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Abstract

This paper addresses the problem of frequency estimation for complex exponen-

tials, or cisoids, embedded in general Gaussian noise using a Bayesian approach. The

main contribution is that the a posteriori density of the frequencies of M complex ex-

ponentials in arbitrary Gaussian noise is derived. Contrary to previous research, the

density is derived for colored noise, without ignoring terms, and a valid prior density

is used to marginalize the phase and amplitudes of the signals. This results in the

a posteriori density which, when used for point estimation, significantly outperforms

the maximum likelihood estimator both for single cisoids in colored noise and closely

seperated cisoids in arbitrary noise. Along the way, a number of both useful and

interesting properties of the Bayesian technique are discovered.
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1 Introduction

The estimation of the frequencies of a number of sinusoids embedded in Gaussian noise

has intrigued researchers for many years. From the direction of arrival problem in radar

to the removal of cyclical components in time series, frequency estimation is entrenched as

an integral part of disciplines as diverse as biomedicine, economics and radar. The essence

of the problem is to determine, in some defined sense, the frequencies of multiple sinusoids

given a finite number of observations contaminated with additive noise.

The problem was first formulated by Slepian [16] for the continuous time model and

then Rife and Boorstyn [14] expanded on those results by deriving the maximum likelihood

(ML) estimates, as well as the Cramer-Rao bound, for discrete sequences. Since then, a

surge of research has occurred with the introduction of autoregressive modelling techniques

[17], eigenvector methods [8] and computationally efficient means of computing the ML

estimates [18].

More recently, there has been an interest in using a Bayesian approach [1] to solve the

parameter estimation problem. Kramer and Sorenson [91 have reported on the importance
of the Bayesian approach for dynamical state estimation and Bayesian techniques have

been used in the direction of arrival problem [13] to construct direction estimates in arbi-
trary, unknown noise though the marginalized estimates were not derived. The use of the

Bayesian approach for frequency estimation was first discussed by Jaynes [5] and then later

by Bretthrost [2] and most recently by Quinn [12]. The benefit of the Bayesian approach is

that the a posteriori density of the parameters given the observed data is derived and this

is used as the inferential apparatus. In addition to point estimation, confidence intervals

can be computed and new data can be easily incorporated in a fashion that is theoretically

sound. In contrast, the likelihood function, which is used in classical- estimation methods,

does not equate to a probability density function and therefore has limited inferential use.

An important feature of the Bayesian approach, and one of some debate, is the choice of

the prior density for the parameters. As pointed out by Jaynes [6], the prior density reflects

one's knowledge, or belief, about the parameters prior to observing the data and is not to

be construed as a relative frequency of occurrence. In fact, Cox [3] proved that degrees of

belief obey the same rules as probabilities and therefore are the driving force in scientific

inference. As such, the parameters may be determinisitic as long as we interpret probability

in it's proper context which results in what is known as strong Bayesian inference. When

nothing is known about the parameters in advance, a noninformative prior, constructed

using Jeffrey's invariance rule [7], is used which corresponds to complete ignorence. In
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most circumstances, this corresponds to a uniform prior which is flat over the parameter

space. In many cases, the prior is chosen based on intimate knowledge of the problem

at hand. For example, the prior knowledge of the phase and amplitude of a sinusoid are

usually modelled as a Uniform and Rayleigh density, respectively, for obvious reasons.

The paper proceeds as follows. In Section 2, the a posteriori density of the frequency

of a single cisoid embedded in general Gaussian noise is derived. This not only acquaints

the reader with the Bayesian methodology but also lays the groundwork for the multiple

frequency case. Using the dervived density, the point estimation for the frequency is dis-

cussed and a number of interesting properties are discovered. In Section 3, the a posteriori

density for multiple frequencies is derived. This was derived independently by Quinn [12]

though our two results are in different forms. Our density was derived in a recursive form

which is not only appealing from a computional standpoint but also is vital in our under-

standing of the point estimation of the frequencies. We discuss the point estimation of the

frequencies and consider pathological condition when two frequencies become arbitrarily

close. We consider both the MAP estimate, which is shown to theoretically not exist, as

well the MMSE estimate. In Section 4, we report on the simulations that were conducted.

Using a colored noise sequence, we show the improvement in estimation capabilities using

the Bayesian approach as compared to the maximum likelihood technique both for the

case of an isolated cisoid as well as for two closely seperated cisoids. Finally, we draw some

conclusions in Section 5 and suggest some further research.

2 BayesianEstimation of a Single Frequency

The problem that we are concerned with in this section can be formulated as follows. Let

d(t) denote a complex, stochastic process which can be decomposed as a sum of a harmonic
term and noise. The continuous waveform is written as

d(t) = pej(wtH) + n(t), (1)

where the parameters of the model, p, wand <jJ,are unknown quantities and n(t) is a

complex, zero mean, stationary Gaussian process whose real and imaginary parts are

independently and identically distributed. The continuous waveform is sampled at N

distinct points, tk, k = 0, . . . ,N - 1, which results in the discrete sequence

d(tk) = pej(wtkH) + n(tk)' k = 0, . . . ,N - 1. (2)
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Based on the discrete sequence, it is our goal to infer information concerning the true

value of w. In addition to the observed data, we have at our disposal prior information

concerning the parameters which will be denoted as I. The inferences concerning w may

take the form of a point estimate, a confidence interval or the complete probabilistic

description of w given the observed data and our prior information. In any case, we must

determine the a posteriori density of w given the samples, d(tk), k = 0,..., N - 1, and our

prior information, I. We can write (2) in matrix form as

d = pejcpa(w)+ n (3)

with

dT = [d(to), d(td, ..., d(tN-dJ (4)

and

a(w)T = [ejwto, ejwt\ ..., ejwtN-l]. (5)

When viewed as a function of w, a(w) is commonly referred to as the signal manifold
and is a one dimensional continuum within eN, complex N-space. The noise, n, is a

complex, zero mean random vector with the real and imaginary parts being independently
Gaussian distributed, both having identical covariance structure, R, which is assumed
known and included in our prior knowledge, I. In addition, the matrix R is assumed to

be nonsingular.

Our interest is in determining f(wld, 1), the a posteriori density of w given the data
and our prior information, which can then be used for inference concerning w. To deter-

mine f(wld,1) we must begin with the joint conditional density of p, wand 4>,and then
marginalize with respect to the unwanted, nuisance parameters. That is, we wish to first
determine

f( ""
I
d I ) = f(dlp,w,4>,1)f(p,w,4>I1) (6)

p,w,~ , f(dl1)

and then integrate out the nuisance parameters, p and 4>.Since the term f(dl1) in (6) is
merely a normalization factor, we can rewrite (6) as

f(p, w, 4>ld,I) ex f( dip, w, 4>,1) f(p, w, 4>11) (7)

where A exB translates to A is proportional to B. When the data is held constant and the

model parameters are allowed to vary, f( dip, w, 4>,1) is called the likelihood function. The
second term, f(p,w,4>I1), is the a priori distribution of our model parameters and will be

called the prior for simplicity. This represents our state of knowledge prior to observing
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the data. Given our assumed noise distribution, the likelihood function can be written as

[4]

f(dlp,w,4>,I) exexp[-!(d - peNa(w))HR-l(d - peNa(w))].
2~"

This can be written in a more convenient form (See Appendix A) as

(8)

1
f(dlp, w, 4>,I) exexp[--p2a(w)HR -la(w)] exp[pldHR -1 a(w) Icos(4)+ a(w))]2 (9)

where
-1 S'(dHR-la(w))

a(w) = tan [m(dHR-la(w))] (10)

and m(x) and S'(x) correspond to the real and imaginary parts of the complex argument,

x, respectively.

To marginalize the conditional density function, we must integrate out the nuisance

parameters, p and 4>. Namely,

f(wld, I) ex i hf(dlp, w, 4>,I) f(p, w, 4>II)d4>dp.
(11)

If we assume that p, 4>and ware independent, then we can write

f(wld,I) ex f(wlI) i f(plI) h f(dlp,w,4>,I) f(4)II)d1>dp.
(12)

The inner integral will he referred to as the phaseless likelihood function,

L(w,p) = h f(dlp,w,4>,I) f(4)II)d4>.
(13)

In order to perform the integration in (13), the prior density of 1>given our a priori

information must be chosen. In most communication systems, a reference phase is used

and a distribution is presumed centered at the reference phase. In a passive system, such

as radar, the only realistic choice is a noninformative density. In the derivations that follow

we will use a non informative density which, in this case, is the uniform distribution defined

over the interval [0,271"].Using the uniform prior, the phaseless likelihood is

1
211" 1

L(w,p) ex G(w,p) -exp[pldHR-1a(w)lcos(4> + a(w))]d4>,
0 271"

(14)

where G(w,p) represents all the terms not depending on 4>. The integral in (14) is recog-

nized as the modified Bessel function of the first kind, zero'th order,

d f

1
21[" 1

Io(x) e - exp[x cos 4>]d4>.
0 271"

(15)

5



---

Hence, we can write the phaseless likelihood more compactly as
1

L(w, p) ex exp[ --p2a(w )HR -la(w) ]Io(pldHR -la(w) I).2

At this point, it is worthwhile to note that if we were interested in infering information

about both the amplitude and the frequency of the observed waveform, we would multiply

the phaseless likelihood by our prior densities for p and wand normalize to obtain the

joint a posteriori density.

To perform the second integration in (12), we must decide on a prior to use for the

amplitude of the signal. The Rayleigh density is a judicious choice since, combined with

the uniform phase distribution, it results in a normally distributed complex amplitude for
the harmonic. We will thus write

(16)

f(plI) = ~e-6(J2 .s
(17)

Letting

S(w) = a(w)HR-la(w) (18)

and

T(w) = IdHR-la(w)l, (19)
we can write

(')() i!.- 1

f(wld, I) ex f(wlI) 10 pe- 2 (S(w)+<1,2)Io(pT(w))dp.

Using the Integral formula (See Appendix B)

1
00 1 2 1 62

xe-"2az Io(bx)dx = -e~,0 a

(20)

(21)

we can write
1 1 T(W)2.

f (wid, I) ex:f (w11)(S (w) + 2" r 1exp [- S () 1].(Js 2 w + ~a,

ITwe assume that the probability of one frequency occurring does not outweight any other

frequency, we may write the conditional density of w given the data and our a priori
information as

(22)

1 -1 1 T(w)2
f (wId,1) ex (S (w) + 2") exp [- S () 1].(Js 2 w + ~a,

It is informative to investigate the two limiting forms of (23). The first case is when

(Js --+o. Normalizing (23), we may write

(
2
S( ) 1)

-1
[
1 a,2T(w)2

]
d I - (Js W + exp 2a,2S(w)+1

f(wl , ) - ~~?r((Js2S(W)+ 1)-1 exp[~ a~2D~).2.1dw.

(23)

(24)
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The function,

g(w,Us) = (Us2S(W)+ It1 exp[~ - ~s:;~~),2~], (25)

is a continuous function of won the closed interval, [0, 2?T],for all Us in [0,00). In addition,

g (w, us) is dominated by the function exp [!~(~)2] and converges to the constant function,
equal to unity, on [0,2?T] as Us -t o. Combined, these facts imply that we may make use

of Lebesgue's convergence theorem [15] to show

lim g (w) = 2 liIna. -+ 0 g(w) .
u. -+ 0 fg1r g(w)dw fo 1rliIna. -+ 0 g(w)dw

(26)

This allows us to state that
1

lim f(wJd, I) = r21rdwu. -+ 0 Jo
(27)

or

lim f(wld,1) = ~.
U. -+ 0 2?T

(28)

Thus, the limiting form, as Us -t 0, of the a posteriori distribution is the uniform distribu-

tion over the interval [0,2?T]. This is intuitively pleasing since as Us -t 0, the observations

do not contain any signal information and hence, our best bet is to rely on our prior in-

formation. The Bayesian approach is effectively letting us know that the observations are

of no help in this case.

It is also interesting to investigate the form of (23) when Us -t 00. This is the case

when our prior information is quite vague and a non informative prior is appropriate. In

that case,
-1 1 T(W)2

f(wld,1) <XS(w) exp[Z S(w) I.

The term within the exponential,

(29)

T(W)2 - IdHR-la(w)12
S(w) - a(w)HR-la(w)'

(30)

1 1
is the squared length of the vector R-2d projected onto the vector a(w) = R-2a(w). This
is the output of a correlation receiver where the data has been pre-whitened to remove
the noise correlations. This term will be maximal when the whitened data looks most

like the matching signal, a(w). Thus, the exponential term contributes to the a posterior
distribution the degree to which the data is fit by a particular harmonic. The additional

term, S(w)-l, is a biasing term which is largest when the length of the vector R-!a(w) is
minimized.
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To understand the effect of the term, S(wtl, consider evaluating the a posteriori

probability at two different frequencies, WI and W2. Suppose that S(wd < S(W2)so that
the vector, a(wd is smaller, in length, than a(w2)' This implies that the energy of a complex
sinusoid at WIwould be smaller than one at W2after they have been pre-whitened. For the

a posteriori probabilities to be equal, it is required that

T(W2)2 = T(WI)2 + 2In[S(w2)]
S(W2) S(wd S(wd

(31)

and thus, to achieve the same a posteriori probability, the data must have a higher degree

of correlation with a harmonic at W2than at WI' This is because the whitening filter will

also distort the complex sinusoid and, hence, the observed signal to noise ratio will be lower

if the actual harmonic is at WI compared to if it is at W2' The Bayesian approach takes

into account the fact that certain frequencies are favored by the pre-whitening process.

Equipped with the a posteriori density of w, we are in a position to extract information

concerning it's true value. By far, the most popular piece of information is the point

estimate of w. Based on an optimality criteria, an w is chosen to minimize an associated

cost, or risk, function. Of course, there are many alternatives to the point estimate, such

as a confidence interval, and some information is lost when only the "best" estimate of w is

retained. The maximum a posteriori (MAP) estimate is a popular point estimator which
is defined as

WMAPclefarg {mJ-X f(Wld, 1) } . (32)

As seen, from (23), the a posteriori density of w is a complicated expression, particularly

for a general noise correlation matrix, and a closed form solution for the MAP estimate

will not exist. In addition, the MAP estimate requires prior knowledge in the form of as.

Of course, by letting as ~ 00, we can plead complete ignorence about the parameters

before observing the data. In the case of spherically white noise, R = a~I, the a posteriori
density can be written as

1 IdHa(w)12 ].
f(wld,I) exeXP[2Na;;2 + as 2

(33)

and due to the monotonicity of the natural logarithm, the MAP estimate can be written
as

WMAP = arg {mJ-XIdHa(w)I}. (34)

An interesting observation, based on (34), is that, for the spherical white noise case,

our prior information concerning p has no bearing on our estimate for w. In fact, a more
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profound statement is that no matter what prior distribution is assumed for the amplitude

of the signal, we will obtain the same result. This can be proved as follows. For the case

of spherically white noise, we may rewr}te (20) as

1
p2

f(wld,I) oc exp[--Na~2]Io(pT(w))f(pII)dp.
p 2

(35)

The modified Bessel function is a convex function, symmetric about the origin. This

implies that

Io(pT(wd) ~ Io(pT(w2)) \:IT(wd ~ T(W2) and \:Ip. (36)

Multiplying both sides of the inequality in (36) by a non-negative function and integrating

over p does not change the statement. That is, if g(p) ~ 0 \:I p then

i g(p)Io(pT(w!))dp ~ i g(p)Io(pT(w2))dp
\:IT(wd ~ T(W2). (37)

Thus maximizing

H(w) = ig(p)Io(pT(w))dp

is equivalent to maximizing T(w). In our case

(38)

p2
g(p) = eXP[-2Na~2]f(pII) ~0

\:Ip (39)

and thus, regardless of our prior density of p, the MAP estimate for w will always corre-

spond to the value of w that maximizes IdHa(w)l. Intuitively, this is due to the fact that
our observed amplitude distribution is independent and identical for each w under consid-
eration. Thus, once a sample p has been generated, the underlying distribution does not
matter in terms of our decision. The only consideration is the the length of the projection

of the data vector onto the signal manifold. It is also interesting to note that, since phase
was uniformly integrated out, the distance metric between the observed vector and the

signal manifold is no longer pertinent but rather the closeness between the observed vector

space and the hypothesized subspace, which is spanned by a(w).

Another popular point estimate is the minimal mean square error estimate (MMSE)
which is synonymous with the conditional expectation of w. That is

WMMSE = E(wld, 1). (40)

Similar to the MAP estimator, a closed form solution (40) is not feasible though it can be
easily computed numerically. The MMSE estimate will coincide with the MAP estimate

when the a posteriori density of w is symmetric about it's maximal value.
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In addition to the two Bayesian point estimators, a very popular approach to estimating

the frequency of the complex exponential is the maximum likelihood (ML) technique,

which is based on the philosophy: "Let the data speak for themselves." Since there is no

marginalization, one is forced to solve for all the model parameters at once though in some

cases, such as ours, the parameters can be solved for in succession. The ML estimator for

frequency can be written as

IdHR-la(w)1 .
WML = argmwaxa(w)HR-la(w)

(41)

Under the assumption that R = a~I, the ML estimate becomes

WML = argmaxldHa(w)1w (42)

and it can be seen that the ML and the MAP estimates are equivalent and that they are

both equivalent to a matched filtering operation on the data. It can be easily shown that,

the sufficient statistic, IdHa( w) I is equivalent to the standard periodogram, properly zero

padded, and thus, for a single complex exponential in white spherical noise, the peak of

the periodogram is an optimal point estimate for w.

3 Multiple Frequency Estimation

For the case of more than one complex exponential, the problem is inherently more difficult

to solve. The data model used in (2) becomes
M

d(tk) = L piej(witdt/;;) + n(tk),
i=l

k = 0, . . . ,N - 1 (43)

where M is the number of complex exponentials, which is assumed known and Wi i= Wj \j i i=

j. We can write (43) in matrix form by using the notation of the previous section along
with the following. Let PM, WMand 4JMdenote the M x 1 parameter vectors such that

the i'th element is the amplitude, frequency and phase of the i'th complex exponential,

respectively. Using this notation, PM-l would be the (M - 1) x 1 vector which contains
all of the amplitudes of the complex exponentials except the M'th. In addition, define the
matrices

A(WM) = [a(wd: ... :a(wM)] (44)

and

s = [plei4'>l,...,PMeNMIT, (45)
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so that we may write (43) as

d = A(WM)S+ n. (46)

It is common to refer to A(WM) as}he steering matrix and, as before, S is modeled as
having a density corresponding to a zero mean, complex Gaussian random vector which

represents the phase and the amplitudes of the complex exponentials.

The likelihood function of the data given our parameters is written as

f(dIPM,WM, <PM,1) ex exp[-!(d - A(WM)S)HR-1(d - A(WM)S)]2 (47)

and we must integrate out the nuisance parameters, PM and <PM. To avoid cumbersome

notation, let us define

SM(Wi,Wj) = a(wi)HR-1a(wj) (48)

and

TM(Wd = a(wi)HR-ld. (49)

Ignoring terms not depending on the parameters, we may write

M. 1 MM. .
f(dIPM, WM,<PM,!) ex exp[L pkm(e-J'PkTM(Wk)) - - L L PkPle-J<PkeJ<f>ISM(Wk,WI)]. (50)2k=l k=ll=l

The second term within the exponential of (50) can be written as

MM M MM

L L PkPle-i<f>kei<f>ISM(wk,wz) = L P~SM(Wk, Wk) + L L PkPle~i<f>kej<f>ISM(Wk, wz). (51)
k=ll=l k=l k=ll=l

kj;1

We can use the fact (See Appendix C),

M M M k-1

L L (3(k, l) = L L[(3(k, l) + (3(l,k)],
k=ll=l k=ll=l

kj;1

(52)

by noting that in our case (3(k,l) = (3*(l,k) to write the second term in (51) as

M M M k-1

LL PkPle-j<f>kei<f>ISM(Wk,Wz)= 2 LPkm(e-i<f>k LPlei<f>ISM(wk,Wz)).
k=ll=l k=l 1=1

kj;1

(53)
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Inserting (53) in (51) and the result into (50), we obtain

1 M
f(dIPM,WM, <PM,I) ex exp[-- L P~SM(Wk,Wk)]

2 k=1
M k-l

X exp[L Pk!R(e-iePk(TM(Wk) - L PleN>ISM(Wk,Wz)))].
k=1 1=1

(54)

At this point, we must integrate out the nuisance parameters. We will make use of

the same priors as in Section 2 and we will allow a ~ ---t 00 so that our prior information

represents complete ignorance about both the phase and the amplitude of the complex ex-

ponentials. In addition, this noninformative prior naturally assumes the most conservative

posture that the signals are incoherent. The fact that the signals might be coherent does

not bother us since this prior merely represents what we know about the signals, prior to

observing the data.

It should be noted that the route we proceed down to marginalize the parameters differs

significantly from previous work [2,10]. In those researchers' work, the parameters were

marginalized using a noninformative prior after the basis functions, which in our case are

cisoids, were orthogonalized. This is not only invalid, since the prior information pertains

to the original signals, not the orthogonalized ones, but also leads to point estimates

that are equivalent to the maximum likelihood estimates. To properly marginalize, the

Jacobian of the orthogonalizing transformation needs to be incorporated into the prior

before integration. As we will see shortly, the choice of prior is significant in terms of the

resulting marginalized density.

To begin, we integrate out the phase and amplitude for the M'th cisoid. After some

tedious algebra (See Appendix D), we obtain the result

1

f( dlpM-l, WM,<PM-I,!) ex S (M WM,WM

1 IT (w ) 12 1 M-l

X exp[- ( M )] exp[-- L PkSM-l(Wk,Wk)]2 SM WM,WM 2 k=1
M-l k-l

X exp[ L Pk!R(e-N>I:(TM-l(Wk) - L PleicPISM-l(Wk,Wz)))]
k=1 1=1

(55)

where we have introduced the notation

SM-l(Wk,WI) = SM(Wk,WI) - SM(Wk,WM)SM(WM,Wz)
SM(WM,WM)

(56)
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and
SM(Wk,WM)

TM-1(Wk) = TM(Wk) - TM(WM)SM(WM,WM' . (57)

Comparing (55) to (54), it is apparent that a recursive relationship exists and that,

assuming no prior knowledge concerning the frequencies, we may write the a posteriori

density of W as

( I )
'

TI

M

( )
-1

[
1 ITi(Wi)12

]
f WM d, I <Xi=l Si Wi,Wi exp 2"Si(Wi, Wi) .

The terms, Si(Wi,Wi) and Ti(wd in (58) are defined recursively for i = 1,...,M - 1 as

(58)

Si(Wi,Wj) = Si+1(Wi,Wj)- SH1(Wi,Wi+1)Si+1(Wi+1,Wj)
SH1 (Wi+1, wHd

(59)

and

( ) ( ) ( )
SH1(Wi,WHd

Ti Wi = TH1 Wi - Ti+1 Wi+1 .

SH1 (Wi+1, Wi+1

with SM(Wi,Wj) and TM(Wi) defined in (48) and (49), respectively.
These expressions seem complicated and are quite difficult to interpret. To simplify

matters, we must first introduce some notation. If x and yare N x 1 complex vectors and
B is an N x N, square, complex matrix then let

(60)

def H B< x, Y >B = X y. (61)

If B is positive semi-definite, then (61) satisfies all the properties of an inner product [11]
and we can introduce a norm, induced by the inner product which is denoted as

IIxllB =< x,x >B, (62)

as well as make use of concepts such as orthogonality, projection operators and so forth.

Two vectors, x and y, are said to be conjugate directions, with respect to B, if < x, y >B=

O. Note that conjugacy is a generalization of orthogonality. Since R -1 is hermitian with

non-negative eigenvalues, it is positive semi-definite and we may use the above notation.

We now prove, by induction, the following:

Si(Wi,Wj) =< P;a(Wi),P;a(Wj) >R-l (63)

and

1i(Wi)=< P;a(wd,d >R-l . (64)
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where pf, i = 1,' . . ,M, is the projection operator, defined under R -1, onto the conjugate
subspace spanned by {a(wj)}, j = i + 1,..., M, with p~ = I, the identity operator. That
IS

< a(wj),ptx >R-l= 0 i=1,...,M-1 J' = i + 1,... ,M. (65)

For i = M, both (63) and (64) are true by definition. We assume that they are true
for i = k + 1 and try to prove them true for i = k where 0 ::; k < M. For (63), we can use
(59) and the inductive hypothesis to write

Sk(Wk,Wj) =< pt+1a(wk),pt+1a(wj) >R-l

- < Pf+1a(wk),Pfr1a(wk+d >R-l< Pf+1a(wk+1),Pf+1a(wj) >R-l
IIPfrl a( Wk+1)Ilk-l

(66)

which can be written as

.1..1 .1 < Pf+1a(wk+1),Pf+1a(wj) >R-l
Sk(Wk,Wj) =< Pk+la(Wk),Pk+1a(Wj)-Pk+1a(Wk+d IIP.1 ()w >R-l.k+1a Wk+1 R-l

(67)

Noting that the term on the right side of the inner product in (67) is Pf+1a(wj) orthogo-

nalized with respect to Pf+1 a(wk+1)' we can write

.1
( )

.1
( ) < Pt+1a(wk+1),Pt+1a(wj) >R-l .1 .1

( )
Pk+1a Wj - Pk+1a Wk+1 11-0.1 ()W = P a(wk+l)Pk+1a Wjk+la Wk+l R-l

(68)

where P;-(wk+d is the projection operator onto the subspace conjugate to a(wk+d. It is
obvious that

P;-(Wk+dPt+1 = pt (69)
and thus

Sk(Wk,Wj) =< pt+1a(wk),pta(wj) >R-l (70)

which is equivalent to

Sk(Wk,Wj) =< pta(wk),pta(wj) >R-l . (71)

This result implies that (63) holds for all k = 1,"', M. Of interest to us is the special
case when k = j and we have

Sk(Wk,Wk) = IIPta(wk) Ilk-l (72)
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Likewise for (64), we can write

Tk(Wk) =< ptt-la(Wk)' d >R-l

< pt+1a(Wk'+1), d >R-l< pt+1a(Wk)' pt+1 a(WHl) >R-l

- IIPF+1a(wHdllk-l

which can be written

(73)

(
1..

( )
1..

( )
< Pf+la(wk+1),Pf+1a(wk) >R-l (

Tk Wk) =< Pk+1a Wk - PHla WHI IIP1.. ()w ,d >R-l . 74)k+la Wk+l R-l

As in (68), the term on the right side of the inner product in (74) is Pt+1a(wk) orthogo-

nalized with respect to Pt+1a(wHd so that we may write

Tk(Wk) =< pta(wk), d >R-l . (75)

which implies that (64) holds for all k = 1,... ,M.
As a result of (63) and (64), we can write the a posteriori density of W III a more

convenient form as
M

f(WMld,I) ex II 1.. 1 exp[! 1 < Pfa(wi),d >R-l 12
i=lIIP~a(w;)II~-1 2 1I-nI_f..\112 ]

(76)

and for the special case when M = 1, it can be seen that (76) reduces to (29). A similar
result was independently derived by Quinn [12] though in a form the does not illustrate

the recursive nature of the density.

Given the a posteriori density, we can use it to extract the desired information concern-

ing WM. Concentrating on the point estimation of WM, the MAP or the MMSE estimate

may be used. In either case, an analytical solution is not possible so the estimates must

be constructed numerically. The MAP estimate is the value of WM that maximizes (76).

Theoretically, the MAP estimate does not exist because the density has an unbounded

derivative as two frequencies become arbitrarily close. In practice, the density can be

evaluated on a discrete grid in the parameter space and this problem can be somewhat

alleviated. Taking the logarithm of (76), we have

A clef

{

~ I < Pfa(wi),d >R-l 12
(II

1.. 2

}WMMAP - arg ~axL..- IIP1.. ( ')112 - 2ln Pi a(wdIiR-l) .M i=l i a Wt R-l
(77)

Recall that the maximum likelihood estimate is

A clef

{

M
I
< p1.. ( )

WMML = arg ~~L i ~ Wi ,d >R-l 12 }i=l IIPi a(wi)lIk-l
(78)
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which corresponds to finding the best fitting subspace to the data. The MAP and the ML

estimates are intimitely related, the only difference being the penalty term, in (77),
M

P(WM) = 22:ln(IIPfa(wdllit-l)
i=I

which is a biasing term that takes into account the coloration of the noise as well as the

effect of orthogonalization. As was the case with one complex exponential, frequencies that

are close to the dominant noise directions are penalized less to account for their inherently

poorer SNR after pre-whitening. If the noise is spherically white, then no frequency has

an advantage over another due to the noise.

Contrary to the case of one cisoid, there is a second penalty effect which arises due to

the natural orthogonalizing procedure that results from marginalizing the parameters. To

understand this effect, consider the case of evaluating the MAP estimate for M = 2 in

spherically white noise. The first term in (77), equivalent to the ML estimator, wants to

choose the WI and W2that best fits the data. The penalty term depends only on WI and is

proportional to the length of a(wd after it has been projected onto the subspace which is

orthogonal to a(w2). The smaller the length of that vector, the less penalty that is applied
to the overall cost function. The reason for this is that if there truly were two complex

exponentials at WI and W2then, by virtue of orthogonalizing a(wd with respect to a(w2)'

the only data that is available to fit a(wl) is that portion of d which is orthogonal to a(w2).

Since, for closely spaced frequencies, a substantial amount of d which is due to a(wd is

unavailable for it's use, the Bayesian approach accounts for this via the penalty term. The

less data we have, the less we have to fit the data. The Bayesian approach accounts for

the lower SNR, due to the orthogonalization process, and thus (77) can be viewed as a

generalized subspace fitting method.

One drawback of the penalty factor is that it tends to dominate the density when two

frequencies are hypothesized very close together. This affects the estimates greatly when

only the peak of the density is used for point estimates. The MMSE estimate is somewhat

immune to this effect since an integration over the parameter space is used to form the

estimate. As mentioned previously, the MAP estimate does not truly exist due to the

unbounded derivative as two frequencies get close.

This penalty effect was also discussed in [12] though it was interpreted as a parsi-

monious model term which under severe conditions (i.e., low SNR or closely seperated

frequencies) would serve as an indication of over-parameterization. Of course, this is a

reasonable explanation when the density is evaluated on a discrete grid though the condi-

tions when the penalty term begins to dominate depends on the grid spacing, which is an

(79)
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undesirable feature. All in all, the MAP estimate has limited inferential capability using

the marginalized density. Of course, this opens the door for future research to investigate

this penalty term and to improve our model hypothesis to account for the case when the

model degrades to on~ of lower dimension.

It should be noted that if the cisoids were orthogonal to begin with ( i.e., widely spaced

frequencies and/or large data records) then the MAP and the ML are equivalent and, in the

case of spherically white noise, they both correspond to finding the M dominant peaks in

the periodogram. This helps explain the widespread use of the periodogram for frequency

estimation. We have neglected to discuss the MMSE estimate, not because of it's lack of

importance, but rather because, in general terms, it is difficult to say much. In practice,

it turns out that the MMSE estimator performs very well and deserves it's title as the
minimum variance estimator.

4 Simulation Results

To illustrate the performance of the Bayesian approach, a number of experiments were

performed. A complex, colored Gaussian noise sequence was created by driving a second

order, all pole filter with zero mean, white Gaussian noise. The noise sequence is thus an

autoregressive process and can be expressed by the recursive equation

nk = alnk-l + a2nk-2 + Wk (80)

where Wk is a zero mean, complex Gaussian noise process with E(WiWj) = 2a2{jjj with {jij

being the Kronecker delta. The real and imaginary parts of the complex noise process

are independent and the poles of the filter were chosen as a conjugate pair, located at

z = ref:iwo. This implies that -

al = 2r cos(wo) (81)

and
- 2

a2 - -r (82)

with Irl < 1 to insure stability.

For simplicity, and without loss of generality, Wo was chosen to be i. In this case,
al = 0 and it can be shown that the correlation sequence, R (i - i) = E (njnj), is

{

~2rl:1 k = 0,4,8,.. .
R(k) = 2 _~~~:I k = 2,6,10,...

0 otherwise
(83)
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and the ij'th element of the correllation matrix for the real and imaginary part of the
noise is thus

of [Rki = ~R(li - jl). (84)

The magnitude spectra for three different choices of r2 are shown in Figure 1. The mag-

nitude spectrum of the noise can be written as

a2
S(w) =

~ - ",r-l:u::5t"'Wj,1-

and the ordinate axis is in units of dB. As r approaches 1, the bandwidth of the noise

decreases though it's maximum amplitude increases reflecting the poles' proximity to the
unit circle.

Initially, a single complex sinusoid, or cisoid, was embedded within the complex Gaus-

sian noise and the three estimators, ML, MAP and MMSE, were used to estimate the

frequency of the cisoid. To justly compare performance, the estimators were compared as

a function of both frequencey and signal to noise ratio (SNR), where the SNR, in dB, is
defined as

(85)

SNR "-" 20 log 10 (J;(0)) .
(86)

For the noise sequence that we have used, the SNR becomes

(
PVl- r4)

)SNR = 20log10 y'2a . (87)

The phase of the cisoid was zero radians and the prior information, for the Bayesian

estimators, was chosen to represent complete ignorance of the par~meters which means
(29) was used for the MAP and the MMSE estimates. Thus for our experiments, the
parameters were deterministic and the prior distribution represents our a priori knowledge

concerning the value of the parameters before the experiment was run. The estimators
were run at 21 evenly spaced frequencies ranging from 0 to 1r. For each run, 250 trials

were conducted to insure statistical significance and the RMS error, for each estimator,
was computed.

In addition to comparing the performance of the estimators against each other, they

are compared to the Cramer-Rao (CR) bound for an unbiased frequency estimator in

colored Gaussian noise (See Appendix E.) In Figure 2 are the RMS curves, as a function
of frequency, for a SNR of -6 dB and for r2 = .8. The number of samples, N, used in

the estimation procedure was 25 and they were equally spaced with a unit sampling rate.
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As can be seen, for frequencies that are within the noise band, the MAP and the MMSE

estimates both perform better than the ML estimates. In fact, at the point of closest

appoach to the poles of the noise process, the MMSE estimator reduces the RMS error

by a factor of 4 when compared to the ML estimator. As described in Section 2, this is

because the Bayesian approach accounts for the fact that frequencies outside of the noise

band are favored in the whitening process. For frequencies outside of the noise band, the

estimators are essentially equivalent since the noise has little effect on the cisoids in this

region. As expected, all of the estimators do not achieve the CR bound except in the

frequency range were the noise is insignificant. It is interesting to note that the CR bound

exhibits the same behavior as the estimators in the sense that the bound increase within

the noise band.

In Figure 3 are the RMS curves for a SNR of 0 dB. The improvement in performance

of the MAP and MMSE estimators is still evident though over a narrower frequency band.

The increased SNR has decreased the range that the noise has an impact on the estima-

tors. Within the noise band, the Bayesian estimators attain a significant improvement as

compared to the ML estimator. In the band where the noise is essentially white, the esti-

mators are equivalent which is a reflection of the analysis in Section 2. The performance

of the estimators for a single cisoid at ~as a function of SNR is shown in Figure 5. As
can be seen, the MAP and MMSE are superior to the ML estimator. To illustrate the

overall performance as a function of SNR, the mean squared error over all frequencies was

computed and plotted as a function of SNR in Figure 5. The MAP and MMSE estimators

perform better than the ML estimator though all three achieve the CR bound at a high

SNR. The MMSE performs better than the MAP estimator since the a posteriori density

is generally not symmetric which induces a higher bias in the MAP estimates.

The next experiment that was conducted examined the performance of the estimators

for multiple frequency estimation. Two complex exponentials were superimposed onto a

colored noise sequence which was generated in the same manner as in the first experiment

with r2 = .8. The frequencies of the cisoids were, WI = .511"and W2= .5211".The first cisoid

had zero phase while the second one had a phase of 7r/4 and the amplitudes Were chosen

to create a stated signal to noise ratio. This is a standard signal used when examining

frequency resolution and the continuous waveform is written as

d(t) = pej.51rt + pej(.521rt+.251r)+ n(t). (88)

The number of samples used was 25 and 100 trials were performed for each SNR. The

mean squared error, MSE, was computed for each estimator and is plotted in Figure 6. As
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can be seen, at the higher SNR, all three estimators are essentially equivalent while, as the

SNR decreases, the ML estimator degrades more rapidly than the MAP or the MMSE. At

a SNR below 0 dB, the ML estimator exhibits poor performance, while the MAP and the

MMSE still retain a reasonable degree of fidelity. The MAP and the MMSE estimates are

higher than the Cramer-Rao bound implying that a bias exists for those estimators. These

simulation results not only confirm our analysis of the previous sections but also indicate

the significance of the Bayesian approach.

5 Conclusion

In this paper we have examined the Bayesian estimation of the frequencies of multiple

cisoids embedded in general Gaussian noise. For both the single cisoid and the multiple

frequency cases, the a posteriori density of the frequencies given the data and our prior

information were derived. The unwanted parameters were properly marginalized and ap-

propriate prior densities used in the integration.

For the single cisoid, the resulting density was shown to account for the coloration of the

noise by taking into account that frequencies closer to the dominant noise directions were

prejudiced by the matched filtering operation. Under spherical white noise assumptions, it

was shown that the MAP and the ML estimates were equivalent and that our prior density

did not matter in terms of the maximum of the density.

For the multiple frequency case, the derived density not only accounted for the col-

oration of the noise but also took into account the degree of orthogonality between the

signal vectors. The closer two frequencies were hypothesized, the less penalty was applied.

This resulted in an a posteriori density whose maximum does not exist within the parame-

ter space and thus the MAP estimate is, theoretically, undefined. A number of simulations

were performed and the Bayesian approach was shown to be significantly better than the

ML for both a single cisoid in colored Gaussian noise as well as two closely seperated

cisoids in arbitrary noise. This indicates that the Bayesian methodology offers significant

advantages and is worthy of future investigations.

One idea for future research is to concentrate on the penalty term of the marginalized

density to understand it's effect more thoroughly and to reevaluate our model hypothesis.

One thought is that it may not be valid to imply that two frequencies can not be equal.

It would be more logical to have the higher dimensional a posteriori density transition to

the lower dimensional density along the space where two frequencies are equal. This will

probably make us rethink our model as well as assumptions we have made.
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A Appendix

Derivation of Equation (9)

Writing (8) again

f(dlp,w,4>,I) ex exp[-~(d - pej~a(w))HR-1(d - pej~a(w))],2 (89)

we can multiply through the quadratic form and discard terms that are independent of

the parameters,

f(dlp, w, 4>,I) ex exp[_!p2a(w)HR-la(w)] exp[!!..(ej<PdHR-la(w) +e-j<Pa(w)HR-ld)], (90)2 2

which can be written as

1
f( dip, w, 4>,1) exexp[--p2a(w)HR -la(w)]2

X exp[p(cos(4»m(dHR -1a(w)) - sine4»S'(dHR -la(w)))]. (91)

By letting

a(w) = tan-l [S'(dHR-la(w))<;n1..3I'TT>-1_1..\\], (92)

we can write

1
f(dlp, w, 4>,I) ex exp[--p2a(w)HR-la(w)]2

X exp[pldHR-1a(w) I(cos(4» cos(a(w)) - sin(4)) sin(a(w)))] (93)

and finally, using the cosine addition formula, we have

1
f( dip, w, 4>,I) exexp[--la(w)HR-la(w)] exp[pldHR -la(w) Icos(4>+ a(w))]2 (94)

B Appendix

Derivation of Integral Formula

Consider the integral
roo 1 2

10 xe-"2a:z: Io(bx)dx. (95)
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Using the change of variables, u = vax, we can write

ioo 1 2 ioo U ..2 b
xe-2a:z: Io(bx)dx = -e- 2 Io( ;;;u)du

0 0 0 a ya
(96)

or going one step furthur,

ioo 1 2 1 b2 ioo 1
( 2 b2 b

xe-2a:z: Io(bx)dx = -e~ ue-2 u +7)Io( -u)du.
0 a 0 va

The term within the integral on the right side of (97) is recognized as the Rician distribution

and thus integrates to unity. This allows us to write the desired result,

(97)

ioo 1 2 1 b2

xe-2a:z: Io(bx)dx = -e2a.0 a (98)

c Appendix

Proof of Equation (52)

We shall prove
M M M k-1

L L (3(k,l) = L L[{3(k,l)+ (3(l,k)],
k=11=1 k=1 1=1

ki=1

by induction. For M = 2, we have

(99)

2 2

L L (3(k,l) = (3(1,2) + (3(2,1)
k=1 1=1

ki=1

(100)

and
2 k-1

L L[{3(k, 1) + (3(l,k)] = (3(2,1) + (3(1,2)
k=11=1

(101)

so (99) holds for M = 2. We assume that (99) holds for M - 1 and prove it holds for M.
We may write

M M M-1 M M-1

L L (3(k,l) = L L (3(k,l)+ L (3(M,l)
k=11=1 k=1 1=1 1=1

ki=1 ki=1

(102)

22



or
M M M-l M-l M-l

L L (3(k,l) = L L (3(k,l) + L [(3(M,I)+ (3(l,M)].
k=I/=1 k=1 1=1 1=1

k"f;1 k;tl

Using the inductive hypothesis,
M M M-l k-l M-l

L L (3(k, l) = L L[{3(k, I) + (3(l,k)] + L [(3(M,I) + (3(l,M)]
k=I/=1 k=1 1=1 1=1

k"f;1

and the fact that

M-l M k-l

L [(3(M,I) + (3(l,M)]= L L[{3(k,l) + (3(I,k)],
1=1 k=MI=1

we may write
M M M k-l

L L (3(k, I) = L L[{3(k, l) + (3(I,k)]
k=I/=1 k=I/=1

k;tl

and thus (99) is true for all M.

D Appendix

Derivation of Equation (55)

Beginning with

1 M
f(dlpM,WM, <PM,!) <Xexp[-- L P~8M(Wk,Wk)]

2 k=1
M k-l

Xexp[L Pk~(e-j9k(TM(Wk) - L PleNI8M(wbWz)))],
k=1 1=1

we can use the results from Section 2 to show that

1 M-l
f(dlpM-l,WM,<PM-bI) ex exp[-- :L p~8M(WbWk)]

2 k=1
M-l k-l

X exp[ L Pk~(e-Nk(TM(Wk) - :L PleN/8M(wk,Wz)))]
k=1 1=1

8 ( )
-1

[
lITM(wM) - Et;11 Plejcf>/8M(WM,W/)12

]X M WM,WM exp -
( )

.
2 8M wM,wM
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(104)

(105)

(106)

(107)
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The last term in (108) can be expanded as

M 1 'if> 2

[lITM(WM) - ~/=1 PIe' ISM(WM,W/)I
]exp -

~. 2 SM(WM,WM)

- [
1 ITM(WM)12

] [ ~1 \"O ( -irf>kTM(WM)SM(Wk,WM) )]- exp - exp - L..- PkUl e
2 SM(WM,WM) k=1 SM(WM,WM)

[
1 ~1 ~1 -iif>k iif>1SM(Wk, WM)SM(WM, W,)

]X exp - L..- L..- PkPle e S ( )
.

2 k=1 1=1 M WM,WM

With the result from (52), we may write the last term of (109) as

[1 ~1~1 -irf>k irf>ISM(Wk,WM)SM(WM,W/)
]exp - L..- L..- PkPle e

2 k=1 1=1 SM(WM,WM)

-
[
1 ~1 2ISM(Wk,WM)12]- exp - L..- Pk
2 k=1 SM(WM,WM)

[~1 \"O ( -irf>k 8 irf>lSM(Wk, WM)SM(WM, WI)
)]X exp L..- PkUl e L..- PIe

( )
.

k=1 1=1 SM WM, WM

Using the notation

SM-l(Wk, W,) = SM(Wk, WI)- SM(Wk, WM)SM(WM, WI)
SM(WM,WM)

and
SM(Wk,WM)

TM-l(Wk) = TM(Wk) - TM(WM)S ( \'M WM,WM,

we may combine (109) - (112) and write (108) as

1
f(dlpM-I, WM,<PM-I,!) ex S (M wM,wM

1 IT (w )12 1 M-l

X exp[- ( M )] exp[-- L p%SM-l(Wk,Wk)]2 SM wM,wM 2 k=1
M-l k-l

X exp[ L Pk~(e-irf>k(TM-l(Wk) - LPleitI>iSM-l(Wk,Wz)))].
k=1 1=1

E Appendix

Cramer-RaoBound for Frequency Estimation
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The Cramer-Rao bound for an unbiased estimate of a deterministic parameter vector,

(J, can be obtained by inverting the Fisher information matrix which is defined as

clef

{

a a
}[Jki = E aOi£(0) aOi£(0) , (1}4)

where £(0) is the log-likelihood function of the observations given O. This can be written

in compact matrix form as

J = E {(Ve£(O))(Ve£(O))H}, (115)

with 'Ve being the gradient with respect to O. For the Gaussian problem, where the

covariance matrix R is known, the log-likelihood function can be written as

£(0) = -!(d - h(O))HR-1(d - h(O)).2 (116)

The function, h(O), is the known mapping from our parameter space to the observation

space and all terms not depending on the parameters have been dropped. We can write

the gradient of the log-likelihood function as

Ve£(O) = -~(;:R-1(d - h(O))) (117)

where Jh is the Jacobian matrix of the function h(O) and

[Jh]i,i = Bhi(O)ao. .1
(118)

It is a simple matter to compute (115) given (117) and we obtain

J = !R(JfIR-1 Jh). (119)

For the case of white, spherical noise, the Fisher information matrix becomes

1 H
J = 2!R(Jh Jh).a (120)

Once the Fisher information matrix is computed, it is inverted to obtain the Cramer-Rao

bound,

Cov(O) 2':: J-l, . (121)

with the diagonal elements representing the lower bound on any unbiased estimator for

the parameter vector, O.
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Figure4: MSEYS.SNRforsingle clsold at .5 PI. N - 25 and r - .8
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