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TRANSMISSION OF OCEAN WAVES INTO BEACHES

Introduction.

Coastal engineering - or near-shore oceanography - is concerned
with, among many other scientific topics, the interaction of waves with
real boundaries. Two groups of such problems, for example, which have
received considerable attention within the last decade or so are diffrac-
tion of waves and breaking and run-up of waves on beaches. This paper
treats a different type of problem, namely the interaction of ocean waves
with the ground water level. Ground-water is generally fresh water, de-
rived from rainfall, which may or may not flow, depending upon topog-
raphy and the nature of the seil. In the vicinity of a shore there is a
coupling of its motion with that of the ocean water if the common medium

.is a permeable soil, i.e:, a sandy beach. Two important problems which
come immediately to mind in thié area are salt water intrusion via the
"pumping" action of the ocean waves, and the influence of fluctuating
ground-water levels on construction near shore, i.e., the possibility of
deleterious buoyant forces on structures. In the problem studied the wa-
ter is taken to be homogeneous throughout and the spatial and temporal
behavior 'of the ground water elevation is sought as a function of the on;-
coming waves. This paper considers short-period, wind-induced waves, i.e.
periods in the order of 5 minutes, and long-period waves, such as tides,
of periods of one-half day or so. Tsunaml's and other solitary waves are

not included. -

Statement of the Problem. L i
In this paper we consider a train of waves approaching a beach as
shown in Fig. 1. The undisturbed water level in the soil is simply the .

extension of the mean water level of the sea in the vicinity of the shore.
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The wave train may be represented by a function A sin (wa‘c«?\,x) swhere A
is the amplitude, wg the frequency, t the time and x the horizontal dis-
-tance from source reference point. Upon breaking and striking the beach
there is some run-up so that the maximum height, Fig. 2, may be different
from the amplitude 4, and in addition the height H is no longer a simple
sinusoidal function, but a more complicated periodic funotion of time,
Fig. 3. Nevertheless, assuming there is some regularity of the breaking
wave on the beach, the height may be represented by a Fourier series
expansion H(t) = T a, sin w, t.

What 1s desired is the height of water above the undisturbed level
in the soil, h(x,t), see Fig.2, caused by the imposed periodic motion at
the boundary.$ecifically,the questions to be answered are: is the fluc-
tuating water level at the boundary H(t) of significant influence on the
undisturbed water level for all, or any, distances x3 and do the wave
form and frequency, Fig. 3, of H(t), play an important role in this evalu-
ation?

To answer these, it is first noted that the fundamental frequency
of H(t) must be equal to the frequency of the wave train, we. We there-
fore shall study the behavior of h(x,t) with reference to a single fre-
quency ‘wave of the form

H=Hg+asinwt : (1)
vwhere a is a constant. And while one may then obtain the response to an
arbitrary H(t) simply by summing the responses té the individual components,
a sinw t, 1t will be shown that the dominant term in the solution for
'f{(x,fe) comes from the zeroth term in the series, i.e. 3 sin wpt.

: i
The field equations for flow through porous media are the Darcy equation




X,
1

v.o= -k | (2)
oxy

where vxi is the veloclty component in the x; direction, ¢ a potential-
like term equal to the pressure head plus the elevation above some datum,
P = % + z,and k a constant for the soil, called the hydraulic conductivity
and which is dependent upon the soil type, porosity and fluid. Equation (2)
combined with the equation of continuity gives the Laplace equation for
the law governing the flow. As is evident, this is a free-surface problem
with all the attendant difficulties thereof. A greatly simplified boundary-
value problem may be obtained, however, for the quasi-one—dimensiona.l prob-
lem by considering one element in the soil, Fig. L, for establishing éon-
tinuity, and usiﬁg an integrated form for (2). The new dependent variable

then is h(x,t) and the field equation becomes

3 (2my. , 3
kax(ﬁax) 3t | (3)

where n is the porosity of the soil. For the usual conditign actually en-
countered the above may be easily linearized since the height Hy greatly
exceeds the wave height. To accomplish this let E = Hg + h, Fig. 2. Sub-

stituting this into (3) and retaining the lowest order terms gives

o) oh dh
kS (Hy,9R) =22, (L)
ax(°ax) ot

h(x,t) is, of course, the vertical distance from the undisturbed water
level to the free-surface. The boundary-condition, in terms of h(x,t) is,
from (1)

h=asinwt at the sloped face (5)

and the initial condition is




n(x,0) =0 (6)

The problem represented by (i), (5) and (6), although well-posed in
the ma.themé.tical sense, is awkwardly posed as regards its sclution. This
is so because the spatia.l‘variable and the solution function x and h are
normal to each other while the boundary condition (5) is given on a sur-
face sloped to these directions. In this problem, however, it is possible
to introduce a nonorthogonal transformation which obviates this difficulty
and at ﬁhe same time leaves the form of the differential equation and
initial condition unchanged.

Transformation.

Let o be the angle of slope of the beach. Consider the transformation

x=8E + T cosa . (7)
h=1sina l\~
which, for any point on the free surface (x,h)‘ locates the same point, in
terms of new coordinates, (§,7), parallel to the x axis and the sloﬁing sur-
face, Fig. 5. It is easily shown that the Jacobian of (7) vanishes only for
the trivial casoé;s% the inversion, § = E(x,h), N = N(x,h) exists everywhere,

i.e.

€ = x - h/tan @
(8)
N =h/sina .
In terms of (7), (L), (5) and (6) become
R _n A . )
3 K ot 1="7(E,t), 20, t20 (9)
- _2a
N(0,t) - sinwt, t20 (10)
n(€,0) =0 ’ €20 ‘ (11)




The foregoing, (9), (10), (11) represent the final form of the boundary
value problem which remains to be solved.

Solution of Boundary-Value Problem.

We start the solution by first taking the Fourier sine transform

with respect to the variable £, i.e.

F N1 = J’ T(€,) sin p& d€ = T(t;p) (12)
with which (9) transforms to
a sin ot/sin a - p°7 = (n/kHe)dl/dt (13)
where (10) has. been utilized. The initial condition (11) transforms to
ilosp) =0 W)
The solution to (13) and (1l) is easily obtained by standard t;echn}Lques
to give
‘, 1 . -Put
'ﬂ(tip) = in = (:1.) FFTE (e - cos wt)
+ -2 P sin ot ' (15)

sin o p" +wz /uz

where » = kHo/n. Applying next the inversion integral to (15) gives

-p°ut

1) - 2[Rl oo R o

_ZJ‘ a wpcoswtsinp§
osina n priw /w°

2 . 8in |
+ £ J‘o = p%?—gﬁ/n sin wt dp (16)

L +I; +1a . an

I, camnot be evaluated in closed form. However, it is the periodic,or

it

steady-state, response, given by Ip and Iz which is desired, and if it
can be established that the transient response settles down to zero, i.e.,

1_'l_i'm’=° I; = 0, then this term may be neglected or approximated. Consider,




therefore, the factor p/{(p*+ o’/«° )appearing in the denominator of I .
It is clear that as a function of p this is always positive and it is

. . 2
easily shown that it has a maximum at p = (3) * (w/n)lﬁ. Moreover, since

sin p§ is bounded by one, we have

3/4 ®
I, < 2_a %). (u)/r»(.)";2 J”o e-—pant dp

m sin o
3/L ‘15
1 a (3)
‘/—%“—‘-sind L (w/n) ,--«2 © (18)

Hence ; does in fact vanish as t » ». It should also be noted that if
an appré:dmation to I; is desired the fact that its integrand vanishes at
the limits of integratlon suggests that the major contribution to the in-
tegral comes from its value in the neighborhood of p = (3) % (m/u.);é
Therefore; if p/[p* + (0®/%°)] is expanded in a Taylor series and the
first few terms are substituted into I; , the result is integrable in
closed form thus yielding the desired appro:nclma.t',:lon.l

For the purpose at hand it is sufficient to note that for large times
I; is of negligible impor’c.a.ncé. To evalua1;e I, and 15, whichuare known
to be periodic, a slightly different method of attack is employed. Since
~all the terms involving time may be removed from under the integrals
(which was not the case with I,), we see that the solution sought must
be of the form .

N(E,t) = F (§) cos wt + Fp(§) sin wt. (19)

Substituting (19) into (9) and (10) and equating coefficients of like

terms gives
| PR/E = (o/n) F
(20)
FF/dE° = -(w/n) Fy
together with the boundary conditions
F(0) =0, B(0) = =2 (21)

sin o
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Solving the simultaneous equations (20) by eliminating E, gives
&R /E + (/M) B =0 | ‘ (22)
whose solution, compatible with the implied condition that ‘gl_j;m ?’\(E ,t) = 0
) [+

0) is

A e—t\/‘g'-%inﬂ/% E +B e_,\/é—% : cos \/% g, (23)

[

(hence " Lin  (€)

K (E) =
and from (23) and the first of (20) we get for F,
‘ )
iy N = _ N
F,(8) =-Ae 2ngcos 2n§+BeJ—§;€sin«/;§. (2ly)
Finally, from (2L), (21) and (19) we obtain after some simplification
: : - ®
NE,t) = ;{%"& e«/%q;17 s sin (et - 1/'2;- g) (25)

Conclusions. ,

From (25) it is seen that the amplitude decays exponentially with €
and with »/E)'. Hence for fixed position, ground-water levels will be more
affected by low frequency (long period) waves than by high frequency waves.
For example, for a u = B.ZBfta/sec, corresponding to a coarse sand and a
permeable stratum depth, Hgo, of 200 feet, the amplitude of oscillations
of the ground-water at a & = 3,000 feet will be about 1L% of the tide am-
plitude (period equal to one-half day). For wind induced waves, on the
other hand, with a period of 5 minutes, the amplitude is negligible at
€ = 3,000 feet (all other parameters remaining the same), and the position
at which the amplitude is 1L% of the tide amplitude is € = 80 feet. Hence
it is seeri that the penetration distance of the wave into the beach is
strongly dependent upon wave frequency, so that wind induced waves need
not be included in consideration of ground-water level fluctuations for

‘distances of 1,000 feet or more from the shore. Further, and as a corol-
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lary to the above, in the vicinity where wind induced waves may be an
important consideration, only the first few terms in the Fourier series
resolution need be included in computations, since the later terms in
the series correspond to higher frequency waves, which we have seen are
negligible. Thus, regardiess of the exact wave form, Fig. 3, the response
h(x,t) is given with sufficient accuracy if the boundary condition on

Hmax
sin wot) -
a

the sloped beach is taken to be H . sin wot (¢(o,t) =

Finally, it is noted that the solution (25) depends on a single pa- \

.I.{_H.E « The determination of n may be accomplished simply by

rameter u =
comparing the time of occurance of high water in the ocean with time of
occurance of high water at a test hole at § = §4. Since high water occurs
when the sine term in (25) is unity, # may reaidily be determined by set-
ting the argument equal to g The value of m thus obtained may then easi-
1y be checked by.comparing the magnitude of'the high water at the two

locations..
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