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ABSTRACT

A new approach to the use of moiré.fringes for the analysis of
strain is proposed in the paper. Moiré patterns representing displacements
along three different directions are obtained from crossed gratings through
optical spatial filtering and the state of strain determined by the use of

strain rosette equations. The method has the advantage over the conventional

method in that it is less time consuming and more accurate.



INTRODUCTION

The conventional way of using moiré fringes for strain analysis
[1,2] is the following: a fine grid of orthogonal lines fcrossed erating)
forming a x~y coordinate system is first printed on the surface of a model,
and the model is then loaded. A reference (or master) grating with identi-
;al density of lines (but 6nly one directicnal) is superimposed on the de-
formed model grating with the direction of lines aligned with y-direction to
yield the moiré fringes representing the-displacements in x-direction (u-
field fringes); and then the reference grating is rotated 90° to vield the
fringe paftern representing displacements along y-direction (v-field). Tis-
placement cupves are plotted from moiré‘patterns along the sections of in-
terest with the interpretation that each fringe represents a displacement
of a p (pitch of grating) normal to the grating lines. OGraphical or numeri-
cal differentiation of displacement curve along x- and v-directions gives
%5 and %5—, respectively from the u-field fringes, and g;- and %;- from
the v-field fringes. These four derivatives are, of course, sufficient for

the complete determination of atwo dimensicnal state of strain through the

use of the following relations:
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In obtaining the two sets of moiré fringes it is extremely impor-
tant to align the master grating properly. If the rotation of the master
grating is not exactly 900, an apparent shearing strain is introduced into

the result with an annoyingly large magnitude [3]. The error introduced in



the normal strain is, however, negligible., The fact this being true can be
easily seen from the phenomenon that if two identieal gratings are superim-
posed with a small rotational mismatch (difference in orientation), a set of
parallel fringes will be formed with direction approzimately pervendicular
to grating lines. While it is conceivable to build a precision device to
“give an accurate rotation, it is also possible to eliminate this possible
error by recording both the u- and v-field moiré patterné simultansously
using a crossed grating as master as proposad by Post [3]. It can be shown
that in so doing the errors due to rotational mismatch will have opposite

effects on the two families of fringes and therefore the two cross deriva-
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tives %53 ggn As a result they cancel out each other., This method, however,

suffers from one drawback in that sometimes the two families of moiré fringes
tend to téngle together and that it becomes difficuit to identify fringes
with their respective families. Chiang [4] developed a method to eliminate
this difficulty by optically separating the two families of fringes by spa-
tial filtering (either before or after they are recorded by film).

The method presented herein uses a different approach to obtain
the state of strain through moiré fringes, It utilizes the stralin rosette
concept commongly employed in strain gage techniques. It will be shown that
normal strains along three non-parallel directions (00-, h50~, and 90°-strains)
can be obtained from a pair of crosséd model and master gratings. The ad-

vantage of this method over the conventional one is also discussed,



The Strain Rosette

It is well known that the Cartesian components e, e , and vy
TR Tyy Xy

of a two dimensional state of strain can be obtained if normal strains along
any three non-parallel directions are known, from the strain transformation

formula

o (2)

€. = € _cos20 + ¢ sin?0 + Y. sin 6 cos®
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in which Ee is the normal strain along the direction © from x-axis. It

will be shown in the next section that the moiré fringe patterns will give

(o]

strains along directions for © = 07, 45° and 90°, It is clear then that
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The principal strains €, and €, can also be expressed in terms of these
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three strains as in the following:
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The Moiré Rosette

It is well known that when two gratings (one deformed model grating,
one reference grating) are superimposed one against anothér (either_directly
or through an optical systemj a set of fringes appears. These fringes re-
present displacement of.the model along the direction perpendicular to the lines
of the refereﬁce grating tmaster). When two crossed gratings are superim-

posed, a set of crossed fringes will appear. They are the combination of
two families of fringes representing displacements in two orthogonal direc-
tions. ¥n the following it will be shown that by using a coherent ovtical
system through optical filtering three families of fringes representing dis-
placements in three different direction; can be obtained. Therefore normal
strains along these directions can, in {erm, be obtained, and egs. (3), (5)
and (6) used to yield the Cartesian components of the state of strain.

For this technique a coherent optical system forming image in two
stages, as shown in Fig. 1, is necessary. The coherent light from a laser
is first expanded into a diverging beam by a microscopic objective and then
collimated by a collimator. A lens L 1 collects the light and forms an image
of the light source at plane P2 (the first image plane). A second lens L 2
receives the iight ffom P2 to form an image of the source at plane P3 (the
second image plane). The relative pqsitions of the lenses are as shown in
Fig. 1. If an information carrying transparent object is inserted into the
light path at the front focal plane of the lens L 1, its diffraction spec-
trum will be displayed at plane P2 and an inverted image of the object will
be formed at plane P3.

It can be shown [5] that under coherent illumination the relation-

ship between the light disturbances at the front and back focal planes of a



lens is that of a Fourier transform. Indeed if f(x,y) denotes the complex
amplitude of the light flux at plane P1l, the complex amplitude of the light
flux at plané P2 is given by

m L

F(p,q) = [ S f(x,y)el(Px+qy)dxdy (9)

dn which (x,y) and (p,q) are the coordinates of the front and back fo-
cal planes of lens L 1, respectively. This relation gives an easy access

to mathematical analysis as well as visual representation of the diffrac-

tion spectra of many objects.*

In order to have a true image of the object at plane P3, it is
necessary to have the whole diffraction spectrum collected by the lens L 2,
and if only a portion of spectrum is allowed to go through the optical sys-
tem, only the portion (or the component) of the object which gives rise to
the partial diffraction spectrum will be imaged at plane P3,

When a moiré grating is inserted in field of a coherent light at
plane P1l, it will behave like a diffraction grating. The mechanism of the
diffraction may be simply illustrated as shown in Fig. 2, where an impinging
plane wave is disturbed by the presence of a grating. As a result, cylin-
drical wave—leté will be generated at the slits. These wave-lets will be
reinforcing one another at some directions giveh by the angle On where

. =1 n)
o = sin =3 - Qo)

in which P = pitch of the grating, X = wave length, and n = 0, %1, %2, ...

For example: the Fourier transform of a unit function is a delta function,
which corresponds to the case of a plane wave being focused into a point
source; and the Fourier transform of a cosine function is a pair of delta
functions situated equal distances away from the optical axis. With the
help of Fourier series it is possible to 'see' diffraction spectra of more
complicated functions through their Fourier components.



In any other dirsctions the wave-lets interfere with one another destrue-
tively. These diffracted directions are called the orders of interference.
Yhen these orders are collected by the lens L 1, they form the diffraction
spectrum as a series of equally spaced bright spots (diffraction orders)
along a straight line perpendicular to the direction of grating lines, as
shown in Fig. 3*. The distance d between any two neighboring orders, as
can be easily shown, is given by the following equation:

d = f}i (11)

P

in which fl is the focal length of lens I, 1.

If the light disturbance immedia%ely after the grating plane is
represented by a Fourier series, it can be shown by using eq. (9) that the
zero order diffraction corresponds to the constant term of the Fourier ex-
pansion, the two first orders are from the fundamental harmonic, and the
rest higher harmonics. Therefore, if a mask is made in such a way that on-
ly the 0, #1 orders of the spectrum are allowed to be collected by lens L 2,
the image form at plane P3 will be a grating of the same periodicity as the
original but with a different detailed structure.

Now if a cross grating is placed at plane Pl, the diffraction

e

spectrum will be that of a crossed orderz as shown in Fig. 4, which is the

“actual diffraction spectrum of a 1000 lines per inch crossed grating. As be-

¥

fore, to praeserve the basic two dimensional pericdicity of the grating, it
is only necessary to let pass the following combined orders: (0,0), (1,0),

(0,1}, (-1,0), (0,-1), (1,1), {(-1,-1), (-1,1), and (1,-1). The resulting image

axplanation



now, an additional mask is made to block all but the horizontal array of
orders [(1,0), (0,0), and (-1,0)], only the vertical lines of the crossed
grating will be imaged at plane P3. Similarly if a1l but the vertical ap-
ray of orders [(0,1), (0,0), and (0,-1)] ave blocked, the image will be

that of a set of horizonfal lines. Furthermore, if the mask allows only

one diagonal array of orders, for example (1,1), (0,0), and (ml,—l)? to go
through the lens, the image formed at P3 will be that of a grating with lines
diagonally oriented, 90° from the direction of the orders. The pitches of
the horizontal and vertical gratings so formed sre the same as that of the
original grating but the diagonal grating has a pitch of J%s , where P is
the pitch of original grating. The reason'fcr this being so is easily seen
from the spacing of the orders and egq. (10). The filtered orders and their
corresponding grating images are shown in Fig. 5.

It is now evident that if a crossed grating identical to that of
the moedel grating at plane Pl is erected at plane P3 and optical filterings
are performed so as to form the horizontal, vertical and diagenal grating
images at P3, the interference of this grating with the three images, res-
pectively, will give three families of moiré fringes representing displace-
ments in three different directions.

An example is giwven in Fig. & where the three separated families
of moire' fringes are shown for a model under load. In order to obtain
the state of strain at a point of interest, it is necessary to draw dis-

placement curves through this point along the direction nermal to the grating

1

d

e F A8 . i .
Lines from each of these three noire patterns, and to differentiate the dis-

1

placement curves graphically at the point to yizld the following
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In so doing, it is important to bear in mind that ths pitches for the hori-
zontal, 6iag?nal, and vertical gratings are P,jérP, and .P, respectively.
After this is done, the three normal strains can then be substi-
tuted either into eqs. (3), (5), and (6), to give the complete Cartesian
components of the state of strain, or into egs. (7) and (8) to yield the two
principal strains. The process has to be repeated if it is to determine the

state of strain at other points.



10

Comparison between the Conventional and the Rosette Methods

It.may appear at the first glance that this method is more tedious
than the conventional, because it requires three photographs instead of two.
Actually it is much simpler than the conventional method. It may be re-

called that the most time consuming part of the moiré method for strain ana--

lysis is not the taking of pictures; it is the plotting of displacement curves
and the painstaking point by point graphical differentiation of displacement
curves. In the conventional moire methoé, it requires four displacement
curves (one each for the four der’vatives) and four differentiations to ob-
tain the state of strain at a generic point, whereas the moiré rosette me-
thod only needs three displacement curves and three differentiations. For
example, as shown in Fig. 6, ° it is desired to determine the state of

strain at point P. For the conventional method displacement curves along

.9 3
sections A-A and B-B in picture (a) have to be drawn to obtain 35- and 553

respectively, and displacement curves along sections C-C and D-D in picture

(b) have to be drawn to yield %%ﬁ and %%, respectively; whereas for the

rosette method, it is only necessary to draw the displacement curves along
section A-A (from picture (a) ), C-C (from picture (b) ), and E-E (from pic-

ture (c) ) to yiéld and respectively.

€05 Egg0> €ys50>

Therefore, it ijs evident that if theré are many points whose
states of strain are to be determined, the moiré rosette method presented
herein cén save many hours of painstaking curve plotting and differentiationa .
Furthermore as mentionned at the beginning of the paper the conventional me-
thod suffers from the fact that a large shear error is introduced if the ro-
tation of master grating is not exact; the rosette method, however, does not
have this difficulty*. It is easy to see that at points of symmetry the

It may be noted that with the optical system presented herein if one cho?ses

to use the conventional moiré method for analysis, he only needs to obtain by
filtering, the 0° and 90° patterns, and in so doing also eliminates the pos-

sible error caused by the rotation of the master grating.

L
-~
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conventional and present methods are identical.

CONCLUSION

It may be concluded that the moiré rosette method, which utilizes
three different fringe patterns obtained from crossed gratings through op-
tical spatial filtering, offers a new approach to the use of moiré fringes
for experimental strain analysis. It has advantages o%er the conventional

wi . s s . ; .
moire method in that it is less time consuming and more accurate.
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