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ABSTRACT

A new approach to the use of moir~ fringes for the analysis of

strain is proposed in the paper. Moir~ patterns representing displacements

along three different directions are obtained from crossed gratings through

optical spatial filtering and the state of strain determined by the use of

strain rosette equations. The method has the advantage over the conventional

method in that it is less time consuming and. more accurate.
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INTRODUCTION

The conventional way of using moire' fringes for strain analysis

[1,2] is the following: a fine grid of orthogonal lines (crossed grating)

forming a x-y coordinate system is first printed on the surface of a model,

and the model is then loaded. A reference (or master) grating with identi-

cal density of lines (but only one directional) is superimposed on the de-

formed model grating with the direction of lines aligned with y-direction to

yield the moire fringes representing the displacements in x-dir.ection (u-

field fringes); and then the reference grating is rotated 900 to yield the
1

fringe pattern r~presenting displacements along y-direction (v-field). 11s-

placement curves are plotted from moir~ patterns along the sections of in-

terest with the interpretation that each fringe represents a displacement

of a p (pitch of grating) normal to the grating lines. Graphical or numeri-

cal differentiation of displacement curve along x- and y-directions

~~ and ~~, respectively from the u-field fringes, and ~: and

gives

av

ay
from

the v-field fringes. These four derivatives are, of course, sufficient for

the complete determination of a two dimeDsional state of strain through the

use of the following relations:

au
e: =-
xx ax ,

av
e: =-
yy ay

(1)

au dV

"'xy = ax + dY

In obtaining the tv10 sets of moir6 fringes it is extremely irnpor-

tant to align the master grating properly. If the rotation of the master

grating is not exactly 900, an apparent shearing. strain is introduced into

the result with an annoyingly large magnitude [3J. The error introduced in
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the normal strain is, however, negligible. The fact this being true can be

easily seen from the phenomenon th~t if two identical gratings are superim-

posed with a small rotational mismatch (difference in orientation), a set of

parallel fringes will be formed with direction approximately perpendicular

to grating lines. While it is conceivable to build a precision device to

-give an accurate rotation, it is also possible to eliminate this possible

error by recording both the u- and v-field moir~ patterns simultaneously

using a crossed grating as master as proposed by Post [3J. It can be shown

that in so doing the errors due to rotational mismatch will have opposite

I

effects on the two families of fringes ar.dtherefore the two cross deriva-

tives
au av

ay' ax'
As a result they cance.l out each other. This method, however,

suffers from one drawback in that sometimes the two families of moire fringes

tend to tangle together and that it becomes difficult to identify fl'inges

with their respective families. Chiang [4J developed a method to eliminat~

this difficulty by optically separating the two families of fringes by spa-

tial filtering (either before or after they are recorded by film).

The method presented herein uses a different approach to obtain

the state of strain through moir~ fringes. It utilizes the strain rosette

concept commongly employed in strain gage techniques. It will be shown that

normal strains along three non-parallel directions (00_, 450_, and gOO-strains)

can be obtained from a pair of crossed model and master gratings. The ad-

vantage of this method over the conventional one is also discussed.
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The Strain Rosette

It is well known that .the Cartesian components € ~ € , and y
. xx yy xy

of a two dimensional state of strain can be obtained if normal strains along

any three non-parallel directions are known~ from the strain transformation

formula

£ = £ cos20 + £ sin20 + y sin 0 cos0.e xx yy xy (2)

(3)

(4)

(5)

(6)

The principal strains £1
and £2 can also be expressed in terms of these

three strains as in the following:

£ = ~(e: 0 + £ 0) + ~It(£ 0 - £ 0)2+ (2£ 0 - £ 0 - £ 0)] (7)
1 0 90 0 90 45 0 90

€ = ~(£ + £ )
2 00 900

~It (£ 0o £ 0)2+ (2£ 0
90 .45

£
0°

£ )]
90°

( 8)

in which e: is the normal strain along the direction 0 from x-axis. It
0

will be shown in the next section that the moire fringe patterns ,-tillgive

strains along directions for
000

It is clear then thato = 0 , 15 and 90 .

£ 0 = £o xx

£ = (£ + e: + y )
450 xx YY xY

£ = £
900 yy

which give

yxy
= 2£ - £ - £

450 00 900
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The Moir~ Rosette

It is well known that when two gratings (one d~formed model grating,

one reference grating) are superimposed one against another (either directly

or through an optical system) a set of fringes appears. These fringes re-

present displacement of the model along the direction perpendicular to the lines

of the reference grating (master). When ~10 crossed gratings are su?erim-

posed, a set of crossed fringes will appear. They are the co~bination of

two families of fringes representing displacements in two orthogonal direc-

tions. Tn the following it will be shown that by using a coherent optical

system through optical filtering three families of fr~nges representing dis-

placements in three different directions can be obtained. Therefore normal

strains along these directions can, in term, be obtained, and eqs. (3), (5)

and (6) used to yield the Cartesian components of the state of strain.

For this technique a coherent optical system forming image in two

stages, as shown in Fig. 1, is necessary. The coherent light from a laser

is first expanded into a diverging beam by a microscopic objective and then

collimated by a collimator. A lens L 1 collects the light and forms an image

of the light source at plane P2 (the first image plane). A second lens L 2

receives the light from P2 to form an image of the source at plane P3 (the

second image plane). The relative positions of the lenses are as shown in

Fig. 1. If an information carrying transparent object is inserted into the

light path at the front focal plane of the lens L 1, its diffraction spec-

trum will be displayed at plane P2 and an inverted image of the object will

be formed at plane P3.

It can be shown [5] that under coherent illumination the relation-

ship between the light disturbances at the front and back focal planes of a
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lens is that of a Fourier t~nsform. Indeed if f(x,y) denotes the comp~ex

amplitude of the light flux at plane P1, the complex amplitude of the light

flux at plane P2 is given by

co .

F(p,q) = £co! f(x,y)ei(Px+qy)dxdy (9)

~n which (x,y) and (p,q) are the coordinates of the front and back fo-

ca1 planes of lens L 1, respectively. This relation gives an easy access

to mathematical analysis as well as visual representation of the diffrac-
~

tion spectra of many objects~n

In order to have a true image of the object at plane P3, it is

necessary to have the whole diffraction.spectrum collected by the lens L 2,
~

and if only a portion of spectrum is allowed to go through the optical sys-

tem, only the portion (or the component) of the object which gives rise to

the partial diffraction spectrum will be imaged at plane P3.

When a rnoir6 grating is inserted in field of a coherent light at

plane P1, it will behave like a diffraction grating. The mechanism of the

diffraction may be simply illustrated as shown in Fig. 2, where an impinging

plane wave is disturbed by the presence of a grating. As a result, cy1in-

drica1 wave-lets wi1~ be generated at the slits. These wave-lets will be

reinforcing one another at some directions given by the angle o wheren

en = sin-1 n).
p

(}.o)

in which P = pitch of the grating, A = wave length, and n = 0, t1, t2, ...

1;

For example: the Fourier transform of a unit function is a delta function,

which corresponds to the case of a plane wave being focused into a point

source; and the Fourier transform of a cosine function is a pair of delta

functions situated equal distances away from the optical axis. With the

help of Fourier series it is possible to "see" diffraction spectra of more

complicated functions through their Fourier components.
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In any other directions the wave-lets interfere 1~ith one another destruc-

tively. These diffracted directions are called the orders of interference.

When these orders are collected by the lens L 1, they form the diffraction

spectrum as a seri~s of eq~ally space~bright Spo!s_(diffracticn orders)

along a straight line perpendicular to the direction of grating lines, as
~

shown in Fig. 3". The distance d between any two neighboring orders, as

can be easi~y shown, is given by the following equation:

d =
flA
P

(11)

in which f1 is the foca'l length of lens I,l.
,

If the light disturbance immediately after the grating plane is

represented by a Fourier series, it can be shown by using eq. (9) that the

zero order diffraction corresponds to the constant term of the Fourier ex-

pansion, the two first orders are from the fundamental harmonic, and the

rest higher harmonics. Therefore, if a mask is made in such a way that on-

ly the 0, :!:lorders of the spectrum are al101ved to be collected by lens L 2,

the image form at plane P3 will be a grating of the same periodicity as the

original but with a different detailed structure.

Now if a cross g1'atingis placed at plane PI, .the diffraction

spectrum will be that of a crossed orders as shown in Fig. 4, which is the

actual diffraction spectrum of a 1000 lines per inct\ c~ossed grating. As be-

fore, to preserve the basic two dimensional periodicity of the grating, it

is only necessary to let pass the following combined orders: (0,0), (1,0),

(0,1), (-1,0), (0,-1), (1,1), (-1,-1), (-1,1), and (1.-1). The resulting image
.'

will be essentially the same as the original grating. If,
:-: ~_.--.----.-....-

.. The actual Dhenomenon is, of CO'.1rse, more cCj~!Dlic,~ted than as indicated. There- -

aremany secondary maximum intensity 'cos.:. tions in bet,.;een any tHO bright
spots, a.ndt~e intensities amoJ1f the b:r.ight spots 0.130 v?ry fX'OP1 one to the
other. For a detailed explanation see, for example, reference [5].
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noVi, an additional.mask is made to block all but the horizontal array of

orders [(1,0), (0,0), and (-1,0)], only the vertical lines of the crossed

grating will be imaged at plane P3. Similarly if all but the vertical ar-

ray of orders [(O~l), (0,0), and (o,-~)] are block~g, the image will be

that of a set of horizontal lines. Furthermore, if the mask allows only

one diagonal array of orders, for example (1,1), (0,0), and (-1,-1), to go

through the lens, the image formed at P3 will be that of a gratin~ with lines

diagonally oriented, 900 from the direction of the orders. The pitches of

the horizontal and vertical gratings so formed are the same as that of the

original grating but the diagonal grating has a pitch of ~. where P is
,

the pitch of original grating. The reason for this being so is easily seen

from the spacing of the orders and eq. (10). The filtered orders and their

corresponding grating images are shown in Fig. 5.

It is now evident that if a crossed grating identical to that of

the model grating at plane PI is erected at plane P3 and optical filterings

are performed so as to form the horizontal, vertical and diagonal grating

images at P3, the interference of this grating with the three images, res-

pectively, Hill give three families of moir~ fringes representing displace-

ments in three different directions.

An example is given in Fig. 6 vlhere the three seDara-ted fami lies

of moire' fringes are shown for a model under load. In order to obtain

the state of strain at a point of interest, it is necessary to draw dis-

placement CUl'vesthrough this point along the direction nt')rmal to the grating

lines from each of these th:c.ee moir~ patterns, and to differentiate the dis-
-.

placement curves gl'aphically at the point to yi..::ldthe follo1>1inp';

dU 0 au" ..0
..

oUgOo0 -t .
& ( 12)E: - -;;y;- E: -. ---- , E: - -----

00
,

45° 900 ;r900a 0
21"45c0
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. .

In so doing, it is important'to bear in mind that the pitches for the hori-

zontal, diagonal, and vertical gratings are
1P -P,

'..{2
respectively,and P,

After this is done, the three normal strains can then be s\IDsti-

ttited either into eqs. (3), (5), and (6), to give the complete Cartesian

components of the state of strain, or into eqs. (7) and (8) to yield the two

principal strains, The process has to be repeated if it is to determine the

state of strain at other points. -"

-.



10

Compa~ison between the Conventional and the Rosette Methods

It.may appear at the fi~st glance that this method is mo~e tedious

than the conventional, because it ~equires three photographs instead of two.

Actually it is much simpler than the conventional method. It may be ~e-

called that the most time consuming part of the moirtmethod fo~ strain ana-

lysis is not the taking of pictures; it is the plotting of displacement curves

../

and the painstaking point by point graphical differentiation of displacement

curves. In the conventional moire method, it requires four displacement

curves (one each for the four der~vatives) and four differentiations to ob-

tain the state of strain at a gene~ic point, whereas the moir~ rosette me-

thod only needs three displacement curves and th~ee diffe~entiations. Fo~

example, as shown in Fig. 6, < . it is desi~ed to determine the state of

strain at point P. For the conventional method displacement curves along

sections A-A and B-B in picture (a) have to be d~awn to obtain ~~ and :~,

respectively, and displacement curves along sections C.:..Cand D-D Jn~picture

(b) have to be. d~awn to yield ~;.. and ~~, _~esp~ctively; whereas fo~ the

rosette method, it is only necessary to draw the displacement curves along

section A-A (from picture (a) ), C-C (from pictu~e (b) ), and E-E (from pic-

ture (c) ) to yield £0' £900' and £450' respectively.

Therefo~e, it is evident that if there a~e many points whose

states of strain are to .be determined, the moir~rosette method presented

he~ein can sav.e many hours of painstaking curve plotting and differentiation~

Furthermo~e as mentionned at the beginning of the paper the conventional me-

thod suffers from. the fact that a large shear error is introduced if the ro-

tation of master grating is not exact; the rosette method, however, does not
~

have this difficultyA. It is easy to see that at points of symmetry the

~..

A It may be noted that with the optical system presented herein if one chooses
to use the conventional moire method for analysis, he only needs to obtain by

filtering, the 00 and 900 patterns, and in so doing also eliminates t~e pos-

sible error caused by the rotation of the master grating.
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conventional and present methods are identical.

CONCLUSION

It may be concluded that the moir6 rosette method, which utilizes

three different fringe patterns obtained from crossed gratings through op~

tical spatial filtering, offers a new approach to the use of moir{ fringes

for experimental strain analysis. It has advantages over the conventional

moirtmethod in that it is less time consuming and more accurate.

/

-,
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