide range of parameters.

Desﬁite the extensive amount of work pre-
viously done on this problem there is yet no
general analytical solution available. In the
present stidy an asymptotic solution is obtained,
by means of a perturbation procedure, which ap-
pears to be satisfactory for most engineering
purposes. The large number of graphs provided
by Zerkle and Sunderland provide a convenient
standard for demonstrating the relative accuracy
of the present solution. Because the latter is
analytical, important functions of the tempera-
ture distribution such as flux at any point and
total heat are readily obtained.

Statement 'of the Problem A slab initially at a
uniform temperature is suddenly exposed to radi-
ant heat transfer on one or both faces. It is

165

4

agsumed, following ref. ( ';) that the boundary con-
ditions are uniform over gach boundary surface
(this implies that the hqat flow is one-dimen-
sional); the environment itemperature (T,) is con-
gtant; the slab is a homogeneous, isotropic, and
opaque, and the physical properties are indepen-
dent of temperature; the radiation interchange
factor (Fge) is independent of slab surface tem-
perature; the slab is exposed to continual heat-
ing. From the first assumption, the general heat
conduction equation reduces to

3T k. ?cr
3T pc N

(0gx<L; v>0) (1)

A solution to equation (1) subject to the
following initial and boundary conditions is
sought.

2(x,0) = 14 (2)
3L (0,7) = TB8 [14(0,7) - Tg'] (3)'
& (1) = T8 (1t - 11, ()

Outline of Perturbation Technique It is easily
‘shown that there exists a steady state solution,
corresponding to T = =, for the above problem, as
follows, .

As 3T/3t = 0, equation (1) becomes l

(5)

Since T must satisfy theLboundary conditidna,
aubstituting (5) in (3) and (L) gives

'i T-Ax-i-jB. ‘

E(o,ﬂ-n%ﬂ[r-m (6)
2 (1,m) = A= E’E [T - (AL £B* (D

The constants A and B are obtained by solving
the algebraic equations (6) and (7) so that (1) is
?tsrmined. This solution will be deaignated by
T\O

The zeroth approximation in the perturbation
technique is taken to be latter solution, T\O
Further, let the first approximation be writtl&n

(1) = p(0) 4 o (8)
where it is assumed ‘hhat I N
L (x, )| < 7(0) () (9)

Substituting (8) into (1), (2), (3) and (k),
yields a boundary-value problem on ¢, . After
solving for ¢, the second approu::unat%o may be
found, in principle, by perturbing i ? ‘ ‘

T(ﬂ) = T(I) + (10)"& '

-T(o).‘.%.q.qh



In general, however, the solution for ¢, will be form for each apprc?:ﬁmation provided the func-

an infinite series, where the second and subse- tions ¢ are N-%
quent terms decay at a faster rate than the apprm!:i.ma‘Pk tionl,mg:n :rof;lcei {)eiiegzzsgnytetg xsethird
firgt. ( gs;e pgr;turbation, therefore, is taken first solved for the second and first approxima-
about T"7/ + @, which results in a second ap- tion. The solutions for the various approxima-
_ proximation tioniﬁwill now be developed. Inasmuch as the
Sspecliic example to be evalua owing
p(3) = o(0) . o+ o (11) section will be for the problzxe;ld sigv:gemi:xel:ic-
, L . " ally by Zerkle and Sunderland (7), the develop~
where ¢ is the first term of o . ment will be for the boundary value problem con-
‘ sidered by them 3
Assuming further that |g] < |gf| and | | < atxao, e (1), (2), (1),
Te as previously,” one obtains a boundary-value
-problem on @;. Proceeding to nbh approximation, JT B 8
and |in a like manner retaining the first term of == ) (19)
each of the (n-1) solutions which is assumed to
satisfy SOLUTION FOR VARIOUS APPROXIMATIONS
1q’nl < h’x;-x‘ < veesns < of] < Tq (12) Zeroth Approximation It 18 easily verified that
. : TIO: = Te' : (20)
yields Clearly, this is the exact solution.® Tt is this
() , , , solution which will be perturbed to obtain the
TV = Te+ @ + @3 +ovenent g+ @y (13) various appraximations.
; | .
to obtain ¢ once @, ol ceee.Pfy are known, one First Approximation Write ’ ‘ }
proceeds as follows. Let : e
T(x,7) = Ty + ¢ (x,7) (21)

Pn = T(n) - (']‘.'e"!> tpl' + (Pa' tooovt (P!{—l) (1,4) .
: where it is assumed that |q (x,7)| < Te. Substi-

.Substituting the derivatives of @, in (1) tuting for T, and its derivatives from (21) in the
and (2), and realizing that each of T, satis- original equation (1) and boundary conditions (2),
fies the heat equation the equation on @, is (3) and (L) gives
2 LN ) 32
N (1) FragBen (OsxsL >0, (2)
with the initial condition %(x’o) = (Ti - Te) (23)
Pn(x,0) = (T4-Tg) - @ (X,0) - @I(X,0) avenenn 3
(x,0) = (0y7) =0 (2k)
- ona (16) i .
a% O'Fse !
Subgtituting the derivatives of g, into (3) and = (7)== [Te* = (T + @ (L,7)*]
(L) 'and expanding the right(hax;d ‘by means of the oFs :
binomial expansion, taking (12) into account and =S8C [t | (44 10
reti?;ing only those terms of order oy yields, ¥ [T (Te* + LTe%q ‘ ¥
3oy ' ‘ + 6TPp " + UTep® + o))
x (07) = B(Tes o5 oooeia) - ko an / Fse TATLRL & 6(PL)3
/ " e lby + bl
d¢n : . .
= (©s7) = Fa(Tes 9f5 coveping) - ks (18) " h(’i'ﬁl_)a + (%_)4] (25)
» e e
The equations (15), (16), (17), and (18) re- _ * ynjor the a priori assumption [g | < Te, the fol-
present a linear boundary-value problem on Pn lowing is valid:
with the ¢f (k < n) appearing as nonhomogeneous
terms. This problem is readily solved in closed (P2 < (j;_’l_)? < (Q;,f!_) <1
o ‘ Te e e
The remainder of the series reappears in the I Hence it is clear that if I%;I < %. that the first

evaluation of q,. For the numerical example con-
gidered later on,, the termsa of the series are pro-
. Portional to e~41- NFo, e-02°NFo, etc., where

61 < .53 < evvee o .

2

1 ere are actually four possible solutjo for

T(:’}'hsince the latter is obtained from [’1‘%053“ -
. ther three roots, however, are no

The assumptions regarding the relative magni- gl?vs icme ome::xingful‘ ’ ’

tudes are verified a posteriori. ally
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" term on the right hand side of (25) will be the

—

" dominant one, and for small values of [cpl/T | all
+ but the fi;s% term may be neglected. Thus ?25)
. becomes

F,
R - WGRE) w

_ b
LNy ®

=-k where k, = Lt (26)
s 1 kg g
The problem, as it stands, is equivalent to

the case of a heated slab of thickness L which is -

ind tially at temperature Ty and which has one
face (x = 0) insulated, while the surface at

x = I, of the slab is heated according to Newton's
Law of heating (linear radiation). The general
solution of equation (22) is easily obtained,

Chapman (Bﬂ, and is

@ = o~P 7B Sin(gx) + ByCos(fx)] (21)

where (BL) tan (BL) = l}; - defines the value of
T

B i.e. &p tans = T:L where 6, = (BL) (28)

rh

Using(ﬁxe (23), (2L), [(26), (27), the solu~
tion for T igt -

! (1 -— s @ 3
BE JCD . N <195 obrar 5in bn Cos(bnt) (29)
Te - T3 n=1 dn + Siné,Cosén

. where bp is the nth root of the equation (28),

values of which have been evaluated and are tabu-
lated in Catslaw and Jaeger (9).

Second Approximation Since (29) involved an ap-
proximation (i.e. | /Te] < < 1) it does not re
pPresent, of cou:t'seé a general solution for the

transient problem.* To obtain a closer approxi-

mation, for larger values of lon/Tels (29) is per-

turbed, i.e., T=To + o + . (30)

As noted earlier, because of the decay factor,
a:!.l terms but the first are negligible for large
~times. Moreover, since one is quite free to
choose the value about which to perturb, rather
than include all of ¢ in the second approxima-
tion only its first term is retained. Denoting

the first term of ¢ series by ¢ 7, (30) becomes

T=Te+p'+oq (31)

whe:z it is assumed that lpa/Te] < I ’/Te| and

@ = 2e~81%01/12 5in 5 Cos(6,€)
“ 6, + 5in §, Cosd,

(13 - T) (32)

1 N ) :
The variable I 7= i hag been selected to ton-

- : Te - T3
form to (7).

2 . The solution obviously failg at T = O.

Substituting (31) and its derivativ into‘
(1), (2), (3), and (h; yields, after sym;;if‘ylng,

dpm 33
.09

T 3?-% {0<x <L, 7>0) (33) :

©a(x,0) = (T4 - Te) - @ “(x,0)

= (T3 - T,) - 2 Sind, Cos(5, &) -
(T4 - Te) ﬁm! (T4 - 7¢)
* (T3 - Te) - ky Cos(8,8)(T1 - Te)  (3h)
3% : \
= (0,7) =0 (35)

)

2 (1,m) = oFsell,* - T(1,m)]

4
i.e. 9%—(1.,1’)-* g%'(L’T) = E_E%E[Te‘ - T"(Ls"')]

i.6. - oF '
LTy !+ %XE(L,T)

Tt - (1 ¢+ (o’ * )] (36)

As with the first approximation only the terms of
order g, are retained, which reduces (36) to' the

linear equation ’

s ‘ :j
2 (1,0) = et g o1t - 1Pt 27
=6 Sin2s y2 Ti-Tg)?o-kaT
31 +§iﬁsl GOS 31 TeLth

- L
INrn ®
= - k.el)'e'kﬁ'r - kspa (37)

where

P 3 3
(1) =6 5in28;  y2(Tj To)® | k= 26,
S +5ins, cost; Telien il

While the restrictions on ¢, are similar to that
formerly imposed on ¢ (in the discussion of the
first approximation), at this point it is no
longer required that |gy/Tel (or|gy //Te]) be van-
ishingly smalll

Solution for Second Approximation What appears
The simplest way to effect a solution of ?3)3), (3L),

(35), and (37) is to let

ea(xym) = C(x,7) + £ (D& (7) (38)

which after substitution gives , N ‘

‘\‘CYCH = Crlx,m) - {ofy'&n - i‘:1.é1} (395
. ()

Cx(0m) + £ "(0)gs(r) = ©
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; blem on @

(L) + £ (D (1) + ke fa (Bea (7)
O R L ()

Since fy(x) and g, () are srbitrary functions
they are chosen such that '

g ()8 /(D) + gty (1)] = &)™ (12)
from which it follows from (k1) that

Cx(Lom) = =k C(Tsm)

Further, it is conve;xient to let

870 * kty (1) =1 | " (L3)
g0 that g () = - k(e ke (Lh)
Furthermore choose £7(0) = O (L)
then (L40) becomes C;:(O, 1) =0 (L6)
Finally let ofy”g - f181 = O (u7)
8o that (39) becomes alyx = Cr (48)

Subs]bituting (L) into (L7) gives
afl'(-k(l)ef'kﬁ'r) - fl(kgk(l)e’kﬁ"') = 0 and upon

dividing by ke yields afy” + lafy = 0 (49)

From the boundary conditions on £y, (h3), (45),
and (47), the solution for fy becomes

- Cos -
£y (x) E-Ea-s—cﬁ.iLéSilﬁ where q ~/(§g) (50)

Substituting (38) for ¢ in the initial condi-
tion (3h) gives for the initial condition on {

C(x,0) = (T3-Te) - Ky Cos(8,8)

+ &) Cosgx (51)
kg Cosql-gSingl

HenLe the completion of the solution for ¢ re~
quires the solution of

oo (Es™) = Crls) (52)

£(x,0) = (T3-Tg) = ¥, Cos(8,§)

o .
“k‘r"—‘?—m co;g : g (53)

(x(0,7) = O . (s1)
Cx(Ly7) = -k C(Ly7) (55)
(52)-(55) is similar to the boundary-value pro-

and may be solved in an identical
faqihion, ref. (8), to yleld
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; - ~5p° Sin 6pC0s(8 :
Cx,m) = 2 gy o0n WO SR B—nc'o‘sign" (Ti'Te> '

5.3
-2 fﬂbn ¢80 "Fo  Gos(8nE)

8p+Sin 8y;Cos Sn

o st | sinlebn)) e .
‘ 2 { (5, %6m) * 8y ~6n + 2;":_1'511,

+ o~0xNpo __Cos(8nt) X
8n+Sin 6pCo8 &n 2
- sinlerty) | stn(g-6n) 1 (s6)

(q+8n) “(a-6n)

where

6 Sin 28; _m 32
¥ = iy e B s )

(ks Cos ql-gq Sin ql)

The molution for ¢ is given by (56), (50), (hh)!ﬂ
and (38), the temperaturs by (31), and the nonm~

dimensional temperature by

(s). 2
T, [2 o-817Npo 510 Cos(8,8)
Te-Ti §,+51n 5,008 8y

+ 28 ob:PVRo Sin tn0os(ss8)
o=l Sn+oin bnCos On

@ -8,3Np, Sin &, Cos(6nk)
- 2" & n NFo n'
he1n ° (5,75in &,Cos 6
1 - Sin( 6y +6p) + Sin(8; -8 )]
» 8g+oin bp008 on) 8y +6n y -5n
s -6, N _ Cos(8gE)
*Ebn © 5,55 6L‘—_7ncos T
Di sin(/2 8,+0y)
» T{ksCos q; 1-Gy Sin Q1) L2 61*6;15

+ 8in(/2 & =8p !}-k(“ ) Cos gy (x) o k2T ‘]
17om (& Gos qy1-Gy Sin Gy 1)

(s1)
where |
.6 [ sme2y P (Ha 8
Di * 3 L %,+5in 5, Cos 51} ('r'f; y (68

Tt was empirically determined, based upon
numerical computation, that the deletion of the
n > 1 terms in the several infinite series of (58)
caused no observable change in the temperature
function.! Hence, an entirely satisfactory en-

.1 That is, in the range where the second approxi-

mation may be conaidered inadequate, the inclusion

of additional terms in each infinite series does '

not improve the accuracy-. Improvement in accur- ’ )
acy-can be obtained only by going to & higher ap- | |
proximation of- the perturbation solution. [ ‘



; glineering solution is provided when ozﬂy the
n =1 terms are retained, }.e.

2(8)my Sin 8, Cos(8,€)
et 2 ] - -8, Npo . 21 1
| Te-Ty 1 [2 e TFo 75 35in 6, Cos 6;)
‘ ' - Gos §
+ (0y) (%, +51n allcos )]
! ‘513NF0

(%008/2 8,/2 6,5in/2 6, )

{ Sin5/2+lz83 N Siné{i—-l)b:}

- (D3)cos(/2 8,8)e~28"NFo ]
/ (E‘_iﬂcosfz 8,~/2 6,51n/2 §,)

(59)
This completes the solution for the second ap-
proximation.

Third Approximation Proceeding as in the second
approximation let

' (60)

After substitution and identifying f, and g, with
suitable nonhomogeneous terms, it is found that
fa is the solution of the same boundary value
problem governing-f, but where the coefficient
. ¥y is replaced by 3/2 k,. " The non-dimensional
solution ns out to be

*f%g‘ - 112 Gstn & con(,8)e™s "o
+ cxcncs(hi)cos(blg)e'ﬁx Nro

- G (D)Cos(/2 azg)e'ai ¥ro,, 8 £ e o~ ¥Fo

Cos(8n€)Sin & ~82 N
'(3Ts§nn63‘009 5n) 2012 SR

9 = ((xy7) + £y + faga

. __Cos(6n€)Sin 6y {Sin(a,e 60, sia(s, -tn)}
n*Sin 6p0os &p 5 +on 1-6n

AR
- 60 G(ODF b 6P T

Cos(ﬁngz { Sin(b;! +6n2 in(6, 6?)}
+S:Ln 6nCos [ 1 +0n 8, -8n

. Cacsz . —8n° NFol'

2t Cos(84E)

{(6p+Sin 6,008 6p)

+ 21 clczcsc.z 1on a‘sn Nro Oos§6ns2
dn+Sin 6pCos &y
o o S
+ Sin{/2 8,80} 2. -8y Nro
'Vé-zr‘a—)ﬂ} GaCef y0n @

v
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Cos(6nE)
(Sp*+Sin 6uCos &

[ Sin(/3 &,+80) .
—y (D1) { '(7'3"517?5)"“1 S
* %71%%%%#} {%hcacos(fé 88)- 1} ' = : n

- %{-E; G, Ca G5y (D3 )Gos 6, Cos(/2 8,8) o 28 NP0 -

+ £ 6u(og) {qu.:lhc,'cos(fz §?g)-1}

\\
. {3-3'613NF0603 (./3 61 §)cs}] \1
where ‘

= 1
& (8, +8in &, Cos &y ) :

(61)

= 1 ) !
G (L NpnGos/ 26,72 63 830/2 b3 )

Cq = Sin(/2+1)8, Sin(/2-1)6;

N R

(/2+1) V2-1)
C, = Sin 251
4 T8+5in 5,005, 5 )
G = __1 o R
. U/NpnCos /36,-/3 5,8inv3 8 :

G = 16/NpnCaCos(/2 §,€) - 1

Truncating each series after n = 1, gives
the engineering formula

rle)my _

1 {2 cy5in 6, 008(8,8) chMro
- G (D1)Cos(/2 8,8) &~02"NPo
+ G, 0305 Cos &€ 9‘513}iFo » “
* %% €, 20505 G, (D1)Cos 8, Cos(6,8) | i

. 51 NFo_ 2
3

{ sm(f3+1)s, sm(f3—1)5,} ~8,%Npo o B

- _ c}_GngG4(Di) Cos 61005(\/.2 6’_;)
Nrh

01%3406(131) Cos(8,8) $

e--26191‘&‘0 _,_% 04 G5 Cg (D4 ) Cos(/3 61§‘L)
. 6—3513NF0J J l (62)

This completes the solution for the third approxi-
mation.

nth Approximation The nth approximation is ob-

tained in an analogous mahner by writing ,
= C(x,7) + f38 + faga + oot Ino8p1 f63) A

which results in a seb of eguations for the "f" , N
functions as fojlowsz o o



@

wfM(x) g (1) — £2(x) g (r) =0
£(0) =0

(1) + k£ (L) = 1, wh (r) = x()g kT
£, (L) + kg 1L where g, (T e ()

ofy(x) ga(7) - £3(x) g3(r) =0
£2(0) = 0 ‘ .
£1(L) + ko (L) = 1, where go(r) = —k(3)e=3/2kaT

.-'Oloc..no'.“ol'u‘b‘hoobtbbibo‘-t-t-.coo-to.(ég)

ofp1 8n-1 - fn-1 B = O
. o
£, 400y =0

f;l_qu) + ¥ £, 7(L) = 1, where

o1 (1) = D2 hor (66)
These are easily solved to yield

f (X)'| % CogOngl-zl)Sin GD ere @” {%)(67)
£ () (e Ty Mhere 22
N 1)
fpal®) = (Yk;gzz (:nili?c);n_lsm q. 1)

where| %1 = (i) “ (69)
Hence g,(62) is given by

N s

Cos(gax)

-3
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“Tetos a0ya, 50 o k)

k(n ‘]é)‘ gke )

tesnes

. ‘ (70)
and the corfespondir;g initial condition is
cpn(x,O) = Ci(;x,o) + £1 (x)g, (O)+....+fn_1(x)gn_l(0)

(71)

The i‘u.ﬁction ¢(x,T) is obtained in the usual
way for this new initial condition, thus com-
pleting the nth approximation.

Comparison with Analog Computer Results: By use
of the formulas developed it is possible to com-
pute mmerical values simply by slide rule, and,
in fact, data for. several curves were compubed
in this menner. Howkver, becauss it was felt
desirable to compare the perturbation solutions
with the curves obtained by analog computer in

ref. €7) (which are quite numerous) most of the
numerical calculations were performed on an IBM
7040 and the results plotted with the help of
Calcorrrp: Sh5. There are several key parameters
al:ld varlous arrangements are possible for plot-
ting purposes. The scheme chosen follows ref. .
The basic parameter is Ti/Te; values are plotted
for 0.75, 0.5, 0.25. For each Ti/Te, three sta-
tions were chosen, x/L = 0, 0.5, 1.0. Finally
for a given value of T5/T, and x/L, curves of non-
dimengional temperature (T-T;)/(Te-Ti) versus non-
dimensional time @ 7/I® are plotted for three
values of the parameter Ny,. These are plotted
in Figures (1), (2), (3). It is found that for
I3Te = 0.75 the first approximation is quite
accurate and the second approximation gives the
values very close to that obtained by ref. (7) =0
that this approximation may be satigfactory for
engineering applications. As the ratio Ti/Te

is reduced to 0.5, it is seen that third approxi-
mation is quite close to the analog computer re-

+ sults. As expected the results for Ty/Te = 0.25
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do not compare quite as favorably to ref. (7) as
do the higher ratios but, neverthelesy, should be
of sufficient accuracy for most appligations.

Conclugion It has been demonstrated foregoing
that a,perturbation technique ylelds a satis-
factozjy approximation to the nonlinear radiation
heating problem. Numerical results computed by
the formulas developed compare quite favorably to
previously obtained analog results for a Tj/Te
as small as 0.25.

One major advantage of an analytical solution
over an analog (or digital) computer solution is
that values of interest may be obtained without
the need for interpolating between plotted values
or chart values. To obtain the flux, for example,
by means of the analog computer solution in gen-
eral, requires obtaining differences between two
curves which/are a small distance apart. With the
data given in ref. (7) however, one would have to
interpolate between values given at x/L = 1,

%x/L = 0.5, and x/L = 0. On the other hand to ob-
tain the flux by means of the solution dgveloped

herein requires only the differentiation of (61).
The third spproximation for the flux is indicated:
rbelow.

L3 . o8Nror2 g sin 8,Cos &
TR Sy T o

- /2 Gy (Dy)8in(/2 8, )+Cy CoCsSin(8y)
* %%h 0325 CeC, (D4)Sin 8, Cos &y

- % 0y CC4Cg (D3 )81n(8;) {Si;§/3+1)§
» S0 32 6,676, ()

Sthi/2 & )0os(6y){ S23:1

gin{/31)6 1 12/2
+ SU/E1G ] U2 60,0004 (01)




: —8e 2N
- sthi/2 &)cop(8y) o * O 22 0,0,06”(ny)

G50, Cs (Dy)

' - 3
. Sin(/3 &) o 2% Nro. rlffa
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- Sin(/2 & )Cos(/3 &) & 2% NFoy

where Cg” = {18/Npp GaCos(/3 6,)-11 (72)
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Nomenclature

C = specific heat, Btu/lb deg R

Fge = radiation.interchange factor between sladb
and environment

L. = glab width, Ft.

Npo = Fourier number, aT41?, dimensionless

Nrh = radiation number for heating, k/o FgeTe® L,
dimensionless o

* T = abgolute temperature; deg R

Te = enviromment temperature, deg R

T4 = initial glab temperature, deg R

X = spdce coordinate normal to slab faces, ft.

@ = thermal diffusivity, k/pe, ft. 2/hr.

AT = temperature differehce, deg R

|
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&x = distance increment in x-direction, ft.
At = increment in time, hr. .
p = density, 1b/ft3
o = Stefan-Boltzman constant, Btu/hr. £i2 deg R*
subscripts:

e = refers to environment

1 = refers to initial conditions
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