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ABSTRACT

Analyses of one-dimensional transient seepage problems are
presented. This one-dimensional approach may be considered as
an approximation to the two-dimensional problem, i.e., flow from
a basin of rectangular cross-section having a large width to
depth ratio. Mathematically, the problem involves a free-bound-

‘ary value problem of potential theory, and is non-linear. Por-

ous media of both infinite and finite depth, and having succes-

sive strata of different permeabilities, are considered. Solu-
tions are found corresponding to constant head, constant inflow

intensity, and certain combinations of these parameters.

It is also shown that, given the total duration, maximum in-
tensity, and total flow of a storm,'it is possible to approximate
the inflow intensity to obtain a complete solution of the seepage
problem, i.e., the penetration depth and head in the basin as a
function of time. It is felt that this result has immediate ap=-

plication in the design of storm water seepage basins.

In all cases, exact solutions are obtained, but where more
convenient, a numerical analysis of the govern}ng differential

equation is outlined.
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INTRODUCT ION

This report is concerned with the movement of a fluid ih a
porous medium in which there is a fluid-gas interface. As is cus-
tomary, the macroscopic flow equations assume the validity of Darcy's
generalized law, with the actual medium replaced by a continuum. For
~ the above to apply the material must be granular, i.e., of the grain
'size of at least a fine sand. For finer gain soils where capillar-
ity and other molecular forces are significant, the analyses given
herein should provide order-of-magnitude estimates for the flow rate
~ and the free-surface location.

.The problem involves an unknown boundary location and is non-
linear, hence general solutions are not.available. For certain ap-
plications, approximations and linearizations are sometimes possible.
For two-dimensional steady state problems, solutions can occasional=-
ly be effected by successive conformal mappings. Recently DeWiest
(1], utilizing conformal mapping together with a perturbation pro-
cedure, obtained an asymptotic solution for a two-dimensional tran-
sient problem. A procedure for extending the range of validity of
the solution was presented in [2]. Both methods, however, involve
the solution of'secular equations of large degrée, and the solutions
are not valid for early times. |

In the present work, certain one-dimensional transient problems
are studied for which exact impliéit solutions are obtained. Some
of these have previously been obtainéd‘£33. However, these have

never been exploited for the analysis of'seepage problems, the main



. concern of this study.
Moreover, it turns out that the one-dimensional solutions ob-
tained are limiting éases of two-and-three-dimensional tranéient
-.problems, so that there are immediate practical applications of this
research, namely in the design of storm-water seepage basins and nu-
clear waste disposal.
With regard to the first of these, seepage basin design, it is
necessary that the basin be of sufficient dimensions to accommodate

the largest storm runoff anticipated without overflowing. To this

stipulate a basin volume to drainage area ratio. This implies a
steady state condition which is actuaily almost never attained. Many
such basins nevef contain more than a foot or two of water, although
the depths provided are twelve to twenty feet. Evidently they are
grossly oversized perhaps by an order .of magnitude. A more realistic

- procedure would be one in which the transient nature of the phenome-

non is included,’for which the following analysis is pertinent.

With regard to the disposal of low level wastes at nuclear pow-
er plants, it is important that the seepage paths and velocities of
radioactive effluent be predictabie, The initial motion of such ef-
fluent is primarily one-dimensional since gravity is the generating

force. Hence, the analysis presented herein should be of value in
this areé also, The problem of lateral dispersal, which is actually

a two-dimensional transient phenomenon, is being studied.

1. THE BOUNDARY VALUE PROBLEM OF
| FLOW THROUGH POROUS MEDIA

By use of the kinematical free-surface equation, the equation
of continuity for an imcompressible fluid, and the result known as
Darcy's law, the differential equation describing the one-dimension-
al free surface will be derived. '

end, county design criteria, e.g. Suffolk and Nassau on Long Island,




The experimental result formulated by Henri Darcy [5], Darcy's
. law, expresses a proportionality relationship between the filtra-
tion velocity v (also called the specific discharge when denoted by
q) and the change in head, g%i, in the direction of the velocity com-
ponent. h is defined by h = §»+ y, where ¥ is the specific weight of
water and y'is the vertical distance from some datum to the point in
question. Thus

vx; = -k E;i | (l)A
Equation (1) serves to define the constant of proportionality k,
called the permeability. The permeability is a function of fluid
propertiés as well as those of the medium.

Following Muskat [6] and Polubarinova-Kochina [3], it is as-

sumed that'Darcy's law can be generalized to three dimensions, viz.,

dh
vx = =k 3x

vy = -k %% ‘ ' ' - (2)

dh
Vz = =k 8z

for an isotropic medium; In recent works the above assumption has
been questioned, since, as may be shown, the above implies that the
permeability matrix [kij] admits of a diagonal form'. Although there
appears to be no theoretical justification for this assumption, ex-
perimental evidence to date seems to indicate the existence of or-
thogonal'principal axes for all samples which have been tésted [7].‘
However, the experimental results represented by equations (2)

" are incomplete, inasmuch as they do not include the effects of iner-

3.




tia, This effect becomes more pronounced when large granules of
porous media afe considered, because the large pores enable the
fluid passing through them to come under the influence of inertial
forces. A separate study indicates that inertial terms are signif-
icant only for a very short time, of the order of a second, so that
in the following analysis inertial effects are excluded. It is not-
ed, however, that time effects enter via the moving boundary.

The equation of continuity for an incompressible fluid may be |

written in the form

vV.V=0 | (3)
where‘ ;}t =yl + v + wk, and V = i .§— o+ j i.. + k §-..
= J =? =9x X3 =0z .

Expressing equations (2) in the form
¥ = k grad h = grad kh
and substituting into {3) gives
V - {grad kh) = O
Introducing the "potential" @ = kh,
P g 0 ; (&)
ax*® ay2 8z ‘
Hence the quantity kh satisfies Laplace's equation,
Let equation (4) be satisfied in a region, shown in Fig. 1,
whose boundaries are fixed. Also, on one boundary segment, let
@(P) = g(P), and on the other segment, %% = £(p), where F denotes any
point on the boundary. This represents a basic problem in potential
theory and is a well-defined boundary value problem, i.e., a solution

exists and is unique. If one of the boundary segments is a free sur-

L.
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face , however, the condition on it is of the form

alg, gy gy) =0 | (5) o

yith the condition on the other segment being either @(P) = g(P) or

¥ < pp). Condition (5) may not be sufficient to guarantee unique-

on
ness for all such problems. Certain one-dimensional cases will be in-

vestigated for which existence and uniqueness have recently been es-
tablished. [8]

2. THE ONE-DIMENSIONAL
TRANSIENT FLOW EQUATION

Consider a semi-infinite porous' medium. The standard datum is

taken at y = 0, y being measured positively downward, and the surface

y = O is taken to be horizontal. The applied head H(t) is measured
positively upward from this surface, shown in Fig. 2.
The free surface F(x,y,t) = 0, which defines the fluid-gas inter-
face can be written in the following form
Flx,y,t) =y - Tx,t) = 0. (6)
fhat is sought is a one-dimensional solution for which the free sur-
face would be horizontal, i.e., &= &(t), so that F =y - &l¢) = 0.

The kinematical free surface condition is

DF _ (7)
0t - ° |
where D_ .8 4+ 3,3 + v +wi .
0T~ 3 T A% Jy dz

ipplication of (7) to (6) yields the boundary condition where the sub-

script £ denotes the free surface,

GF(y.6) 4 v, FELEL = 0 (8) o

at y = : . Laplace's equation becomes, fort>0and 0Ly < C(t) "

é’ﬁg:o | . (9)
o | ,




. the general solution of which is

Ply) =Ay + B (10)
The head, h(y,t), is given by
p ,
h=% -7 (11)
and at y = O,
= B :
h =2 (12)

In proceeding to derive the transient diffefential equation, the
~applied head, h{0,t), is represented as H(t), a function of time.
From the. equation of continuity it is seen that because v = vj, so
that v = v{y,t) reduces to v = v{t). |

Now fhe solution given by equation (10) is applicable, and bound-

H ary condition (12) becomes

#(0) = kH(t) (13)
Since @(0) is the value of the coefficient B, (10) becomes
Fly) = Ay + (e} (14)

The filtration velocity may be defined in terms of a total discharge Q

- over a cross-section area A. Thus

A relationship between the filtration veloéity, given above, and the

free surface velocity, given in equation (8), will now be developed.
The porosity of a given porous medium, denoted by €, is defined

as the ratio of open space, or voids, V’, through which the fluid

t passes, to the total volume of porous média V containing the voids.

Thus . , . :
¢-L -4 | (16)

. ¢ . :
where A is the total unit cross-section area, and A" is the area of

[e——

pores in this total area.
The free surface velocity is, in terms of the total discharge Q

[]
ard the pore area A,

. _ 9 R ) 1
g"""Ar (7)

l . _ 6. R



s syt
F In view of (16) and(15), the desired relatlonship between the fil-
tration and free surface velocities is

= € c (18)
Al’cernétively, substitution of (6) and (18) into (8) gives

.g... [y -Z(t)] +---a-y— [y =&(t)] =

or

ve=€Z | (19)
Since v is independent of y, the free surface 'velocity is equal to a
constant times the velocity in the interior.
Now from.(1l), since at y = &P =0, (using gage pressure),
h=-y=-%

.on the f ree surface. Hence at y =&, (1) becomes

- kT =A0+ ki(t)

and

i =k[&+H(1)]
g

Substitution into (1k4) gives, for the velocity potential,

g=- HELAE]y 4 e (20)

From (19), i;g = e y= =€ ?; . (20) becomes, upon differentiation‘ with

respect to y,

3% - _ k[& +H(t)]

gy =
L ¢ : .
Elimination of dy from these expressions yields
| C?;-~_t;=.§. H(t) (21)

‘ Equation (21) is the one-dimensional differential equation for tran-

sient flow through porous media. Rearranging (21),

Cdt% _«k
', | TE T T e 9 (22)

The physical significance of this one-dimensional approach will

now be discussed as a liiniting case of a two-dimensional problem.

¢
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Consider a rectangular channel as illustrated in Fig. 3, along
with its steady state free surface. Water is contained in this
rectangular chamnel, with fixed.dimensions, at a specified height
Hy. The free surface is of necessity a function of the two spatial
variables, and approaches vertical asymptotes.

'In the two-dimensional transient problem, the free surface is,
of course, time dependent. The one-dimensional model has significance
since the free stream lines for the two-dimensional steady state ex-
tend downward to a vertical asymptote. Hence W, the horizontal dis=-
tance between the free stream lines at an infinite depth, is finite.

Also, the difference W-b is a function of %_, and as b->00(~g —»0)s

W>b [9]. Therefore the one-dimensional problem can be con31dered an

" approximation to a two-dimensional problem having a large parameter

i.e., channel width to depth ratio. It is noted, however, that the

problem of flow in a half-plane y > O where
' . H(t) |x|< ¥/
{0 lx}} /2
is not a one-dimensional one. Again, the one-dimensional apprbxima4

tion is valid for large b/ﬁ, and becomes exact as H/%r**0¢ N

3. THE FLOW BALANCE EQUATION

An equation can be found relating the total inflow, the head H(t),
and the penetration depth &, (t). Such an equation enables a specifi-
cation of q; hence an expression for H(t), which appears in (22), may
be found. |

The flow balance equation can be stated as
TOTAL INFLOW = TOTAL FLUID REMAINING ABOVE THE LEVEL y = 0

o

TOTAL FLUID PENETRATED TO THE DEPTH Z(t).
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This isy of course, the equation of continuity in integrated form.

symbolically, the above may be written as
Jodt = AH(t) + A T(t) (23)

Now by (15), the quantity %“ is the filtration velocity. Another
term sometimes used for this quantity is the specific discharge, de-

fined by the symbol

q"'%— ' -~ (24)

fwhich is the inflow in CFS per unit of horizontal area of basin.

Inertién of (24) and (16) into (23) gives the result |
Sqat = H(t) + €& (t) ' (25)

Equation (25) is the flow balance equation.

L, SOME ELEMENTARY SCLUTIONS OF THE

TRANSIENT FLOW EQUATION

For the problems to be considered in this section, the initial
condition §(0) = 0 will be assumed.

(1) CONSTAMT HEAD (H{(t) = C)

Under this assumption, {(22) becomes

Cd¥T _k | 2
c+ ¢ € ds ' (26)
The solution being
G+ C -k 2
C,_Clog._._&...__ = t (7)

BEquation (27) is plotted, £ versus log t, in Fig. 4, for a stated
range of permeabilities and for a porosity of é = 0.k, and constant
head C = 5 ft, The permeabilities listed along with Fig. 4 are for

soils that range from coarse sands to tightly packed fine clays.

(2) CCNSTANT SPECIFIC DISCHARGE (g = CONSTANT)
Under this assumption, (25) becomes

Hi{t) = qt - €& (%), | (28)




Substitution of (43) into (36) yields
) |

, oo -k
(i-€)g+ qt & de

-

Assuming a solution of the form & (t) = At, where A is a constant,

the following results

.‘ -
& (1-e) ~ “’{‘2(%) i £ (29)
2

(29) shows that & is a linear function of time. We note that sub-

T(t) =

stitution of &(t) = At into (28) shows that the same form of solu-

‘tion (29) hold for H(t) = (const.)xt as for g = const.

(3) ¢ =0, £t >0, AND A DETERMINATION OF THE TOTAL TIME FOR DRAINAGE

The given condition on q implies a sudden stopping of flow. This
means that an initialvhead of, say, size Hj, remains. Hence {25),
for later tizﬁes, becomes

Ho = H(t) +€¢ (¢),
and 'substitution into (22) gives

cdf =k
(1-€)g + Ho € ds

Integration gives the solution

H + (1-€)¢ k :
1 0 S (30)
T:E{l‘e)c‘Ho 10@[ 58 1 €
Now the basin is completely drained when H{(t) = O. Hence (25)
beconmes
€C=H, |
Substituting for € into (30) gives the time for complete drainage.
Thus | .
- eHO [1"6 -+ logf] (31)
k(1-€)2 -€ o

10.
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L) H(t) = (CONST.)xt = Ct, 0 <t < ty; H(t) = CONST, =0t ,t,<t <t 5
=0, t >t

An application of this problem will be described later on, in the
iscussion of a "Design Stomrm." |

In view of the discussion at the end of subsection (2) of this sec-
ion, the specification H(t) = Ct corresponds to a constant gq. Also,
ponsidering solution (27)valong with the flow balance equation, the
Ppecification H(t) = Cto corresponds to a transcendentally decreasing
. The piot of g versus t is shown in Fig. 5.

For the interval 0 < t £ t,, substitution of H{(t) = Ct into (22)

Fields
‘ a8 .k
t+ 0t e I
1e solution being
| ge) e o) - ekl | (32)
' 2

ror the interval t, < t < t, the solution is obtained as in subsection
1), with the initial condition being (32) at ¢ =t_. Thus

a

(3 + Ot/ x

2 _ kK geb_ (33)
C-i- Cto logm et‘ 2 tO

ihe re

2 [k 2 ., 4C
e = >
?‘or t >t , equation (25) becomes
H(t ) +€g(t,) = H(t) +€&(t) (34)

'ﬁere C;(tl) is the initial condition obtained from (33) as an initial

-

|
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Londition at the point T, Substitution into (22) yields i

caz = K '
e erv €

hhere v = H(t,) +€(t,)

Integration yields the “solution

! - - - V+(1-e)5 k

¢ means of equations (32),(33), and (35) one may easily obtain the ov-

L NIERAE R

kra11 ¢ (t) as a function of q{t) where the latter is given in Fig. 5.

5, SOLUTION OF THE TRANSIENT FLOW EQUATION FOR

AN ARBITRARY INITIAL CONDITION ON& WITH g = CONSTANT

In the previous section, solutions in the functional form t =t(&)

k:ere obtained. For the arbitrary initial condition on the penetration

< e g S I S S DO OIS R Rl

epth, however, both & and t are given implicitly. This is shown next.
The arbitrary initial condition is taken to be & (0) = g,, and the T

itial head to be Ho.

Equation (25) reads, for the given conditions Ll

H(t) +eZ(t) = qt + HO +€5 =qt ¥ v

ybstitution into (22) for H(t) gives

Zd & ﬁg—-—dﬁ
Ci-elg gt TV

Letting u =t + a and setting a =

___.sgg————ak—-du (36)
(1-€)Z+ qu €

ﬁBé) can be made se{aarable by means of change of variables given by'

& =xu, whereby the differential equation becomes

\ S odu xdx - (37)
| u .ﬁ“§u4)m%q
2e o ————




Integration, use of the initial condition, and substitution back for

Z (t) provides the result

(t+a)(t+a) " 'tfa.-l‘: q?R§+ o - d)tzgo"b+(i)]1

Kk Y
( ) _g. e ¢ [t’-%‘g'b+dx~§—~b~d

(38),

where

b=%—(1-§e), >d~=s/(i-7—€"—£)2 k?+‘éiliq

This result for an arbitrary initial condition and constant q
may also be used to solve a problem for which an arbitrary qlt) curve
is given, by approximating the curve in small intervals by lines of

constant q. Note that (38) must be rewritten for a non-zero initial
instant, i.e., for & (t.) =< .

However, it is more convenient in such cases to work directly

with (22) and (25) in a finite difference scheme. In finite differ-

ence form, (22) becomes '
N [—i-g—(-——)-] at (39)

For the given initial conditions, (25) is written as

H(t) + €T (v) = Hy + €L, aj © (40)
where qs is the average value of q in the subinterval (%;, tj,,) of
the q(t) curve. By use of (39) and (40), a finite difference solu-

tion may be constructed, as shown in Fig. 6.

6. DIMENSIONLESS VARIABLES AND THE

DIMENSIONLESS FREE-SURFACE VELOCITY

Several of the results previously obtained lend themselves to

analysis by means of dimensionless variables. Introducing them to

be 4 (11)
) g = ﬁ‘" .

T T TR - e A § W R

”12‘ ___m



and
TSt O (h2)

the differential equation (26) becomes, with H = C

1 d ) : .
£48_ _ g~ . (43)
The solution is, with £(0) =0 ,

E-log (£+1) =7 (48
A graph of (L) appéars in Fig., 7.
Differentiation of (44) with respect to T yields the dimension-
less free surface velocity

gt . é—g—-l | (15)
A graph of %;%versus T , obtained using (45) and (44), is shown. in Fig.

8.*

From Fig, 8, it is seen that g% is infinite at the initial in-
stant. Since this is not physically realizable, it must be concluded
that either the analysis is incomplete or that the physical model is
incorrect. Recent investigations have shown that the singularity at
the origin (T = 0) is removed when i:nertiai terms are included in the
differentiai equation. However, for times other than the initial in-
stant the inertia effects decay rapidly. The model chosen in this
study is, therefore, valid except for the aforementii;ned limitation

(10].

o . . .7. A DESIGN STORM FOR GIVEN
PERTINENT. PARAMETERS.. .

Up to this point, equation (22) has been solved with the aid of

* This discussion follows [3].

14,
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(25), for specified H(t) and/or q(t) curves. In this section it will
pe shown that the ql(t) and H(t) curves can be designed to correspond

to the following data supplied for a storm. {a) the maximum intensity,

nay 3 (b) the total inflow, Jqdt =y® , and (c) the total duration,t,

(=0, t > t,).

Consider the curve of a typical storm, shown in Fig. 9. After a
hort time, the intensity reaches a maximum value and then tapers off
adually. This actual q(t) curve may be approximated by a constant’
» 4 pax's in the interval 0 < t < t,, some transcendentally decreasing
(t) [see subsection (4)of section 4] in t, <t<t,, and q{t) = 0 for
> b This is shown in Fig. 10. It should be noted that, whereas the

esponse would probably not vary much with any of several different ap-

roximations, the possibility of analytical computations depends upon

eing ablé to provide a specific type of approximation, hence Fig. 10.

In view of the discussion in section 4, subsection (2) and (4), the

(t) curve may be constructed as shown in Fig. 11.
- The following quantities must now be obtained: (1) the depths of

penetration in each interval; (2) the expression for the ql{t) curve, in

the second interval; (3) the complete H(t) curve; and (4) the value of

1

By use of (25), equation (22) becomes, in each interval,

in0<t<t.: cdzg g-li-dt ‘ (46)
! (1-6)§+qmaxt ‘

i ‘ TaZ _ k_

1nt1<t5§2 el dt (47)
9 Cdt.i -_;.k__ ' .
-:.g t >, . dt (4,8)

(1-€)% +V

15.
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.

yhere V= H(tz) +&(t)) =C +§(t2) with C yet to be determined. In-
troduction of (1) and (42) into (47), (46), and.(48) gives ’

£ 4 E,” 1-¢) (49
£+qmak( ( ) ' )
4§;==df | (50)
£dk = (1-€)dT |
'€+%z[yfen;n | (51)

The solutions are, with the initial condition $§(0) = 0,

»

fosrsy)
- &) = (1-e) #+ (},-6)2 +“'fg'm“‘~ T (52)
z - _
T, <r<T,) |
) a’r+1 i
E(T) + log *T:ET-T— = t+T1 (a=1) ' (53)

where a is the coefficient of ¥ in (52),

T >%,)

I [+ )]
1-€ cf g(%)

g(‘t)-g(?.’z +-—““[7+eg(‘r )]10g{T:z ['4_&(?:2)]_._

= (1-¢) (T-7T))
Equations (52), (53), and (54) specify the & (%¥) curve.

In order to solve for g(t) in t, <t £ t,, introduce the dimension-

less variables (41) and (A42) into the flow balance equation {(25) to get

€€ (1) =er;(-c) + q(‘r)d’t‘

16.
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.Differentiation with respect to T yields
dt _ alz)
dt k
%B_ut from (50)
df . £+1
daT £
rence, int, <t <t
1 - "2
al®) =k gL (55)

hus, knowing & as a function of T from (53), (T, as well as C, will sub-
iequently be found) conversion back to dimensional variables will giire [y

s a function of t. Now substituting (41) into (55) gives q{t) in terms
of § . Hence the q(t) curve is obtained,

A flow balance in the interval 0 < ¢t < t, gives

H(t) +€ 2 (t) = fq o dtma_ b (56)

Also, in 0 < ¢ <t , H(t) = o t, and the dimensional solution is &(t)=At,

e

A being the coefficient of t in (29), with q = 9 ey ® Substituting these
results into (56) gives for ot ,

“=qmax-eA ’ . (57)
or

H(t) = (q . - €4)t 0 t<t, (58)

. x . .
In order to find H = C, note that, if the total inflow V' is given,

reference to Fig. 9 yields
t.

+ i ( v
| | 9 ey B gl{t)dt

‘Fubstitution of (42) and division by H(=C) leaves

®

o .

9 max 2 V'

€ —T, +[ & qlTlar= g L
- ‘L‘.

17.



..wH

t A o
1359 = 9 ,
YOTUM wWOx]
(£9) _.p?.wvnn ﬁ_ mM”Tou $%=90=H _ | h,

¢l

snyy *(z%) Sursn £q punoy st ‘'3 ‘xegemwered JurureEmex ayg k

N

*9AIND (3)H U3 Ay1oads 4ATegerdwod (29) Pue ‘(T9) ‘(8¢) suorzenbs ‘sousy

(29) [T+ (29 - (%2)9)3] 0 = (3)H

wv = + APVWW

983 01 ( pvm 9 =H £q 9P TAT

(P2 + (*1)29= (NH+ (1) 23

speax (¢z) ° u < 9 Ut “.m.n.mmc.n.m .mp 9 V 1 JI0F (2)H s8AT8 (T9) uoTqend

m.ﬂvw - (D% L 3w uw
(19) _ o= (3)H
.ﬂ

WM—*

fa = g souIs ‘m

e q
Mma wﬁ.&vw: am..wvw,_. pkun!m‘awlw.@w

S9ATd (6§) UT TexZequr 9yl JI0F (09) JO uoTINgTISqns MO

8~ -

la
(09) app 3 = (23~ (29>
22 -
‘9= ('a)H = Ami
sours ‘spretd eA0qe 2yj3 oquT (z%) pue (TY) Jo ,co,.npoﬁﬁoppﬁ

Ly .

ap(2)b % (‘v + ("aee= P+ P2y :
;. ] |

3
. spesJg mp q® 80UeTeq MOTJ B MON{




or

k
T, "xE | (64)

Now the dimensional time t, is obtained. From (63)

R

vy

C = O‘t,,
or c - ’
t, = ‘ (65)

Substitution of (61) and (57) into (65) gives

Vi

€ = qQ 9 max (66)
€ (9 max -€A) ["‘-*fk—-— ‘l‘] + &(2’2)'* g('l")]

¢

Knowing %(‘l’} ), &(‘l‘z) and T,, t, may be evaluated.

With the expressions for the penetration depth and the specifica-

TR LR S T S < Ty

[tion of the q{t) and H(t) curves, the design problem has been solved.

p—

8. FLOW THROUGH POROUS MEDIA WITH AN
i IMPERMEABLE BARRIER AT A UNIFORM FINITE DEPTH

All of the preceding discussion has dealt with infinite porous
media. In this section, a differential equation thatk describes the
behavior of the free surface L(t) passni_ng through a media of bounded
depth will be derived, the boundary being impermeable. This physical
problem is illustrated in Fig. 12, the finite depth being labelled 4 x.
Examples of such a model may be found abundantly in nature.

Following the development in section 2, it is seen that Laplace's
equation is again applicable, its general solution is given by, in the

one-dimensional case, equation (10),

] Peay+B

|

| | 19. ——_-—‘




kBoundary conditions are needed to evaluate A and B.
Now from definition (11), at y = 0" (i.e., approaching y = 0
from y negative),

Since @ = kh,

g(0) = k ZL%%EL =B

For the ensuing development, as will be seen, the absolute pres-

sure rather than the gage pressure must be used. Thus, at y = O,

p(o:t) = Pooge * Py = YEH(E) +P - ' (67)
Hence
P : .
B =k [H(t) + —2%] - (68)

Y

Nowat y =C ,

h = P(ngt) -C

Thus, since ¥ = kh, use of (10) and (68) at y =0 gives

P
k[ﬁ—%ﬁl -6 = A6+ k[H(t) + -—%‘1} (69)

To evaluate A it is necessary that P(th) be known. Unlike the
problems previously studied, the pressure at the interface is not equal
to a constant; the thermodynamics of 'the air-compression process must
be taken into consideration.

If it is assumed that the air trapped between the free surface and
the impenetrable barrier is compressed in a quasi-steady process, and |
that the thermodynamic behavior of air may be apprbximated by an ideal
gas, the equation ,

PV = nRT . (70)

|

| may be used. P is the pressure, V the volume, n the number of moles of

gas, R the universal gas constant, and T the temperature. Further, if
. the process is assumed isothermal, the pressure and volume at the ini-
tial instant when y = O (€ = 0) may be related to that at the instant

20.
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when y =C . Thus, from (70),

P (0,t)V(0jt) = P(L ,t)V(&,¢) (71)
Note that the value of P(0}t) in (71) is just the pressure of the en-

closed mass of air, here taken as atmospheric, whereas in (67) P(07t)
represents the pressure exerted by the air and water above the surface.
Naturally, for free surface motion, there may be a discontinuity in
pressure at the level y = 0, t < O,

Now if a unit area is considered, V(Oft) = *, and V(C,t) "C*-C-
Hence (71) becomes

L 4 x
P..C = P(C ,t)(& =€)

Solving for P(( ,t) gives

P *
: Z -0
Substitution of (72) into (69) yields,; upon solution for A,
| P x P '
k at A . at
\ ok £ -G - .....] (73)
| a[x ¢ -t ¥
- Substitution of (73) and (68) into (10) gives the result |
P #® P P
-k |lat ¢ - - H(t) - -2}y + k l:H(t) +.—&-§] (74)
ey e ¢ Y X
Now by (19)

Hence, substituting for "2'%’ obtained from (74), gives

é k Pat( ﬁx a H(t) Pat
- £ = Sl =" - t) - —
Gl ¥ \£"-¢ Y

Some rearrangement yields the result

(6= 6T1646 .k g (75)
z* "{C! - H(t) -‘,v—;l}"-]ﬁ. - ¢ H(L)
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Equation (75) is the differential equation for the free surface with
the presence of a barrier; it shall be called the barrier flow equa-

ion.

( ‘ 9. SOLUTION OF THE DIFFERENTIAL EQUATION FOR

BARRIER FLOW WITH H{t) = CONSTANT

For H(t) = Constant = C, equation (75) becomes

(;az:"‘);:dz; =k gt (76)
- 2 * at - x
sz - [e*.c.Btfg.ct

&
*ntegration, using Z(0) = 0, gives

x [y
e [fecem s

_{muf..*)rla-fs}log ]“’g“t

*:here : -
P 7
®=3% _ o .__at }3-«0(;’E r.r =ttJXZ + 4P
U b b ")2 2

*ecause xZ + 4B >0, r, and r, are real.

(77)
g.

ry
Ty

-

Equation (77) is the solution to the barrier flow equaf:,ion for H(t)=

*}ONST. It is seen that as G —» T t — + o, since the second log term,
ith the minus sign goes to 4 o . It is also noted that the value of r,
8 always less than that of r,, for if & would traverse the value r, on
Tt-'GS way to ro, ‘the first term would approach - o, which is physically
possible. Thus the value % =r , say §,, gives the value for the

aximum penetration depth.

el
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- By substitution of the dimensionless variables £- -gsi and T = él'(-q

into (76) and integration, there results the solution

o {5 S -y el

(78)
, = I -2 . .
where R] cx and R2 g% Also, using the argument of the previous

paragraph, R] is the maximum value of the dimensionless penetration depth.

(A plot of (78), using several values of Z:*, is shown in Fig. 13. For a

| proper comparison to the C/’t’ plot shown in Fig. 7, the dimensionless

lvgriables used are those given by (41) and (42). These are easily ob-

tained from the present dimensionless variables by multiplication. by
§7H. In Fig. 13, the asymptotic behavior of £(T—» ) is shown,

along with the comparison to c¥ = .
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