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ABSTRACT

A general method is presented for obtaining approximate analybtical
solutions for distributed parameter networks where the paramsters may
be functions of the spatial variable. By means of this technique, an
expllc1t approximate solubtion for the output of a rather general net-
work is presented. For those cases where exact separable soluvions ex-
ist the method yields the correct solutions.

INTRODUCTION

The distributed network considered in this paper is a fairly gen-
eral one, and characterized by the "transmission line" equations {1]

[2]

(X: t’) /aX

“3e ri(x,t) + £ 3i(x,t)/dt ' (1)
-3i(x,1t) /3%

ge(x,t) + ¢ de(x,t)/dt

nwou

For certain limiting cases general solutions of (1) are available,
e.g. high-frequency lines and submarine cables, where the governing
partial differential equations reduce to one of the standard types of
applied mathematics - the wave equation or the heat equation. Examples
of such solutions may be found in the references cited. For the full
equations (1) and where the termination is neither open circuited nor
short circuited, the boundary value problem is not separable, hence an
analytical solutlon is generally not available. Furthermore, in the
event the line parameters r, 4, g, c are nonconstant the difficulty is
compounded so that solutions for specific problems must be obtained
numerically either by analog or digital computer.

A general method has been developed for obtaining approximate an-
2lytical solutions for (1) where the parameters may be dependent upon
x but independent of time. By manipulating the differentic® equation
it will be shown that the boundary-value problem can be rédated to a
Sturm-Liouville system. The latter is then solved by means of the
Bubnov-Galerkin method to yield the current and voltage as functions of
x and t in terms of an infinite series, the coefficients of which are
obtainable from a system of linear algebraic equations. By truncating
the algebraic system approximations to any degree of precision may then
be obtained. For those cases where exact solutions ex1st the algebraic
system is easily solved in closed form. .

REDUCTION OF BOUNDARY-VALUE PROBLEM TO STURM-LIOUVILLE SYSTEM

Consider the first equation of (). Viewing it as a first-order
nonhomogeneous differential equation on the current with time as the
independent variable it is easily solved by standard techniques to
yield



ilx,t) = SXP(—rt/ﬂ)_fz exp(rT/4)de(x,T) /ox df'f G, exp(-rt/4) (2)

The coefficient C, may be a function of x. Although it is not
necessary to assume initial quiescent conditions for this method, as a
convenience in this study it will be assumed that e(x,0) and i(x,0) are
zero. Under this assumption C; vanishes and the formal solution for the
current becomes

1(x,t) = exp(-r(x)6/4x)) [ exp(r(x) 1/4(x)) ve(x, ) /oxdr (3)

Next substituting for the current from (3) into the second equa-
tion of (1) yields

—B/ax[exp(~r(x)t/2(xl)r exp(}(x)T/L(X)BG(x,T)/BXdT] g(x)e(x,t) (L)
+ c(x)3e(x,t)dt

which is an integro-partial-differential equation on the variable
e(x,t). Applying next the Laplace Transformation to (L) gives

d dE(x;s)/dx
dx s{{x) + r(x)

[g(x) + sc(x)] E (x58) -~ (5)

where £fe(x,t)] = _rgoexp(—st) e(x,t)dt = E(x;é) (3]

The problem has thus been reduced to the solution of the self-adjoint
differential equation (5). To prove that the original boundary value
problem is equivalent to a Sturm-Liouville system requires a brief dis-
cussion of the boundary conditions, as follows.

Reduction of Boundary Conditions

Consider the terminal end of a transmission line consisting of R,
L and C elements. The line voltage ana current at the end of the line,
x = b, are designated e(b,t) and i(b,t) respectively. Consider next an

.arbitrany path across the line in the termination circuit. t is easily
shown thatnthe following relationship is satisfied
e(b,t) = §k=1'[1jk/ck + RkIjk + LkIjk] (6)

where 1. ik is the current in the kB element of jth path; and j=1,2,...m,
where m is the number of such paths. Hence tnere are "m" equations (6).
Furthermore, summing currents at each junction supplies the requisite
additional number of equations required to reduce the system to a single
differential equation involving e(b,t) and i(b,t) only, viz.,

(Gn+idn+l/dtn+l+andn/dtn+....a Yi(b,t)=(BLd /dtn+Bn_1dn'l/+...Bo)e(b,t)
(7)

Combining (7) above with the first equation of (1) evaluated at x = b
gives -



(o DV e D) Be(b, 1) /ox = (2(b)+2(0)D) (B0 +....B,) e(b,t) (8)

where D = d/dt. Finally, applying the Laplace Transformation to (8) gives
for the appropriate boundary condition at x = b

-h(s)dE(b;s)/dx = E(b;s) ' (9)
where h(s) = [&n+lsn+l+ansn+..ao]/[z(b)ann*1+(r(b)an+£(b)Bn_l)sn (10)
*oeaor(D)B,]

At the sending end the most usual boundary condition is the specifica-
tion of the voltage, :

e(0,t) = £(%) (11)

the Laplace transformation of which is

E(0;s) = f(s) (12)

The boundary-velue problem consisting of (5),(9) and (12) may be identified
with a Sturm-Liouville eigenvalue problem *[L] and its solution, which can te
shown to exist and to be unique, expressed in terms of an expansion of the
eigenfunctions of the associated eigenvalue problem. However, there are rela-
tively few solutions available in terms of tabulated functions, and these cor-
respond to very special functions for the line parameters.”  In the following
sectl.n the Bubnov-Gzglerkin technique will be described, which will be employesc
to zeserate a convergent approximate -eigenfunction expansion with arbitrary

<

lirn. narameters.

The boundary-value problem is also of the Stumm-Iiouville type when the
boundary condition at x = O is similar to (9), i.e. h’(s)dE(0;s)/dx = E(03s),
and, of course, when the boundary condition at x = b is similar to (12), i.e.
E(b;s) = E(bjs) = T/(s).

" One nontrivial example would be, for instance, 4(x) = const., r(x) = const.,
g(x) = const., c(x) = cos 2x, the resulting solution for E(x;s) being an ex-
pansion in Mathieu functions.
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- A simple choice for A is S

SOLUTION BY THE BUBNOV-GALERKIN METHOD

Bubnov-Galerkin Method ,

The following is a brief outline of the technique; for a detailed
mathematical presentation the reader is referred to Mikhlin [5], and
numerous examples in the study of differential equations and continuum
mechanics may be found in Kantorovich and Krylov [6]. Consider a dif-

" ferential equation

Au = g (13)

where A is a differential operator, u the dependent variable and q a
nonhomogeneous term. The approximate solution is assumed to be of the
Torm

(n) -
u 2E=1pk@k (1k)
where the ¢ are eleme?tf of a complete set and p,. are coefficients.
It is nscessary that u\"/ satisfy the prescribed %oundary conditions.

The Bubnov-Galerkin method consists in equating to zero the scalar
products

fT(Au(n) - @ @ dr, k=1, 2....n
whére T is the domain of definition of u, and solving the resulting
linear algebraic simultaneous system for the coefficients, Pyt

Solution of the Network Problem
For the problem at hand, (5), (9), (12), it is conVenlent to in-
croduce .a new variable, u, such that

E=)\+u ’ (15)

where A is a term which satisfies the given boundary conditions; u,
therefore, satisfies homogeneous boundary conditions. After substi-
tuting (15) into (5), (9), (12), and in (5) carrying out the differen-
tiations and multiplying by (4s + r)® there results as the problem on
u ‘

Au = -AN ¢ (16)
hdu/dx + w = 0 at x =5 T (17
u =0 at x =0 I8 . (18)
s
where ?
= (4s+r)d2/dx® - (4's+r’)d/dx - (4s+r)3(g+cs) g; ‘ (19)

=F[1- x/(h - b)] y (20)

and a suitable collection of functions which are elemenbs of a set com-

- plete in (0,b) is

@, =x+ (h - b)x*/b(28 - b) , 'cpnzx(x-b)?n?jl- (21)
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- known [5] that p.

~—

Lt

It is easily verified that (20) satisfies (9) and (12) and that each o
of (21) satisfies (17) and (18).

As is customary, define the scalar product of two functions, v(x),
w(x) as

b -
(vyw) = [ vudx . (22)
Similarly the energy product is
(v,w] = [:2 w Av dx (23)

where A is an operator. In terms of these definitions the simultaneous
system of algebraic equations is given simply by

(™ _ 3, ¢l =0 k=1,2.n (2ly)
where

o C .

lc‘Pl + pgcpz + ... o] CP (25)

nn
The approximate solution is obtained by ?e%ecting a value of n, solving
for the coefficients p, and inverting ul™/ + A to obtain e(x,%).

0f great importance in applications is the output, e{b,t).* An
examination of the assumed solution for E(x;s), (15), (25), (21), shows
that the series terminates after the first term and that

E(bss) = A + p o (b;s) (26)
which yields, for the output,
e(b,t) = £[A + p @] (27)

"This last result is of importance as it is an explicit formula for the

output, for a fairly arbitrary network, in terms of known functions A
and ©  as given by (20) and (21). Because of the nature of the termin-
ation circuit h(s) is simply the ratio of two polynomials in s, the de-
gree of each of which depends upon the complexity of the termination.
Likewise, the coefficient p, is a ratio of polynomials in s. In gener-
al, the only nonpolynomial function of s which appears in (26) is the
input f(s). Therefore the inverse Laplace transform is not difficult
to obtain once the polynomials have been factored.

It is to be noted, however, that the coefficients, p, , are so
called "flexible" coefficients. The value of p obtained from a one
term approximation will differ somewhat from p_ lobtained from an ‘n’
term appraximatio?. Designate this latter coerficient pinj. It is

n) converges, i.e.

pl(n) o, and o, (V) > g (28)

A

% Vhen it is rather the current i(b,bt) that is desired, equation (3)
together with the solution for e(b,t) will provide the required result.
Alternatively, the entire problem may be fommulated in terms of i(x,t).



The power of the Bubnov-Galerkin algorithm lies not only in (28) but
also in that the solutions so constructed generally yield very close
uooroabma tions to the exact solution, even when the number of terms

ncluded in the approximate solution (25) is small [7], [8].

Various approximations will be exhibited for the solution to (5),

(9), (12). TFor a one term approximation

W) o5 Gy

1 1
where @ is given by (21). Substituting in (2L) gives
1
(), 0,1 = Due,]

" and utilizing (29) theres results

o ) = Do 1/ o 12
1 1 1

where Q | is the so-called "energy norm" defined by [m1[ = (o900

S*mllarly tne two term approximat 1on, given by

u(z) = pl(z)q)l + pg(z)(p

2

together with (2L) gives the simultaneous system
[u(z), qﬁ] = [x’¢31
w2, o 1 = Do,

from which it follows directly that

(29)

(o) - D:@ﬂ! =2 U’%][%:%] o () = fo, 1D ]-lo 1,0 ]

[ 17Tl (o0 o2 1L Gar @y ] ltpll leal®-Ty s 1ws 5 ]

In an entirely analagous mamner the coefficients for the nbl approxima-

u( ) p1< ) 1 :2( )CPQ o l:c cpk bR n

are given by
e 1? leen,d -oe Lo, @] Do lileg, ol - log,e]
0 (3 = o 0] Toal® -- Do 98] Do) [, 9] «oo Coneal
ERCRECHCR PR CHNTR R TN RIS TN U

gqliz [@2,¢1] ciesessen C@n,@lj
£¢E{¢bj iq?i‘ cheneanne [qhiq%]

(o, son] [asmy ooeveees ENE

(30)



It is clear that when it is possible to choose a complete set which is
orthogonal in energy, (30) degenerates into a noncoupled system and the
coefficients do not change from one approximation to the next, i.e.

pk(n) = oy = Dol / foef® ™

The problems for which this is possible are the "separable" ones; how-
ever, these are the exceptions rather than the rule.
Finally, the solution may be written

e(x,8) =1 1] + 2§=1£‘1[pk(n)wk1

% These are, of course, the Fourier coefficients.
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