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ABSTRAGT 

I 

Analyses of one-dimensional t rans ien t  seepage problems a r e  
i 

presented.' This one-dimensional approach may be  considered as 

! an approximation t o  t h e  two-dimensional problem, i .e., f low from 

a b a s i n  of rec tangular  cross-section having a l a r g e  width t o  

depth r a t i o .  Mathematically, the  problem involves a free-bound- 

ary va lue  problem of po ten t ia l  theory, and is non-linear. Por- 

ous. media of both i n f i n i t e  and f i n i t e  depth, and having succes- 

s ive  s t rata  of d i f f e r e n t  permeabil i t ie  s, a r e  considered. Solu- 

t i ons  are found corresponding t o  constant head, constant inflow 

i n t e n s i t y ,  and c e r t a i n  combinations of these  parameters. 

It is a l s o  s h m  t h a t ,  given t h e  t o t a l  duration, maximum in-  

t e n s i t y ,  and t o t a l  flow of a storm, it i s  possible t o  approximate 

the in f low i n t e n s i t y  t o  obtain a complete solut ion of t he  seepage 
1 

problem, f .e., t h e  penetrat ion depth and head i n  t h e  basin as a 
I funct ion of time. It i s  f e l t  t h a t  t h i s  r e s u l t  has immediate ap- 1 

p l i c a t i o n  i n  t h e  design of storm water seepage basins.  1 
I 
8 8 

I n  all cases,  exact  solut ions  a r e  obtained, but where mare ! .  

convenient, a numerical ana lys i s  of t h e  governing d i f f e r e n t i a l  - 



INTRODUCTION 

This report i s  concerned with the movement of a fluid i n  a 

porous medium in  which there  is a fluid-gas interface,  A s  i s  cus- 

! tomary, the macroscopic flow equations assume the .val idi ty  of Darcyls 

generalized law, with t h e  actual  medium replaced by a continuum. For 

the above t o  apply the material  must be granular, i . e . , of the  grain 

s ize  of a t  l e a s t  a f i n e  sand, For f i n e r  gain s o i l s  where capi l lar-  
1 

i t y  and other  molecular forces a& s ignif icant ,  t he  analyses given 
1 

1 herein should provide order-of-magnitude estimates f o r  the  flow rate ' 

and the f ree-surface location. 

The problem involves an unknown boundary location and i s  non- . -. 

1 l inear,  hence general solutions are not available, For cer ta in  ap- 

1 plications, approximat ions and l inear izat ions  are sometimes possible. 

\ For two-dimensional steady s t a t e  problems, solutions can occasionsl- 

/ lp be effected by successive conformal mappings. Recently Dewiest 
I 

Ell, u t i l i z i n g  conformal mapping together with a perturbation pro- 
I 

cedure, obtained an asymptotic solution f o r  a two-dimensional tran- 

sient  problem. A procedure f o r  extending the range of va l id i ty  of 

( the solution was presented in [2]. Both methods, however, involve 

I the solut ion of. secular  equations of la rge  degree, and the  solutions 

are  not valid f o r  ea r ly  times. 

In  t h e  present work, cer ta in  one-dimensional t ransient  problems 

are studied f o r  which exact implic i t  solutions a r e  obtained, Some 
\ 

I of these have previously been obtained C3]. However, these have I 

I never been exploited for  the  analysis of seepage problems, t h e  main I 



concern of t h i s  study, 

Moreover, it twns out tha t  the  one-dimensional solutions ob- 

I tained are l imit ing cases of two-and-three-dimensional t rans ien t  

.problems, s o  t h a t  t he re  a r e  immediate prac t ica l  applications of t h i s  

research, namely i n  the  design of storm-water seepage basins and nu- 

c lear  waste disposal. 

With regard t o  t h e  first of these, seepage basin design, it is  

necessary tha t  the  basin be of su f f i c i en t  dimensions t o  accommodate 

the l a r g e s t  storm runoff anticipated without overflowing, To t h i s  

( end, county design c r i t e r i a ,  e.g. Suffolk and Nassau on Long Island,  

I s t i p u l a t e  a basin volume t o  drainage area  ra t io .  This  implies a 

1 steady s t a t e  condition which is actual ly  almost never at tained.  Many 

f such bas ins  never contain more than a foot or  two of water, although 
1 

.the depths  provided a r e  twelve t o  twenty f e e t ,  Evidehtly they a r e  

grossly oversized perhaps by an  order ,of magnitude. A more r e a l i s t i c  

procedure would be one i n  which the  t rans ien t  nature of t he  phenome- 

I non i s  included, f o r  which the following analysis i s  pertinent. 

With regard t o  t h e  disposal of l o w  l e v e l  wastes a t  nuclear pow- 

e r  p lan t s ,  it i s  important tha t  the  seepage paths and ve loc i t ies  of 

rad ioac t ive  effluent be predictable. The i n i t i a l  motion of such ef- 

1 f luen t  is primarily one-dimensional s ince gravity i s  t h e  generating 

I force. Hence, the  analysis  presented herein. should be of value i n  - 

t h i s  area also. The ~ o b l e m  of l a t e r a l  dispersal ,  which is ac tua l ly  I 
I a two-dimensional t r ans ien t  phenomenon, is being studied. 

1, THE BOUNDARY VALUE PROBLEDI OF 

i 
FLOW THROUGH POROUS MEDIA 

By use of the kinematical free-surface equation, the  equation 
of cont inui ty  f o r  an imcompressible flufd, and the  r e s u l t  known as 
Darcy s law, the  different ia l  equation describing the one-dimension- 
a1 free surface will be derived* 

2. 
--.-. . _ _ _  _ _  _ . - -  - -  - - . --a- . 



.The experimental r e su l t  formulated by Henri Darcy C5I, Darcyt 8 ! 
1 

) l a w ,  expresses a proportionality relat ionship between the f i l t r a -  ." 
I 

( tion veloci ty  v ( a l s o  called the spec i f ic  discharge when denoted by 

I q) and the change i n  head, ==, ah i n  the  direction of the  velocity corn- 

ponent. h is defined by h = g +  y ,  where 8 is the  spec i f ic  weight of 

( water and y i s  the v e r t i c a l  distance from sane datum t o  the point in 

( question. Thus 
I ah 
I Vxi = -k 7J- (1) 

Xi 
Equation (1) serves t o  define the constant of proportionality k,  

called the  permeability. The permeability is a function of f l u i d  

1 propert ies as well  a s  those of t h e  medium. 

i Following Muskat [63 and Polubarinova-Kochina [3], it i s  as- 

sumed that Darcyts law can be generalized t o  three dimensions, vis., 

/ for  an i so t ropic  medium. I n  recent works the  above assumption has 

I. been questioned, since, a s  may be shown, the above implies t h a t  t h e  

I permeability matrix [k. .] admits of a diagonal form'. Although there  
35 

appears t o  be no theoret ical  jus t i f ica t ion  f o r  t h i s  assumption, ex- 

\ perimental evidence t o  date seems t o  indicate  the existence of or- 

thogonal principal  axes for  a l l  samples which have been t e s t e d  C71. 
i However, t he  experimental r e s u l t s  represented by equations ( 2 ) 
? 

1 

I - 

a r e  incomplete, inasmuch as they do not include the e f f e c t s  of iner- 



I ! +  

t i a .  This e f f e c t  becomes more pronounced when l a r g e  granules of 

( porous media a r e  considered, because the  l a rge  pores enable the  

( fluid passing through them t o  come under the influence of i n e r t i a l  
4 '  

! forces. A separate  s tudy indicates  that i n e r t i a l  terms a r e  s ign i f -  

i,cant only f u r  a very s h o r t  time, of t h e  order  of a second, so t h a t  
' i n  the fol lowing ana lys i s  i n e r t i a l  e f f e c t s  a r e  excluded* It I s  not- 

, ed, however, t h a t  time e f f e c t s  en t e r  via the  moving boundary, 

I The equation of cont inui ty  f o r  an incompressible fluid may b e  

written i n  the form 

v . ' i i = o  
. m a a a 

where V = u& + y j  - + wk, and V = & + - j + + • 

' 
Expressing equations ( 2 )  i n  t he  form 

I 

'if = k grad h = grad kh 

and s u b s t i t u t i n g  i n t o  [3) gives 

1 V - [grad kh) = O 

Introducing the "poten t ia ln  9 z kh, 

Hence t h e  quant i ty  kh s a t i s f i e s  Laplace's equation.  

L e t  equation (4) be s a t i s f i e d  ' i n  a region, shown i n  Fig. 1, 

whose boundaries are f ixed,  Also, on one boundary segment, l e t  

%? = f (p ) ,  where P denotes any %( p1 = g( P) , and on t h e  other segment, a, 

[ point on the boundary.' This ~ e p r e s e n t s  a bas ic  problem i n  po ten t i a l  

\ theory and i s  a well-defined boundary value  problem, i .e . ,  a solution 

i exists and L s  unique, If one of t h e  boundary segments is a free sur- 



, face, however, t h e  cond i t ion  on it i s  of  t h e  form 

dth condi t ion  on t h e  o the r  segment being e i t h e r  P(P) = g j ~ )  or . 

1.32 = f ( ~ )  Condition ( 5 )  may not be s u f f i c i e n t  t o  guarantee unique- 
an 
n e s s  for a l l  such problems. c e r t a i n  one-dimensional cases wiLZ be in- 

v e s t i g a t e d  for which ex i s t ence  and uniqueness have recent ly been es- 

I t a b l i s h e d  C 81 
I 

2, THE ONE~DIPIIENSIO~IAL 
TRANSIENT FLOtJ EQUATION 

c o n s i d e r  a semi - in f in i t e  porous medium, The standard datum i s  
I 

! .  

t a k e n  at y = 0, y being measured posi t ively downward, and the  surface 

y = 0 is taken t o  be hor izon ta l .  The applied head H[t ) is measured . , 
, . 

. ,  i p o s i t i v e l y  upward from t h i s  surface,  she-m i n  Fig. 2. 

The f r e e  su r face  F ( x , y , t )  = 0, which defines the fluid-gas in te r -  

f a c e  can be w r i t t e n  i n  t h e  following form . , 

I F ( x , y , t )  = y  - l f ( x , t j  = C I S  (61 
, 

I - I i s  sought i s  a one-dimensional so lu t ion  f o r  which the f r e e  sur- 
, .' 

: r  

f a c e  would b e  h o r i z o n t a l ,  i . e , ,  5' c(t), .so t h a t  F y - g( t )  * 0. : I  

1 

The kinemat ica l  f r e e  surface condition is I 

I .  

1 A p p l i c a t i o n  of ( 7 )  t o  ( 6 )  y i e l d s  t h e  boundary condition where the  sub- 
v # 

i' 

I serf pt f denotes the free surface ,  

aF(y.t) + Vf a ~ f ~ , & . ) .  = 0 
1 a t  w 
1 at y = 0 Laplacers  equation becomes, f o r  t > O and 0 <_ y < c(t) 



I t h e  general so lu t ion  of which is 

P(y)  -%Ay + B 

The head, h ( y , t ) ,  i s  given by 

I n  proceeding t o  derive the t r ans i en t  d i f f e r e n t i a l  equation, t he  

applied head, h(O,t), is  represented a s  H f t ) ,  a function of t i n e .  
.L 

From the .  equation of cont inui ty  it i s  seen t h a t  because V = v j ,  .so - 
that v = v ( y , t )  reduce& t o  v = v ( t ) .  

Now the  so lu t ion  given by equation (10) i s  applicable,  and bound- 

ary condition (12) becomes 

y(o t  = k~(t) 

I Since y(0) is t h e  value of t h e  coe f f i c i en t  B y  (10) becomes 

I The f i l t r a t i o n  veloci ty  may be defined i n  terms o f  a t o t a l  discharge Q 

over a cross-section area A, Thus 

1 A re la t ionsh ip  between the f i l t r a t i o n  veloci ty,  given above, and t h e  I 1 free surface ve loc i ty ,  given i n  equation ( 8 ) ,  will now be developed* 
I 

'I 
1 

The porosi ty of a given porous medium, denoted by E , is defined 

as the r a t i o  of open space, o r  voids, v', through which t h e  f l u i d  

1 passes, t o  t h e  t o t a l  volume of porous media V containing t h e  voids. 
f 

1 where A i s  t h e  t o t a l  u n i t  cross-section area ,  and A' i s  the  area of 
I 
i pores i n  t h i s  t o t a l  area .  

i The f r e e  surface  veloci ty  is, i n  terns of the t o t a l  discharge Q 



i I In view of (16) and 051, the desired re la t ionship between the fil- 
i 
i' 

I 
tration and free surface ve loc i t ies  is 

I Alternatively, subs t i tu t ion  of ( 6 )  and (16) i n to  ( 8 )  gives 

v - € 2  (195 . 

'Since v i s  independent of y, the f ree  surface v e l o c i t y  is equal t o  a 

} constant times the velocity i n  the  in te r io r .  

I- Now from. (11), since a t  y = C P = 0, (using gage pressure),  

h = - y = -  c 
., on t h e  f ree  surface. Hence a t  y =c,  (14) b ecomes 

- k 5 = AC+ kG.\(t) 

and 

i 
Substitution i n t o  (14) gives, f o r  the velocftjr potential ,  

% = -  k ( S +  H(t)l y + k ~ ( t )  
G (20) 

i 3 = - v = - t . (20) becomes, upon di f ferent ia t ion  with 
' ~ r o m  ( i9) ,  ay , 

respect t o  y ,  

I @ Elimination of ay from these expressions yields 
4 

! Equation (21) is the one-dimensional d i f fe rent ia l  equation f o r  tran- 
f 

i sient flow through porous media. Rearranging ( 21 

t The physical significance of this one-dimensional approach wi l l  

i 'now be discussed a s  a l imiting case of a two-dimensional problem. 

- 7. *.." 1 



I variables, and approaches ver t ica l  asymptotes. 

i 
' f  Consider a rectangular channel a s  i l l u s t r a t e d  i n  Fig. 3 ,  along 

I In the two-dimensional t ransient  problem, the free surface is ,  

I of course, time dependent, The one-dimensional model has significance 

since the f r ee  stream Lines f o r  the two-dimensional steady s t a t e  ex- . 

, 

( tend downward t o  a v e r t i c a l  asymptote. Hence W ,  the horizontal d i s -  

I 

w i t h  i t s  steady s t a t e  f r e e  surface. Water i s  contained i n  t h i s  

rectangular chamel ,  with f ixed  dimensions, a t  a specified height 
. < 

j tance between the free stream l i n e s  a t  an in f in i t e  depth, i s  f i n i t e .  

1 H0 
. The f r e e  surface is of  necessity a f'unction of the two  s p a t i a l  

I 

W I Also, the difference W-b is a funcLion of Ho and as b-rm($ +O)> bS 1 W+b [91. Therefore the  ene-dimensional problem can be considered an 

approximation t o  a two-dimensional problem having a large parameter 

L e . ,  ~ h a n n e l  width t o  depth r a t io .  It is noted., however, tha t  the 

1 problem of  flow i n  a half-plane y 2 0 where 

I i s  not  a one-dimensional one. Again, t h e  one-dimensional appre~ma-  

tion is valid fo r  large b/H, and becomes exact as H/b--c~* 
I 

THE FLON BALANCE EQUATION 

An equation can be found r e l a t i n g  the t o t a l  inflow, the  head H( t 1 ,  

and the penetration depth < (t). Such an equation enables e specifi- 

) cation of q; hence an expression f o r  H( t 1, which appears in (22 1, 

1 TOTAL I N F L O W  = TOTAL FLUID REMAINING ABOVE THE LEVEL .y -= 0 

1 TOTfi FLUID El3 NETRATED TO THE ~ ~ T H  c(t 



I This i s ,  of course, t he  equation o f  cont inui ty  i n  in tegra ted  form. 

Symbolically, the'above may be wri t t en  as 

J ~ d t  =  AH(^) + A '  f [t) 

!L 
Now by (15 ) , t h e  quant i ty  A is  the  f i l t r a t i o n  veloci ty.  Another , a 

1 term sometines used f o r  t h i s  quanti ty i s  the spec i f ic  discharge, de- 

(fined by t h e  symbol 

which i s  the  inflow i n  CFS per unit of horizontal  area  of basin, 

Inertion o f  (24) and (16) i n t o  (23)  gives the r e s u l t  
I 

I fqdt  = H ( t )  + c ( t )  

Equation (25)  is t h e  flow balance equation. 

4. SOY3 ELEIvENTARY SOLUTIONS OF THE 

TRMlSIENT FLOW EQVATIOM . . 

For t h e  problems t o  be considered i n  t h i s  sect ion,  the i n i t i a l  . . 

i condition Zf(0) = 0 w i l l  be assumed. 

I (1) COESTHPIT HEAD ( H ( t )  = C )  

I Under t h i s  assumption, ( 2 2 )  becomes 

I S d Z : = k d t  c+ c C 

1 The solution being 

k t + C  =-t t - C l o g  < G 
&pation (27) i s  plotted, 6 versus log t, i n  Fig. 4, for a s t a t e d  

I range of permeabi l i t ies  and fo r  a porosi ty  of 6 = 0.4, and constant 

1 head C = 5 f t  . The permeabi l i t ies  l i s t e d  along with  Fig .  4 are for 
t 
i soi ls  t h a t  range.from coarse sands t o  tightly packed f i n e  clays.  

i t .  

Under t h i s  assumption, (25) becomes 



Subs t i tu t ion  of (b.3 i n t o  (361 yie lds  

- i 

Assuming a so lu t ion  of t h e  form < ( t f  = A t ,  where A is a  constant, 

the following r e s u l t s  

(29) shows t h a t  is a l i n e a r  function of time. We note t h a t  sub- 

s t i t u t i o n  of <(t)  = A t  i n to  (28) shows t h a t  the same form of solu- ' 

t i on  (29)  hold f o r  H ( t )  = (cons t . )x t  as f o r  q = const. 
i 

( 3 )  q = 0, t 2 0, AND A DETEBKCNATION OF THE TOTAL TIME FOR DRAINAGE 

The given condition on q impl ies  a sudden stopping of flow. This 

means t h a t  an i n i t i a l  head of ,  say, size H,, remains. Hence (25), 

f o r  l a t e r  times, becomes 

and ' subs t i tu t ion  i n t o  (22)  g ives  

:egration a v e s  the  solution - 
Now t h e  bas in  i s  conpLetely drained when H ( t  1 0, Hence (25) 

becomes 

Subs t i tu t ing  f o r  5 i n t o  (30) gives t h e  time f o r  complete drainage. 

Thus 
t= E H O  '"6 4- log€ ] 

k(1-€ l2 *e 



I An application of t h i s  problem will be described l a t e r  on, i n  t h e  I 

I 
iscussion of a flDesign St0rm.n 

I n  view of t he  discuss ion a t  the  end of  subsection ( 2 )  of t h i s  sec- 

the  spec i f ica t ion  H(t) = C t  corresponds t o  a constant q. Also, 

onsidering so lu t ion  (27) along with t he  flow balance equation, the  

pecificat ion H (t ) = C t o  corresponds t o  a transcendental ly decreasing 

, The p lo t  of 4 versus t i s  shown i n  Fig. 5. 

For t h e  i n t e r v a l  O < t < to, subs t i t u t i on  of ~ ( t )  = C t  i n t o  (22)  

~ i e  I d s  

I (32 

i o r  the i n t e r v a l  to < t < 5 ,  the  so lu t ion  i s  obtained as i n  subsection 

I l), with the  i n i t i a l  condit ion being (32)  a t  t = to. Thus 

\or t > t, , equation (25) becomes 
i 

h e r e  F ( t ,  1 i s  t h e  i n i t i a l ' c o n d i t i o n  obtained from (33)  as an i n i t i a l '  



I at t h e  p o i n t  t,. Substi tution i n t o  (22)  y ie lds  

- v Log L $.- ( t - t l  ) 
( I - & )  (35) 

means of equations (32 1, ( 33) 9 and (35 One may easi ly obtain t h e  ov- 

I ,*ll & (t) as a function of q(t) where the l a t t e r  i s  given i n  Fig. 5. 

I 5 ,  SOLUTXON OF THE TRANSIENT now EQUATION FOR 

AN ARBITRARY INmIAL CONDITION ON& WITH Q = GOh'STANT 

I n  the  previous section, s o l u t i o n s  i n  the  functional form t = t ( C ]  

obtained. For the a r b i t r a r y  i n i t i a l  condition on the penetration 

depth, however, both F and t are given implicitly.  This is shown next. 

The a r b i t r a r y  i n i t i a l  condition i s  taken t o b e  c ( 0 )  -co, and the 

head Fo be Ho. 

Equation (25) reads, f o r  t h e  given conditions 

H(t) + e g ( t )  = q t  + H* + & %  qt + V 

bubstitution i n t o  (22) f o r  ~ ( t )  gives 
3 

- v 
e t t i n g  u = t + +-and s e t t i n g  a = 7 9 

1 36) can be aade Se;arable by meas of change of variables given by 

i 5=xu~? whereby the  differential equation becomes 

xdx 

f 



1 integration, U s e  of t h e  i n i t i a l  condition, and sub.sti tution back far I 

I 

5 (t) t h e  r e su l t  

b ! 

t + a  
= I  

where 
k 2 2 

b = -  ( 1  - € I ,  
E: 

1 This r e s u l t  for an arbitrary i n i t i a l  condition and constant q 
f 
) may also be used t o  solve a problem f o r  which an a rb i t r a ry  q(t)  curve 

I is given, by approximating the curve i n  small in terva ls  by l i n e s  of 

i constant q. Note t h a t  ( 3 8 )  must be rewri t ten f o r  a non-aero i n i t i a l  

i n s t a n t ,  i.e., for 5 ( t l )  

I However, it is more convenient i n  such cases t o  work d i rec t ly  

( w i t h  (22) and (25) i n  a finite difference scheme. In  f i n i t e  d i f fer -  

! ence form, (22) becomes r 7 

For the given initial condi t ions ,  (25) is writ ten as 

k 
H ( t )  + C Z = ( t )  = Ho +KO q j  t ( 401 

where q' i s  the average value of q i n  the subinterval (tj, of 
j 

*he q i t )  curve. By use of (39) and (&I), a f i n i t e  d i f f e r e n c e - ~ 0 1 ~ -  

r 
4 

I 

I 

1 t i on  nay be c o n s t r u c t e d ,  as shown i n  Fig. 6. 1 I 

I 

1 6.  DDIENSIONLESS VARIABLES AND THE 

i D m f s ~ O r a E S S  FREE-SURFACE VELOCITY I 

Several of t h e  r e s u l t s  obtained lend tbmselves t o  

I 

1' 
by m e a s  of dimensionless "riabless Introducing th" t o  b L 

be G 
5 -g 

(U) 

1 
.. 

t 7 ,  



f the d i f f e r e n t i a l  equation (26) becomes, with H - C 

- l og  (5 + 1) = 7 

I A graph of (44) appears i n  F i g .  7. 

i Dif fe ren t i a t i on  of ( 44) with respec t  t o  Zl yie lds  t he  dimension- 

l e s s  free surface  v e l o c i t y  

. d E , E + l  (45) . 
dr 

versus T , obtained using ( 45) and f V P ) ,  is shown. i n  Fig. 

. . 

I 64 
From Fig. 8, it i s  seen t h a t  i s  i n f i n i t e  a t  the initial in- 

stant. Since this i s  not physical ly rea l izable ,  it must be concluded 

that e i t h e r  t h e  ana lys i s  is incomplete o r  t ha t  the physical model is I 
( incorrect .  Recent inves t iga t ions  have shown t h a t  the s ingula r i ty  at 

the o r i g i n  (% = 0) i s  removed when i n e r t i a l  terms are  included i n  the  

d i f f e r en t i a l  equation. However, f o r  t imes other than the  i n i t i a l  in- 

! stant t h e  i n e r t i a  e f fec t s  decay rap id ly .  The model chosen i n  t h i s  

J 
sWdy is,  there fore ,  v a l i d  except fo r  t h e  aforementioned l imi ta t ion  

, 7.. A' DESIGN STORM. FOR.'.GIVEN 

i Up t o  t h i s  point, equation (22)  has been solved Kith the a i d  of 
I 

x This discussion follows C33. 

14 



I / (251, f o r  spec i f ied  H i t )  and/or q(t) e w e s .  I n  t h i s  sect ion it will 
! 

b e  shown t h a t  t he  q ( t )  and H ( t )  curves can be designed t o  correspond 

,to .the following data  supplied for a storm: (a) the maximum in tens i ty ,  . . 
X 

(b) the t o t a l  inflow, fqdt E V , and ( c )  the t o t a l  duration, t2 : 
4 max 

1 Consider t h e  curve of a typ ica l  storm, shown i n  Fig. 9. After a 

port t ime,  t he  i n t e n s i t y  reaches a m a x i m u m  value and then tapers  off , 

Igradually. T h i s  ac tua l  q(t) curve may be approximated by a constant 

I 4) q Lax' 7 
i n  t h e  i n t e r v a l  0 5 t 5 t7 , some transcendentally decreasing 

/n(t) [see subsection (4) of sect ion 41 i n  ti < t j t2, and q(t) = O far 

> t, . This i s  shown in Fig. 10. It should be noted tha t ,  whereas the . 
I 

/response would probably not vary much with any of several dif ferent  ap- 

ipmximat ions, the p o s s i b i l i t y  of ana ly t i ca l  computations depends upon ( -  

, '  

I being a b l e  t o  provide a spec i f ic  type of approximation, hence Fig. 10, 

In view of the discussion i n  sec t ion  4, subsection ( 2 )  and (41,  the . 
( H ( t )  curve may be constructed as shown i n  Pig. 11 I 
t The following q u a n t i t i e s  must now be obtained: (1 )  the  depths of  
z 
I. 
penetration i n  each i n t e r v a l ;  ( 2 )  the  expression f o r  the q ( t  1 curve, in 

I 

(the second i n t e rva l ;  ( 3 )  t h e  complete ~ ( t )  curve; and (4)  t h e  value of 

By use 

< t L  - 
equation (22)  becomes, i n  each in te rva l ,  . 



bs! 
i 

where V =  ~ ( t ~ )  +c (t2) = C + c(tZ) with  C yet t o  be determined. In- I 

3 .  

troduction o f  (41)  and (42) i n t o  f47), (M), and . ( h e )  gives I 

I The solutions are, with the i n i t i a l  c o ~ d i t i o n  (0) - 0, 
? 

~ ( 7 )  + l o g  &m = t +r7 ( a -  1 1  

1 where a i s  t h e  c o e f f i c i e n t  of V i n  (521, 

l ~ ~ u a t i o n s  (52), (53), and (54 )  specify the f (z) 

I In order t o  solve f o r  q(t) i n  t, < t 5 t,, introduce the dimension- 

/ less  variables (41) and (.42) i n t o  the f low balance equation (25) to get 



1 I Differentiati  .on with respect  t o  yie lds  

\ B u t  from ( 50 ) 

I Hence, i n  t, < t < t2 

i Thus, knowing 6 as a funct ion of Z from (531, (2, as well as C, w i l l  sub- 

Cequently be found) conversion back t o  dimensional variables w i l l  t 

/as a funct ion of  t . Now subs t i t u t ing  141) i n to  (551 gives q t t )  i n  terms 

I bf G . Hence t h e  q(t)  curve i s  obtained, 

j A f low balance i n  t h e  i n t e r v a l  0 5 t 5 t gives 

(56j  
. . 

t H ( t )  + C  C (t) = ./.q maXdt-E m a  
Also, i n  0 5 t < t , ,  H(t) = o ( t ,  and the.dimensional solution is c(t]=At, 

t 1 being t h e  coe f f i c i en t  of t i n  (29), with  q q m h  ., Subst i tu t ing these 

'results into (56 )  gives f o r  , I 

R 
I n  order  to f ind  H = C ,  note that, i f  t h e  t o t a l  inflow V is given, 

reference t o  Fig. 9 y i e l d s  

;5: 

tl - +?.I.)& - v 
. 

ubs t i tu t ion  of (42)  and divis ion by-14( 4) leaves 





,I t h e  dimensional  t ime t, is obtained. From (63)  

/subst i tut ion of ( 61 and ( 57) i n t o  ( 65 ) gives 

I Knowing f ) , 5 (2, ) and Zl tl' t l  may be evaluated. b 

With t h e  e x p r e s s i o n s  f o r  t h e  penetrat ion depth and the specifica- 
1 

I tion of t h e  q ( t  ) and H( t ) curves,  t h e  design problem has been aolved. 

8 ,  FLOW THROUGH POROUS MEDIA WITH AN 

IMPERMEABLE BARRIER AT A UNIFORM FINITE DEPTH 

A l l  of t h e  preceding d i scuss ion  has d e a l t  with i n f i n i t e  porous 

[media. I n  t h i s  s e b t i o n ,  a d i f f e r e n t i a l  equation tha t  describes the 

/behavior of the f r e e  sur face  C ( t )  passing through e media of bounded 

w i l l  be d e r i v e d ,  t h e  boundary being impermeable. This physical 
R 

problem is i l l u s t r a t e d  in Fig. 12, the f i n i t e  depth being labelled C 
1 
( k a ~ l e s  of s u c h  model may be found abundantly in nature* 

t FO1lodng t h e  development i n  s e c t i o n  2 ,  it is seen tha t  Laplace's 

'equation is  a g a i n  a p p l i c a b l e ,  i ts  general  solution is given by F in tihe 

I One-dimensional ease, equa t ion  (10 ) , 
% = A y  + B 

I 1 
I 



' Boundary conditions a re  needed t d  evaluate A and 3. 1 Now from def in i t ion  ( I l l ,  a t  y = Om (i'e., approaching y = 0 1 from y negative ) , 

I For the  ensuing development, a s  w i l l  be seen, the absolute pres- 

I sure r a the r  than  the  gage pressure must be used. Thus, at ). 0; 

Hence 
P 

B = k C H ( t )  + a t  (681 

/Thus, s ince  9 = Lh, use of (10) and (61) at Y .5 gives 
*$ 

To evaluate A it is necessary tha t  P(4, t )  be known. Unlike t h e  

problems previously studied, the  pressure a t  the interface is  not equal 
to a constant; t h e  thermodynamics of . the  air-compression process must 
be taken i n t o  consideration. 

I If it i s  assumed t h a t  the a i r  trapped between the f ree  surface and 
the impenetrable b a r r i e r  is  compressed i n  a quasi-steady process, and 
that the  thermodynamic behavior of a i r  may be app&ximated by an idea l  
gas, t h e  equation 

PV = nRT (70) 

be used. P is the pressure, V the  volume, n the number of moles of 
gas, R t h e  universal gas constant, and T t h e  temperature. Further, if 

, the process i s  assumed isothermal, the  pressure and volume a t  the  in i -  I 
t ial  i n s t an t  when y - 0 ( 5  = 0) m y  be r e l a t ed  t o  that  at the ins tan t  



I when y = C  . Thus, from (70), 

I Note that the value of ~ ( 0 : t )  i n  (71) is  j u s t  the pressure of the en- 1 closed mass of air ,  here taken as atmospheric, whereas in (67) P(O;t) 
( represents the pressure exerted by the air and water above the surfice. 
[ Naturally, f or  free surface motion, there may be a discontinuity in 
1 pressure a t  the l eve l  y = 0, t < 0. 

I Ik 
Now if a unit area is considered, V( 0:t) = , and V( t ,t ) =L*-C. 

I Hence ('71) becomes 

Solving for P(c ,t)  gives 

I P ( C , t l  .. 'at&* (72) 
t * - L  

I Substitution of (72) into  ( 6 9 )  yields, upon solution for A, 

.c - H i t )  - &] 
Y 

(73) 

Substitution of (73) and ( 6 8 )  into (10) 'gives the result 

I Hence, substituting for  2, obtained f m m  (741, gives 
ay 

I Some rearrangement yields the  result 



1~~uati .n (75) is the differential  equation for  the free surface with 

1 the presence of a barrier; it ahall be called the barrier f low equa- 

tion., 

. 
9 ,  SOLUTION OF THE DIFFERENTIAL EQUATlON FOR 

BARRIER FLOW WITH H ( t  ) = CONSTANT 

I 
I For H(t) = Constant = C ,  equation (75) becomes 

pntegration, using C ( 0 )  - 0, gives 

f @cause + 48 > 0, r1 and r:, are real. 

) Equation ('7'7) is th; solution to the barrier f low equation f o r  H ( t ) -  

 ONS ST. It i s  seen that as S --, r l ,  t --, + co , since the second log tern, 
1 

'th the  minus sign goes to + FD . It is also noted that  the value of rl t 
8 always l e s s  than that of r2, for if F would traverse the value r2 on 

I t s  WaY t o  r , ,  the first term would approach - co, which physically 

possible. Thus the value r; - r, ,  say c , ,  gives the  value for the 

axhum penetration depth. 

22 * 
-- --.- ---  -- --- --A 



I k By s u b s t i t u t i o n  of the  dimensionless va r i ab l e s  5 = 4 and t a 
5 

t i n t o  (76) and i n t eg ra t ion ,  there r e s u l t s  the  aolut ion 

I r 7 r2 where R1 = - and R2 - - . Also, using t h e  argument of t h e  previous 
c;" C* 

paragraph, R1 is t h e  maximum value of t he  dimensionless penetration depth. 

A plot of (78) ,  using seve ra l  values of C* ,  i s  shown i n  Fig. 13. For a 

I proper cornprison t o  t h e  c/T p lo t  shown in Fig. 7, t h e  dimensionless 

I variables used are those  given by (41) and (42). These are eas i ly  ob- 

/ tained from the  present dimensionless var iables  by multiplication by 

Fig,  13, t h e  asymptotic 

t h e  comparison t o  F* = 

behavior 

a. 

of &(T- - .w)  is shown, 
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