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I ABSTRACT 

A gene rd  method i s  presented fo r  obtaining approximate ana ly t ica l  
solutions fo r  dis t r ibuted parameter networks where the paramsters nay 
be functions of the s p a t i a l  variable. By means of this technique, an 
expl ic i t  approximate solution fo r  the output of a rather  general net- 
work is presented, For those cases where exact separable aolutlons ex- 
i s t  the method yields  the correct solutions,  

1 

! 
-he(x,t)/ax = r i (x , t )  + A a i (x , t ) / a t  (1) 
-bi(x,t)/ax = ge(x, t) + c ae(x,t)/at  

I 
t For cer tain l imit ing cases general solutions of (1) are available, 

e.g. high-frequency l ines  and submarine cables, .where the governing 
' p a r t i a l  d i f f e ren t i a l  equations reduce t o  one of the standard types of 

applied mathexatics - the wave equation o r  the heat equation. Zxanples 
of such solutions may be found i n  the references c i ted .  For the fid.1 
equations (1) znd where the termination is neither open c i rcu i tea  nor 
short  circuited, the boundary' value problem is not separable, hence an 

j a.nai.Jtical solution i s  generally not available.  Furthermore, in the  
event the l i n e  parameters r, A, g, c a re  nonconstant the d i f f i cu l ty  is 
cozxpol.xzdec! so tha t  solutions for  specif ic  problems must be obtained 
nmer ica l ly  e i the r  by andog o r  digi t= computer. 

A general method has been developed f o r  obtaining approximate an- 
b a l y t i c a l  solutions f o r  (1) where the parameters may be dependent upon 

x but independent of time. By manipulating the differentic?. equation 
it %,ill be shown tha t  the boundary-value problem can be r a a t e d  t o  a 
Sb2ri-a-Liouville system. The l a t t e r  is then solved by means of the  
3zbnov-Galerkin method t o  yield the current and voltage as Lfunctions of 
x and t i n  terms of an i n f i n i t e  ser ies ,  the  coefficients o f  khich are 
obtainable from a system o f  l i nea r  algebraic equations. By truncating 
tbe algebraic system approximations t o  any degree of precision may then 
be obtained, For those  cases where exact solutions ex i s t  the algebraic 
system is  eas i ly  solved i n  closed form. 

REDUCTION OF BOUXDARY-VALUE PROBLEM TO STELM-LIOUVILLE SYSTEM 

Consider the first equation of (I). Viewing it as a f i r s t -order  
nonhomogeneous a f f e r e n t i a l  equation on the current with time as  the 
independent variable it is eas i ly  salved by standard techniques t o  
y i e ld  



1 

I i ( x , t )  = exp(-rt/a) ,r: exp(r~/a)ae(x,r)/ax + C~ exP(-rt/a) ( 2) 

! The coefficient C, may be a function of x. Although it is  not 
necessary t o  assume i r t i t i a l  quiescent conditions f o r  t h i s  method, as a 
convenience i n  t h i s  study it w i l l  be assumed tha t  e(x,0) and i(x,0) a re  
zero. Under this assumption C1 vanishes and the formal solution f o r  the 
current becomes 

Next subst i tut ing f o r  the current from ( 3 )  in to  the  second equa- 
t i o n  of (1) yields 

e (x ,~) /axdr]=~(x)e(x , t )  ( 4) 
+ c (x) ae(x, t )  a t  

rdhich i s  an integro-partial-differential equation on the  variable 
e(x, t )  . Applying next the Laplace Transformation t o  (4) gives 

a(x;s)/dx = [g(x) + sc(x)] E (x; s )  * . - 
d x  s$(x)  -t r (x)  

- 
where q e ( x ,  t )  ] z .c exp(-st) e(x, t )  d t  Etx; s) C31 

Tie problem has thus been reduced t o  t h e  solution of the  self-adjoint 
f i f fe rent ia l  equation (9. To prove t h a t  the or iginal  boundary value 
problen i s  equivalent t o  a Sturm-Liouville system requires a brief dis- 
cussion of the boundary conditions, as follows. 

Reduction of Boundary Conditions 
Consider the terminal end of a transmission l i n e  consisting of R, 

L and C elements. The l i n e  voltage ana current a t  t he  end of the  line, 
x = .b, are  designated e(b, t )  and i (b , t )  respectively. Consider next an 
a r5 i t r a ry  path across the l ine  i n  the termination c i r cu i t .  It i s  eas i ly  
sho.r;sn tha t  the following relationship is sa t i s f i ed  

n . . 
;(b,t) = L=1 [Ijk /Ck  + R ~ ; ~ ~  + LkIjkI ( 6)  

%hers  I jk i s  the current i n  the kth element of j th path; and j =1,2, . . .m, 
xhere m i s  the number of such paths. Hence mere a re  I'mn equations ( 6 ) .  
Furthermore, summing currents a t  each junction supplies the requisi te  
addi t ional  number of equations required t o  reduce the system t o  *a s ingle  
d i f fe rent ia l  equation involving e(b, t )  and i ( b  , t )  only, v i z  . , 



where D 5 d/dt. Finally,  applying the Laplace Transformation t o  (8) gives 
for the appropriate boundary condition a t  x = b 

n+l 
where h(s)  = [an+, sn+l*ornsn+. .no]/[a(b) BnS +( r (b)  pn+a(b) $n-1 Isn (10) 

A t  the sending end the most usual boundary condition i s  the  specifica- 
tion of the voltage, 

the Laplace transformation of which i s  

The bouridz:-y-v2~e problem consisting of (53,@) and (12) may be iden t i f i ed  
with a $urn-Liouville eigenvalue p~oblem St[4]  and i t s  solution, which can 'cf: 
shown t o  exiss a ~ c i  t o  be unique, expressed i n  terms of an expansion of the  
eigen?=ctior,s of the associated eigenvalue problem. However, there  a rc  r e k -  
t ively few so l i~ t ions  available i n  terms of tabulated functions, and these cor- 
respxd t o  very special  fbnctions f o r  the  l i n e  parameters.w I n  the f o l l o w i ~ g  
sect; .n the 3ubnov-Gderkin technique w i l l  be described, which w i l l  be employac 
t o  g; : t r a t  e a convergent approximate .eigenfunction expansion w i t h  a r b i t r a r y  
lL., ~2arameters. 

JL 

The boundary-value problem is also of the Sturm-Liouville type when the 
Soundary condition a t  x = 0 is similar t o  (9 ) ,  i. e. h'(s) d~(o;:i)/dx = E(o;s), 
and, of course, when the  boundary condition a t  x = b is s imi lar  t o  (12), i . e .  - 
~ ( b ;  s )  = ~ ( b ; s )  = f '(s) . 
>-L ,\ 8. 

One non t r iv i a l  example would be, f o r  instance, ,t(x) = const., r(x) = const. , 
g(x) 1 const., c(x) = cos 2x, the resul t ing solution f o r  ~(x; s) being an ex- 
pansion i n  Mathieu ~ c t i o n s .  

i 



SOLUTION BY THE BUBNOV-GALBEIN METHOD 

Bubnov-Galerkin Method 
The following i s  a br ief  outline of the  technique; f o r  a detai led 

msthematical presentation the reader i s  referred t o  fsdkhlin [f;], and 
numerous examples i n  the  study o f  d i f fe rent ia l  equations and continuum 
mechanics may be found i n  Kantorovich and Krylov [6], Consider a dif-  

1 
f e ren t i a l  equation 

Au = q 
i (13) 

where A i s  a d i f f e ren t i a l  operator, u the dependent variable and q a 
nonhomogeneous tern.  The a p p r o d a t e  solut ion i s  assumed t o  be of the 
fom 

.tdiere the % a r e  eleme t of a complete s e t  and p are  coefficients.  
PnY i It i s  necessary tha t  u satisf'y the prescribed oudary  conditions. 

The Bubnov-GaJ-erkin method consists i n  equating to  zero the sca la r  
products 

t where T i s  the domain of definit ion of u, and solving the resul t ing 

I ' l i n e a r  alge5raic simultaaeous system. f o r  the  coefficients, pk. 

Solution of the Network Problem 
For the  problem at  hand, (9, ( 9 ) ,  ( l2) ,  it i s  convenient t o  in- 

2roduce .a new variable, u, such tha t  

tchere h i s  a term which s a t i s f i e s  the given boundary conditions; u, 
therefore,  s a t i s f i e s  homogeneous boundary conditions. After substi- 
tu t ing  (15) i n t o  (9, (9) , (12), and i n  (9 carrying out .  the differen- 
t j z t i o n s  and multiplying by (AS + r)' there  results as the-problem on 

A simpLe choice f o r  A is . i .  

r! 
- :( 

h = f [.1- x/(h - b)) 
t i  

( 20) 

li 

i a sui table  col lect ion of functions w@ch a re  elements of a s e t  com- 
p l e t e  i n  (0,b) is 

' I  
ql = x + (h  - b)T/b(& - b) , % = x(x - b): n $1 ( 21) 

I 
;i 

i, 



It is eas i ly  ver i f ied  t h a t  (20) s a t i s f i e s  (9) and (12) end t h a t  each pl, 
of ( 21) s a t i s f i e s  (17) and (18) . 

A s  i s  cust~mary, define the scalar  product o f  two functions, v(x) , ! W(X> as 

( . Similarly the energyproduct i s  

I where A is an operator. In terms o f  these definit ions the simultaneous 
systen of algebraic equations is given simply by 

I where 

t me apprsxhate  so lu t ion  i s  obtained by ecting a value of n, solving 
f o r  the coefficients pk, and inverting u + h t o  obtain e(x, t ) .  

O f  great importance i n  applications i s  the output, e(b, t )  .* An 
exanina t ion of the assumed solution f o r  ~ ( x ;  s )  , (15) , ( 25) , (21) , shows 
t h a t  the se r i e s  terminates a f t e r  the f i r s t  term and tha t  

i which yields,  f o r  the  output, 

? 
. This l a s t  r e su l t  i s  of importance as it is an explicit  formula f o r  the 
output, f o r  a f a i r l y  a rb i t ra ry  network, i n  terns of known functions k 
and i", as given by (20) and (21). Because of the nature of the t emin-  
a t ion  c i r cu i t  h(s)  i s  simply the ra t io  of two polynomials i n  s, t h e  de- 
gree of each o f  which depands upon the complexity of the ternanation. 

I Likewise, the caef f ic ien t  p i s  a ra t io  o f  poZynomials i n  s. In gener- 

I 
a l ,  the only nonpolynomial $unction of s which appears i n  (26) is the 
input  ?(s). Therefore the inverse Laplace transform is not d i f f i c u l t  
to' obtain once the polynomials have been factored. 

! It i s  to  be noted, however, that  the coefficients, pk, are  so 
call'ed "flexible1t coefficients.  The value of p obtained fr3m a one 
term approximation w i l l  d i f f e r  somewhat from p 'obtained fron an Int 
t e r n  agproximatio . Designate this l a t t e r  ooe%fi.ficient p(nl .  1% i s  
h o r n  ] t h a t  p Vn) converges, i .e .  1 

1 

(n) + p,, and pk(n) -9, pk 

[ -3 When i t  is rather  the  current i ( b , t )  t h a t  i s  desircd, equation (3) 
together with the solution f ~ r  a(b,t) NiLL provide t he  required rasuit. 
Alternatively, t h s  en t i r e  problem nay be fonnulated i n  tams of i ( x , t ) .  



me power of the Bubnov-Galerkin algorithm l i e s  not only i n  (23) but 
a lso i n  tha t  the solutions so constructed generally y i e ld  very close 
a p p s o a ~ a t i o n s  t o  the exact solution, even when the number o f  terms 
included i n  the apgroximate solution (25) is  s m a l l  [7  J 5  [83. 

Various approximations will be exhibited fo r  the solution t o  ( 5 )  , 
( 9 )  ( 2 )  For a one term approximation 

where cp is given by ( 2 1 ) .  Substituting i n  (24) gives 
1 

I and u t i l i z ing  ( 29) there rssults 

where 1 cq 1 i s  the so-called "energy normU defined by 1% [ [%)%I. 
~ i m i l a r l p  tne t w o  t e r n  appro-ation, given by 

I togetber with (24) gives the s i ~ ~ t a n e o u s  systein 

C U ( ~ ) ,  'P,J = [',T21 

from which it follows d i r ec t ly  tha t  

I 1n.m en t i r e ly  analagous manner the coefficients f o r  the  nth approxina- 
t i o n  

I 
I are given by 



It is  c l ea r  tha t  when it is  possible t o  choose a complete s e t  which i s  
I oAthogonal i n  energy, (30) degenerates i n t o  a noncoupled systen and the 
t coeff icients  do not change from one approximation t o  the  next, i . e .  

I The problems f o r  which t h i s  i s  possible a re  the "separable" ones; how- 
ever, these a re  the exceptions rather  than the rule. 

Finally, the  solut ion may be wri t ten 

I 
F * These are, of course, the Fourier coefficients.  
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