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I Introduction

The question of periodic solutions for nonlinear hyperbolic partialv
differential equétions arises in a natural manner as one triés to consider
steady-state dynamical problems in physics and engineering. Up to now much
progress has been made in this particular area of research and we shall not
give a detailed account of it here except those of direct relevance to our
work. Recently, J. B. Keller and L. Ting [1] and M. Millman [2] have presented
a general perturbation method for finding the formal periodic solutions of a
large class of nonlinear hyperbolic partial differential equations. On the
other hand, the existence of periodic solutions of a very special class of
nonlinear hyperbolic partial differential equations has been proved by L. Cesari
[3] and P. H. Rabinowitz [L].

Thé main purposes of this paper are to present a method, which not only
does prodyce approximate 'periodic solutions of_a large class of nonlinear hyper-
bolic par%%al differential equations but also offers relative simpler criteria for
testing th;ilocal existence and uniqueness; for éstimating the rate of con-
vergence an&ithe truncation error, and to demonstrate how it can be applied in
practice by u;ing few concrete examples as those of [1]. To no-one's surprise,
our proposed,méthod here is one of the modified Newton's methods in nonlinear
functional analy;is [5],_[6]. This method not only suits our purposes but also
sometimes offers féw distinct coﬁputational advantages over the perturbation
method.

In Section IT, Newton's method and its modifications are briefly outlined.
The well-known Kantorovich's theorem [5], [6] for Newton's methods for nonlinear
functional equations in Banach spaces and its variation are stated without proof.

Moreover, several relevant known remarks are also given.
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A general formulation.of the application of the second modified Newton's

method to construct approximate periodic solufions of a class of nonlinear hyper-
bolic partial differential equations which possess time indépendent solutions ié.
given in Section III. There the sequence of approximate angular frequencies,
{og}, is obtained as a by-product.

In Sections IV and V, a simple nonlinear scalar wave eqUation.and a equation
governing the longitudinal Vibration of a string aré solved explicitly and compared
with the corresponding results in [1]. Finally, a brief discussion on the relative
advantages of the second modified Newton's method over the perturbation methed is

given in the last section.
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IT Newton's Method éqd its Variations
| Let B and.f% be two real Banach spaces,.and F a nonlinear operator which
maps an open set 2 of B, into B,. Let F have a zero and a continuous Fréchet
derivative F'(u) for u € Q. Starting with an initial approximate solution uy € Q
of .
F(u) = O. . (2.1)

Newton's method is the process of forming the sequence {un} such that

-1
Upy, =u - [F'(ug)] Fluy), n=0, 1, 2, 3, ... (2.2)

the first modified Newton's method is the process of forming the sequence

{u,} such that

~

s = 9 - [P Qo)) FGL), n=0, 1, 2, 3, ... (2.3)
where E; = Ugs
and the second modified Newton's method is the process of forming the sequence
{fy} such that

| fpm cfn-TF(tn), n=0,1,2, 3, . (2.1)
where @, ;Euo and T' is an linear operator close to [F'(ﬁo)]-l.

By the Kantorovichs theorem and other relevant theorems [5], [6], Newton's

'méﬁhod and igs variations‘not only do produce the approximate solution of(2.1),
buﬁ also yieldiqonclusions on the local existeice, uniqueness, rate of convergence
and error estim%%e. Hence these may apply where fixed point principles and implicit
functional theoreﬁs [5], [7] do not.
Theorem 1 (Kantorovich): Let

(1) the mapping F be defined, as previously, on Q and have a continuous

second Fréchet derivative in the sphere

S {u €nq:

lu - wol| <R < =}

. -1
(2) F’(uy) map onto and have an inverse I'p = [F'(ug)] 3
o o

3.




(3) |Iro Flwoll| < 9 3

(W) roF()|<k,ues.
Now, if h = J K'_<_ 3 ~ ' | (2.5)
and  Roro=[l-(L-o2n)% Kkt (2.6)
the equation (2.1) will have a solution u* € S to which both {uj} and {T,} are con-
vergent and [|u* - uof < ro. | (2.7)

Furthermore, if for h < %

and R<r=[L+(1-2n)% K (2.8)
or if for h =% (2.9)
and R < r, (2.10)
the solution u* is unique in S. |
The rate of convergence of Newton's method is characterized by
- wy < (2)“1_1 (2n)2 K%, n =0, i, 2, 3, e (2.11)

and that of the first modified Newton's method, for h < %, is characterized by
[|u* - '{In}[ <[1- (1-2h)1é]nf1 K2, n=0,1, 2, 3, oos ' (2.12)
Theorem 2: Let
- (1) the mapping F be defined as previously, on Q and have a continuous
second Fréchet. derivative in S;
(2) there exist a linear operator I' such that
It P/ (u,) - 1l <6 <1;
3) v 7|l < 75

L) |r P @) <X, u € s.
irh = IE 3 .1
Then if h Gy <% | | (2.13)

. Al A
and R > £, = [1 - (1-2h)%] (1-8) K , (2.1h)
the equation (2.1) will have a solution u¥ € S to which {fn} is convergent

and it is unique, if for




~ ~l ~
h<% R<?=[1+ (1-2h)"] (1-5) K , (2.15)

and for h =%, R<r. . (2.16)

Moreover, the rate of convergence of the second modified Newton's method, for

h < %, is characterized by

[[n*

3l < (1 - (1-6) [1-28782" k2, n =0, 1, 2, ... (2.17)

Remark 1: Newton's method applied to (2.1) is equivalent to the method of
successive approximations applied to the equation
| u=u- [F(u)]?* Flu), (2.18)

the first modified Newton's method applied to'(2.1) is equivalent to the method of
successive approximations applied to the equation W = W - [F'(To)* FQ), (2.19)
and the second modified Newton's method applied to (2.1) is equivalent to the
method of successive approximations applied to the equation

i =1-T Fa). | (2.20)
The essence of Newton's method and its Variétions is that instead of $olving a
given nonlinear equation, one solves a sequence of linearized local approximating
equations.,
Remark 2: The boundness of [Ty F(u,)| and ||y F'(u)|| (u € S) of theorem 1 and

It Flug)f| and ||r ¥ (uw)|| (u € 8) of theorem 2 is necessary for the existence and

the uniqueness of any local solution of (2.1).

Remark 3: The modified Newton's methods often are much easier to use than Newton's
method, because in applying the modified methods there is only one linear operator

to invert and there are infinitly many linear operators to invert in the original

method.
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III  Application of Modified New’gon‘s Methods to Obtain Periodic Solutions of

a Class oﬁ Nonlinear Hyperbolic Partial Differential Equations .

Newton's method has been applied to nonlinear elliptic partial differential
equations with some success by A. I. Koshelev [8] and D. S. Cohen [9]. In general
it‘ is difficult to apply Newton's method or any one of its variations to general
nonlinear hyperbolic partial differential equations. However, if only periodic
sections of a class of nonlinear hyperbolic partial differential equations are of
main concern, Newton's method or its variations may be used sometimes not only to
construct periodic solutions but alsc to provide conditions for their existence
and uniqueness. This is because the above problem can be considered as a boundary
value problem for hyperbolic equations 1n which the boundary conditions for space
variables is imposed and the requirement of periodicity in time can be interpreted
as: a boundary condition for the time variable. Here we are looking for classical
periodic solutions of a class of ﬁonlinear hyperbolic partial differential equations
which possess time independent solutions.

Let C, be the spacé of continuous real valued functions of r and
x= (%, Xy eee, XN) defined on the one dimensional torus D {0< %< Ly,

Li >0, 1 =1, 2, 4., N; 21 periodic in 7 = wt, where w is the unknown real angular
frequency} with bOﬁndary 8D and let D =Dy 6§ D. Cw(-ﬁ) is a Banach space with respect

to the norm [MHC = max _  |ylx, 7)|. Let C, be the space of continuous in-
(x, 1) €D -

finitely differentiable real valued functions of T and x defined on D. Tnen Cy C Gy

Let the Hilbert space H, be the completion of C, with respect to

lelly = Uzﬁ j’li.....jlnlq;(z, 2 dxd 'r]{2 and its inner product
® o Yo o ._ ,

be denoted by {, ). Then G cH,.




A nonlinear hyperbolic partial differential equation can be written as

P S SN SR T N

Flu(x, t)] = 0 (3.1)

LN

with the solution u subjected to some kind of boundary conditions on &§D. Here -

B NG

we let u, (x) be the time independent solution of (3.1). As a consequence of the

transformation T = wt. (3.1) becomes .
Flu(x, 7), 0] =0 (3.2)

which contains o explicitly and w, (x) becomes the solution of (3.2) for any

value of w. The selection of the proper method and of the proper initial approximate

solution u, are entirely determined by computational and physical considerations.

For simplicity in computation (Remark 3), we shall give up Newton's method here. |

Since we are mainly interested to study how other solutions bifurcate from u,, (x)

and from what values of w solutions split, it is reasonable to try u (_)_c_) or some

other function which is close to u, (gc_) as the initial éppro:dmation. Because
uy (x) itself is a honest solution of (3.2), trying uy (x) as uo will not lead to

any oth}gr solution. Hence the next reasonable‘ choice  for u, is the solution of the ~

nanind

linearizéd version of (3.2), i.e.
\ _ 3

A\

' uo (_J_c; T) = u-l (?E) + Q (2{_5 T) (3'3)
where & (_Jg, T) € C: is the general nontrivial solution of

{F [u, &), 0]} =0 | (3.14)

A D A ey

. \\
satisfying the corresponding homogeneous boundary conditions of (3.2) and més are

the values of o for the existence of 3. Next we adopt the second modified Newton's

AT T ST SR SERSReE SR S ¥

- method by setting I' = [F'(u;l, wy)]?, for it is much more easier to invert
Filu,, wy) than F"(uo, wg) - Also the selection of the second modified Newton's
method with this particular choice of ' gives us not only a method of successive
approximations for constructing u but also for w. | )
Now let Vo = Gpa - ﬁn; n=0,1,2,3, ... ' (3.5)

where {ty} € C:. From (2.4) and I' = [F'(u,, w,)]™ s we obtain a sequence of in-

T A A R S T TN T e 3R
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homogeneous linear equations.

(Fluy &5 0od} o == Mipy & 1), e, n=1,2, 3, ... (3.6)
where v (n =1, 2, 3, ...) satisfy the proper homogeneous boundary conditions.
The subscript "n" is inserted in w here to indicate that {wn} is considered as the
approximating sequence fof w. As a consequencé of our particular choice of I', the
homogeneous form of (3.6) has nontrivial solutions. The solvability condition of
- (3.6) in H, [10]«is that its right hand side must be orthogonal to all montrivial
solutions of the adjoint homégeneous form of (3.6).

Often wy, the values of w for which nontrivial solutions of (3.h4) exist, are
called eigenvalues and form a discrete set, for example
Oy = Ao (3.7)

If Ay 1s a simple eigenvalue, there is only one corresponding eigenfunction or

nontrivial solution ¢y (x, 7) and then

¢ (x, 1) =a cpk-(z, )3 - (3.8)

if Xy is a multiple eigenvalue with multiplicity o, there are o different correspond-

ing eigenfunctions ¢kn(§,“7), 1]= 1, 2, +vvs 0 and then
o : : )
g (x, 7) Eo P (s ) | - (3.9)
where a's are arbitrary constants.
Let the adjoint of (3.L) have eigenvalues \) and corresponding eigenfunctions
* * ’
Py Or @kn, M=1,2, eoey Tu
In the first case, the orthogonal condition

(‘Pf:y Flfn- (E: ), wply =0, n=1,2, 3, ... (3.10)

gives the expression of w, as a function of a, and in the 1attervcase, the orthogonal

conditions

Chie Thon (% )5 apl) = 0, (3.11)

n=l, 2, 3, 0.0"

MT=1, 2, ¢aesy ©
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lead to a system of o nonlinear homogeneous algebraic equations of ¢ + 1 unknouwn

w, and a.n, NM=1 2, eeey @ Which‘can be hopefully solved for a.n at,l<N<o

and oy as a function of ap at. If 0+ o, (3.11) will be a system of infinitely

many equations whose solution {arn} will make ||u,l|g - « unless only finite number
' ,

of {a.n} are non-zero.

Now let 31 =B, = C (D) and F a nonllnear operator Whlch maps an open subspace
C:(f)) of B into B,. Let F ha.ve a zero and a continuous second Fréchet derivative
o - )
in the sphere S {u € G (D): |u - uollc < R < »}. Then we have a theorem for the
)

existence of a solution ¥~ # uy € S of (3.2) such that Hu* -uy g is small.
: w

Theorem 3: Let there exist a bounded linear operator I
such that [T Flug, o )|l < J
w

and It ' (u,w)l, <=, wes.

If J and ||F’ (ugs wo) =~ T|c are contimious functions of [I@HC and both of them
w w

equal to zero as HQHC = 0, then for ||§>|[C > 0 but small enough, {fi;} converges
w w
uniformly to a solution u* € S of (3.2) such that u* # u, .

Proof: Since [T F'(ug, wy) - I|lg < [Tllg |F (ugs wo) - T*||g 5 from hypothesis
w w w
we can make the right hand side smaller than one by choosing Ilé[lc > 0 (or {aﬂ}) but
‘ ®

small enough. Hence the condition (2) of theorem is satisfied. Next, if
o ¥ (u, w)HC is bounded, we can always take a positive real number M large enough

such that I 7 (u, “’)“c <M (K < M)for u € S.

Upon rewriting the existence conditions (2.13) and (2.14) of theorem 2, we obtain
the inequality for the existence of solutions,

,3 < Min. {% (1-5)2 M*, R [(1-5) - % R M]}.

9.
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from the hypothesis, J can be made small enough to satisfy the above inequality

by choosing |[¢][c > O but small enough. Because of the norm in Cy {1,} converges
' ;

uniformly to a solution u® € S of (3.2). By our particular way of constructing

the approximate solution, it is obvious that u® # u, unless []@HG = 0. Q.E.D.
. w .

Remark lj: The uniform convergence of {ﬁn} implies the convergence of {w,}.

10.




IV A Nonlinear Scalar Wave Equation
As a simple example in application of the second modified Newton's method,
we shall consider the following two-dimensional nonlinear scalar wave equation,

utt—umc—f(u)=0 o<x<m : (L4.1)

o < p < o

vwhere f(u) is a infinitely Eréchet differentiable real functional such that

8 !

) . - |
£w) = 2 2£(0) w . W
v=1 :

We seek a solution of (L.l) satisfying the.si‘mple boundary condition

w(0, t) = ulw, t) =0 | (L.3)
and the perio&icity condition

u(x, t + 2m ™) = bu (x, t) (L.L)
'wh;re w :_ls the unknown angu_la: frequehcy of the solution. For convenience, we

introduce a new time scale. T = wt . Under this transformation, (L.1), (L.3)

and (Li.l) become

Flu, w) = wzu_r,r - U - f(u) =0, | ‘ (L.5)
w(0, 7) = ulm, 1) =0 | | | (L.6)
and ulx, v+ 2ﬂ) =ulx, 1) . (L.7)

The time independent solution of this problem is

~uw (x)=0. ' . (4.8)
oA A

k
If we restrict the domain of F to be Cwm(—ﬁ) s then F maps Cw into Ci'z for any
k > 2 and has infinitely many continuous Fréchet derivatives in C:(ﬁ). - The

first two of them are

MR SIS CNLS AP RT SOERIL
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..,_,-_,.,__....,_.-_,

F/(u, o) = o 2—% - 2—2}? - £'(uw) (L.9)
and. F'la) = - £°(u) . | (L4.10)

Hence from (3.3), (3.h), (3.6), (L4.8) and (4.9), we obtain

A~ 25 .
) A NAY 3%, _ %,
o 970 2 n—f'(O)Vn=-w2' n-1 n-t

+ 20y ) = - eina,w,) (1.11)

°art XS '
v (0, 1) = v (m, 7) = o - © (La2)
and v (x4 2m) = vy(x, T, n =.i, 2, 3, ..., " (L.13)
where v (x, 7) = (asinp 7+ beos p 1) sinqx ‘ (L.1k)
and w§ = p™2[¢® - £/(0)], (4.15)

vwhere (a, b) is a pair of arbitrary éonstants and (p, q) is a pair of integers
W:i;th the condition ¢® > £’(0) fér W, to be real. For simplicity we may choose
the origin of T - axis such that

uo(x, T) =asinpTsingx=23%. | -v (L.16)
Since (L.11), (L.12) and (L.13) form a self-adjoint system and w, is a simple

eigenvalue, the orthogonal condition (3.10) becomes

R

azun_]_ =l 32'\ - A
wﬁ = (3, .- % (&, —Sggfl + f(un_1)> n=1, 2, 3, .. (L.17):

By the method of generalized Green's function, the solutions of (}.11), (L.12)

and (b,..13) are

- T g(an_1; wn)

vn(x, 'r) =
217 11 :
g oo [ smmx (i) w) dxdr
=z, e 2 sin m x
e mE £70) - m (4.18)
. '
. 2 @ %,G; ‘fo sin 47 sin mxg(ﬁ\n_,,wn)dxd'r) sin 47 sin mx
™ 41 mer £0) - m® + wy £
£#p m#q |
T [eos 4t sinmeg(® )dxdr) cos 47 si
T+ cos 47 sinmxg(u T) cos AT sin mx
(‘J"o ‘ro g n—l;un
n‘_:l, 2, 3, reo 3
* ly oy, ,

12.
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.2 2 -z[ 3
w -, =~ p 32

where [ are arbitrary constants.
. 2
In particular, the first correction to w, can be obtained by simply using

(4.16) and (L.17). Hence

© 1
(s v*
£ )(O)a2+-2— z 1

= V—S”I,S,... v

) 2
of which the first term agrees exactly with the second correction to w, of the

perturbation mefhod of J. B. Keller and L. Ting [1] under the assumption of

. f(z)(O) = 0.-

To show the convergence of {ﬁn}, we Invoke Theorem 3 of which conditions

can be verified easily. Since

%—r f(V‘Fl ) (O)u\éllc ,

™M 8

v #(u,, wllg = Iv,ll ~and 177 (a5 w,) - F"lllcm=llv_

1
oy

from (4.16) and (4.18) they are continuous functions of HQHC = a and equal to
w
zero as Hé“c, = 0., Also
w
I'¥ (u, " © -
ITF” (u “anw S.”Tﬂgw”f (u)ch < @ uyE Cw

Hence by Theorem_B, {&n} converges uniformly for small enough a > O.

V Another Simple Example:
Now we consider another simple example,

p(x)utt - Tlu)ug, = 0, 0<x<L ' ' (5.1)

o< P < e

where T(gx) is a infinitely Fréchet differentiable real function of u such
that

fw) =3 21 gy ) (5.2)
. =0 . ’ -

v
We seek a solution of (5.1) satisfying the simple boundary condition
w(0; t) =0, u(l, t) =1L - (5.3)

13.
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and the periodicity' condition -

- g :
w(x, t+2md) = ulx, t) ' (5.4)
with w being the wkmnown angular frequency of the solution. Under the trans-

formation 7 = wb, (5-1), (5.3) and (5.L) become

Flu, o) = o®p(x)u, - Mu)u, =0, | | (5.5) .

w0, 1) =0, u(l, T) =1L S (5.6)
and

w(x, v+ 2m = ulx, 1) . | (5.7)

In this case, the time independent solution ig
w () = x (5.8)
- &, - '
Let the domain of F be Cw(D). Then F has infinitely many continuous Fréchet

derivatives in c: (D) arnd the first two are

d° 2 %u 3 '
. Fl(u, w) = 0p =— - T(w,) T/ (u, ) (5.9)
’ Y a2 ax
i
and
\ aa azu a .
\ V% A reo o V] .
"“'\.,F (u, ) 2T (ux) - T (u ) T3 o o . (5.10)

-From (3-3);(3.11), (3.6), (5.8) and (5 9), we obtain

W0 T2 nw Tl Tt ) :x“”"l = - gligasm) 5 (5.11)
v, (0, 'r) - v (L, 0 =0, | (5.12)
and v(x, T + 2m) = vn(x, T) n=1, 2, 3, ¢se (5.13)
with
& (e, ) =%+ (asinpr) X () % x B | (5.14)
md wf = phg - (5.19)

lh




where A is a .éimple eigenvalue of the problem

X" (x) () A X(x) =0, X(0)=2X(L) =0 o (5.16)
such that
Ph # 37y - \ - (5.17)

for any 1 # q and any integers j and p;
Xq(x) is the corresponding eigenfunction.

From the orghogonal condition (3.10), we get

2 Bzﬁn_,l -1 N azﬁn—l .
u)n = (Q} p(X) 372 Y <§: T(un_.]_x) 33 Y s n=1,2,3,----- (5.18)

and by the method of generalized Green's function, we obtain

v(x, 1) =T gy, o)
1 2T , “
_ =5 JL a(x, x’, 0) g(u.n_l, wy) dxdT
. o o

1l @ =21 L .
+ ;—Lgl[(‘fo J‘o a(x, x’, 2) gl (x5 1), wp] sin zfr'dx’dfr'> sin 47

2m L ' :
7+ O‘o "ro‘ &(x, x’, £) gliy 1 (x’, 77), o] cos 4r'ax’dr’) cos I.'r]

A : n=1, 2, 3, ... (5.19)

where G(x, x/«) satisfies

-2 2
: BzG(x, x’, o) | WGP(X)Q

ax® (1)

o(x, x’, @) = - %—— 8(x - x') , (5.20)

a(o, x’, @) = a(L, x’, a)=0.
In particular, the first correction to wi due to the nonlinearity is

© : 2
. . )\q sz"f %—\;- T(V)(l) J‘i"p(x) [Xq(x) f[Xé(x)]vdx joﬂsinv+2p7d7

(1)1 - I P ’
mp°TE1) [“o(x)[X (%) dx ' (5.21)
O —

which, in general, is nonzero for at least one T(V)(l) #0, v=2, by eoe &

15,
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|
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The convergence of {ﬁ} can be easily shown also. Since

HFF(U-O, wl)”Cm = ”vlllcw and

“F,(uo’ wo) - r—lucw ) ” V= 1% (\))(l)@ ) L T x xx Bx “

l by (5.19) they are continuous functions of HQHC o( a and equal to zero as |3/, =0
' . (0 v w

Furthermore,

I, @l < g loxe) T+ ) EE R <o me g

Hence by Theorem 3, {ﬁn} converges uniformly. for a > 0 small enough.

16.




VI Discussion

In this section we éhall make a brief comparison between the per-
turba;c,iOﬁ technique of J. B. Keller and L. Ting [1] and our method described in
previous sections. 'Since there is no exact periodic solutions available and rates
of convérgence are hard to come by, it is very difficult to discuss the relative
advantagenof these two methods for constructing the approximate periodic solutions.
However in computing ®, the perturbation method always gives zero contribution
o wf—aﬁ or @? in [1], the first correction to w%, while the second modified
Néwton's method often yields nonzero contribution. From the mechanism of these
two methods, the knowledge of ug or u 5, The non-trivial solution of the linear-
ized homogeneous equation, is needed to calculate w?-m% or o respectively;
the kmowledge of uy and (; or U and {j is needed to calculate - or & res-
pectively. Because a lot of tedious computation is needed to obtain §. or {
and other higher order approximate solutions in general, we may conclude that
the second modified Newton's method has often a distinet computational advan-~
tage over the perturbation method. Furthermore, it is rather easy to show
the convergence of the approximate solutions of the second modified Newton's
method, while to show the convergence of the perturbation series is often
difficult. It is to be ndted that our method applies equally well to a
system of inhomogeneous nonlinear hyperbolic partial differential equations.

Tt should be mentioned that J. Moser [11] has outlined a similar technique
for the construction of solutions of nonlinear differential equatioms. ' It
essentially consists of constructing a sequence of approximate solutions by using
Newton's method and proving the convergence by invoking Nash implicit functional

theorem [7].

17“

e



—

B—

e

10.

11.

References

J. B. Keller and L. Ting, "Periodic Vibrations of Systems Governed by

Nonlinear Partial Differential Equations," Comm. Pure Appl. Math., 19,
PP, -371-420, 1966.

M. Millman, "Perturbation Solutions of Some Nonlinear Boundary Value Problem,"
Blf‘urcatlon Theory and Nonlinear Eigenvalue Problems (Edited by J. B.
Keller and S. Antman), NYU Lecture Notes, pp. 327-3L6, 1968.

L. Cesari, "Periodic Solutions of Hyperbolic Partial Differential Equations,™

International Symp. Nonlinear Differential Fguations and Nonlinear Mechanics,
Acad. Press. N.Y., pp. 33-57, 1963.

P. H. Rabinowitz, "Periodic Solutions of Nonlinear Hyperbolic Partial Differen-
tial Equations," Comm. Pure Appl. Math., 20, pp. 1L45-205, 1967.

L. V. Kantorovich and G. P. Akilov, Functional Anglysis in Normed Spaces,
Pergamon Press, Oxford, 196L.

R. H. Moore, "Newton's Method and Variations," Nonlinear Integral Equations
(Edited by P. M. Anselone), University of Wisconsin Press, pp. 65-98, 196kL.

J. T. Schwartz, Nonlinear Functional Analysis, NYU Lecture Notes, 1965.

A. I. Koshelev, "Newton's Method and Generalized Solutions of Nonlinear Equations
of the Elliptic Type," Dokl. Akad. Nauk SSSR, 91, pp. 1263-1266, 1953.

D. S. Cohen, "Positive Solutions of a Class of Nonlinear Eigenvalue Problems,"
J. Math. Mech. 17, pp. 209-215, 1967.

L. Bers, F. John and M. Schechter, Partial Differential Equations, Interscience
Publishers, John Wiley & Sons, 1961.

J. Moser, "A New Technique for the Construction of Solutions of Nonlinear
Differential Equations," Proc. Nat. Acad. Sciences, 47, pp. 1821-1831, 1961.

18.



