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ABSTRACT

Integral equations for density profiles o fluids inside a slit poreand a
spherical pore are derived using an Ornstein-Zernike systemn of equa
tions. For a hard-spherefluid we specialize to a Percus-Yevick (PY)
closure and a hypernetted-chain (HNC) closure, and aso consider the
BBGKY hierarchy with akind of superposition-approximation(SA) clo-
sure. The bulk correlation needed in the OZ system of equations is
obtained from the PY approximation. These approximations, which
will be referred as the PY/PY and the HNC/PY approximations and
the BBGKY-SA scheme, are applied to a pure hard-spherefluid. It is
shown that the BBGKY-SA equation is the same as the HNC equation
used with a simple approximationfor bulk direct correlation functions.
The density profiles, partition coefficients, and solvation forces for the
hard-spherefluids insde a slit and a spherical pore are calculated and
compared withsimulationresults. It turnsout that the PY/PY approx-
imation give us a better overall agreement with simulationsthan either
the HNC/PY approximationor the BBGKY-SA schemein the dit-pore
system. However, the PY /PY approximationyields some unphysical re-
sultsfor high concentrationsand certain valuesd theratio of spherical-
pore diameter to hard-spherediameter, whilethe HNC/PY approxima-
tion is the best among the three approximationsin the spherical-pore
system when compared with ssimulation results. A non-local density-
functional formadr closure, introduced by Blum and Stell for the flat-wall
problem, is also discussed, but not assessed numerically.
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I.INTRODUCTION

Recently, the structure and thermodynamics o fluids inside micropores have
attracted wide attention!—11, This is because such systems are not only related
to various separation processes such as adsorption, excluson chromatography and
membranetransport, but they also exhibit a richer variety of thermodynamicland
structural behavior than bulk fluid systems. Glandt and aso Post and Glandt?
have considered the partitioning between the pore and bulk phases and obtained
the density expansion of the density profileinside various pores. McQuarrie et al®
have considered the virial expansion o the grand potential for the particles in-
side spherical and slit pores. Computer simulationsd a spherical?, slit-like®® and
cylindrical pore’™8 have been carried out for hard-sphere®%7 and Lennard-Jones
fluids®8. Integral-equationtheories for fluidsinside a slit pore have been investi-
gated by meansof a BBGKY hierarchy with akind of superposition approximation®
(using a method in which both bulk and average densities haveto be inputted), as
waell as a shielding approximati onY,inwhichtheresulti ngdensity profileisa product
o the density profile of a single-wall and an exponential factor. In this approxi-
mation for a hard-spherefluid, the contact vaue o particles at the surface of a
dlit pore is the same as the contact value o hard spheresin contact with a single
wall, which is not necessarily a good approximationfor a small pore. Some other
methods, such as the generalized Van der Waals theoryl® and the use  an sim-
ple one-dimensional modell! have also been applied to the slit-pore problem. To
our knowledge, there have heretofore been no general integral-equation theoriesfor
fluidsinside a spherical pore, which we shall develop in this paper.

Unlikethe system o a semi-infinitefluid against asinglewall, afluid insidea
single spherical micropore is a finite closed system. As a result, the homogeneous
bulk phase that is the most appropriate reference system to use in describing the
confinedfluid isnot so obvious. Onechoiceisto take the homogeneoussystemwhich
has the same chemical potential as the fluid insde a pore. However, the chemical

potential is often not so easy to calculate, either by computer smulationsor by
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meansd integral equations. Therefore, thischoice, asit hasjust been described, is
often not useful in establishing the relationship between bulk and fluid in a pore.
However, this choice can be described in an alternativeway. That is, the bulk phase
corresponding to the confined phase is taken to be the homogeneous syetem that is
found when the external force for maintaining the inhomogeneity of a system in a
grand ensemblel? is turned off. We find that the use o this reference state (which
is not new) is extremely convenient in deriving and understanding the integral
equationsfor pair correlationsin confined fluids.

Asthefird d aseriesd paperson fluids confined to micropores, the purpose
d this paper is to establish integral equationsfor a fluid insde of a spherical and
dit-like pores by using two methods: the Ornstein-Zernike(OZ) equation!? and the
BBGKY hierarchy!3. The Oz equation isgiven aformally exact closurefrom which
the Percus-Yevick (PY) closureand hypernetted-chain (HNC) closure are obtained
with the bulk correlation needed in the OZ system o eguations obtained from the
PY approximation. The BBGKY!? hierarchy isclosed with a kind of superposition
approximation (SA)%14 closure. These approximations will be referred to here
as the PY/PY approximation , the HNC/PY approximation, and the BBGKY -
SA scheme. Integral equations for the system o fluids inside a cylindrical pore
will be the subject o another paper. It should be noted the OZ equation with
an HNC/MSA closure (where MSA stands for mean spherical approximation) has
aready been applied to an ionic system confined between two walls!®, Here we
shall derive these equations in a nonionic case (where MSA = PY ) in a different
way. We obtain equivalent equations o a simpler functional form by introducing
somewhat different functionsfrom those used in ref 15.

This paper is organized asfollows genera formulationsfor the fluid inside a
pore in terms o the OZ equation and the BBGKY hierarchy are given in section
IT and III respectively. Numerical methods for solving these integral equationsfor
a hard-spherefluid are described in section IV . Quantitative results are discussed
and compared with simulation results®® in section V. For simplicity, we focus in
thispaper on a one-species hard-spheresystem o particlesinside hard spherical and
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dit pores. A density-functional closure considered earlier in the bulk-fluid problem
by one of us and introduced into the flat-wall problem by Blum and Stell may prove
advantageousin consdering system with attractive potentials. Thisis discussed in
section VI.

O. THE OZ EQUATION

A purefluid of particlesinside a spherical or dlit pore can be considered as
a special case o a binary mixture o two species : molecules, which are taken as
hard-core moleculesd diameter d,, and indicated with a subscript m, and a pore,
indicated with a subscript p, which is modded as a hard core which has a radius
d R, enclosed by a concentric hard spherical shell which has an inner surface of
radiusdf R, L and an outer surface d radiusd’ R}. It is obvious that we have
a spherical pore if we take away o the inner hard core and a dit-like pore when
Ry = oo.

In terms of this model, we shall consder a smple hard-core pair potential
with a soft tail between molecules

Bumm(r) =oc0 ifr<dm 21)
= Bulpm(r) otherwise

where d,,, is the diameter o molecule species, and we let the potential between a
molecule and a concentric spherical pore be

Bump(r) =00 if r < (Rp + Rp,)
= Bubnp(r) if (Rp+ Rpm) <7 < (Rp+ L — Rp)
=00 if (Rp+L— Rp)<r<(Rp+ Rp)

=0 othewise

(2.2a)

where Ry, = dp /2 and the tail potential ubpp(r) comes from the interaction of a
molecule with the inner hard core and the inner surface o the pore. Findly, we let
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the potential between a molecule and a spherical pore be
Bump(r) = ﬁuf,,p(r) if0<r<(L—-Rp)
=00 if(L—Rp)<r<(Rp+ Rm) (2.20)
=0 otherwise

The OZ equation is directly applicableto this binary mixture. We have,

hmm — ¢mm = Pmbhmm * cmm + Pphmp * Cpm (2.3)

hmp — emp = Pmhmm * ¢mp + Pphmp * cpp 2.4)
= pmhpm * Cmm + Pphpp * cpm
where ¢;;, h;i; are the direct and indirect pair correlationfunctions between particle
speciest and j respectively, and p; is the number density of particled species:.
Since we only consider one pore, that is, p, — 0, equation (2.3) becomes the
OZ equation for a one-component hard-corefluid. We have

hmm — emm = Pmbhmm * cmm (2'5)

In the ssimplest case o hard spheres, a solution iswdl known if the Percus-Yevick
(PY) closureis used!®. Equation (2.4) in this limit is also smplified:

hmp —Cmp = Pmhmm * Cmp

(2.6)
= pmhpm * Cmm
which can be rewritten as
Imp(r) = Cmp(r) T Pmbmm * Cmp 2.1
= Cnp(r) T PmCmm * Gmp
where we have used equation (2.5) and the relation
Imp(r) = hmp(r) +1 (2.8)

Here gmp(r) is the density distributionfunction of moleculeswhen the poreis fixed
at the origin. We have also introduced

Cmp(r) = emp(r) + a1 (2.9a)
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wherea; is

a3 = 1- pmmm (0) : (2.95)

with the tilde denoting a 3- D Fourier transformation.

Regarding Amm and emm as known functions, one can introduce an exact
closure by giving a second exact relation between hmp and emp, independent of
(2.6), which in general must be expected to also involve bulk correlation functions.

For example we can writel3

emp(r) = Fmp(7)[9mp (1) — emp(r)] + emp(r)dmp (r) (2.10a)

where fmp(r) isthe Mayer f-function, emp = fimp +1, and dpp(r) isartail function.

Alternatively, we can write

cmp(r) = hmp(r) — Ingmp(r) — Bmp — Bmyp() (2.100)

where Bpmp(r) is a bridge-function!3. Neglect of dpp and By yield PY and HNC
approximations, respectively, which we consder below. Closures of a somewhat
different “non-local” form that may prove especially useful when considering ¥mm
and ump that havesoft attractive contributions are discussed in section V1.

If one usethe analytical solutionfor emm(r) in the PY approximation!2:16 for
hard spheres, then, onefinds

_ (1+2n)?
a1 =TT (2.11)
where n is the packing fraction, which is defined as
n= %‘Pmdtsn (2.12)

If we turn off the external force(Bump = 0), then equation (2.7) with the PY

closure or the HNC closure!? will give us a solution
r

where pp,(r) is the density profile of the molecules inside a pore. Therefore, the

solution o the OZ equations will give us the mean distribution of particlesin the
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inner spherewhich is in equilibriumwith a homogeneoussystemwith a bulk density
o pm. Now wedivideour treatment o theequationsfor spherical and dlit poresinto
two subsections. At this point, for computational simplicity, we consider the most
easily handled case o the hard-spherefluid in hard-wall pores, with the ubm(r) of
equation (2.1) and ubnp(r) of (2.2) set equal to eero.

1. A Slit-like Pore

If we usethe PY closurel?, then we have
hmp(r) = -1 ifr < (Rp+ Rp)or (Ry+ L—Rp) <r<(Rp+Rym) (2.130)

¢mp(r) =0 if (Rp+ Rm) <r< (Rp+L—Rpy)orr>(Rp+Ry)  (2.13D)

where we have used equation (2.2a). Or, equivaently, from equations (2.8) and
(29),

gmp(r) =0 ifr<(Ry+Rp)or (Rp+L—Rp)<r<(Rp+Rm) (2.14a)

Crmp(r) =a; if (Ry T Rm) <r< (RpT L= Rm)orr>(RyTRy) (2140)

By using bipolar coordinates and equation (2.14a), the second equality of
equation (2.7) becomes

_ 27pm [(Rpt+Ll—Rm) (r+s)
omp(r) = Cmp(r) + — /(R,+R...) *gmp(2)de /Ir—cl temm (1)t (2.15)
27pm [ (r+e) :
+ f( w sk Sme(e)de /l L temm(0)d
By noting the fact that1®
hh(r) =0 ifr>dn (2.16)

it is easy to see that the last term in equation (2.15) iszeroif r < (R, T L — Rp)

(r+s)

Imp(r) = Crmp(r) + I temm(t)dt.  (2.17)

2% Pm /(RP+L"Rm)
r  J(R,+Rm)

That means the distribution of particlesinside the hard spherical shell is indepen-
dent of how thick the hard shell is asit should be. Similarly, it is easy to show

8gmp(8)ds /ll

r—a
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that the distribution o particles outside a hard spherical shell only depends on
the radius o the outer sphere, R},. Therefore, we see that the solution o the OZ
equations will satisfy these exact conditionsif one uses the PY approximation in
the bulk-fluid regions.

Since theform d the pair correlation functions gmp(r) inside a spherical shell
is independent of the radiusd the outer sphere, R, from now on, we shall let

Rp — o0 (2.18)

for smplicity. In thislimit, it isobviousthat equation (2.17) isvaidfor all distances
r if one reapplies equation (2.14a) to equation (2.7). Then it iseasy to provefrom
equation (2.17)

Cmp(r) =0 ifr>(Rp+ L+ Rp) and r < (R, — Ry) (2.19)

where we have used equation (2.16).
In thelimit of Ry — oo, equations(2.7) and (2.19) with the PY closure (2.13)
becomel?, after changing coordinatesto z=r = Rp — L /2

Imp(2) = Crmp(2) + P [ @’ hemn (I = ¥')Cimp ()

= Crmp(2) + Pm / dr'emm(|r = ©'|)gmp(2') 220
gmp(z) =0 z2<-L/2+Rporz>L/2— Ry (2:21q)
Cmp(2) =0 z2<—-L/2—-Rporz>L[2+Rp (2.21b)

Cmp(2) =a1, —L[2+Rp,<z<L/2-Rp (2.21¢)

where §(z) = y(r — Ry, — L/2) and y is the gmp Or Cpp function. It is easy to
verify that equation (2.20) with closure (2.21) isinvariant under the transformation
a+ —z. Thereforethe solution o these equationswill be symmetric, as it should
be.

The partition coefficient2is defined as the ratio o the averaged density pm
inside the core to the bulk density, p

= om (2.22)

— pmc
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where p,, is the average density insde a pore. For a dlit pore, we have

L/2-R,,

K=2k La”“’ (2)dz (2.220)

Using the 1-D Fourier transformationd the second equality of equation (2.20) with
equations (2.21b,c), we have,

L/2+Ry,) _
K =Ko+ '1%1{ ﬁ/ﬁfk,,.)’ Crmp(®) d2) (2.22b)
where
Ko= (1~ A

is the so-called Henry's-law constant2(¢) for a dlit pore, and A = dp /L.
As p, — 0, We have, from the first equality o equations (2.20) and equation
(2.21a), if (~L/2 = Rm) <2< (=L/2%F Rp) or (L/2 - Rw) <z< (L/2% Ry),

Cmp(2) = Gmp(2) =0 (2.23)

Therefore, the second part o eguation (2.22b) goes to zero in this limit and the
partition coefficient calculated via equation (2.22b) has the right low-concentration
limit18,

K- Ky ifpp—0 (2.24a)

In addition, it is easy to show that equation (2.22b) satisfies the exact limiting
conditions

K—1 ifA—-0 (2.24b)
K—0 ifA—-1 (2.24¢)

The Gibbs absorption for aglit pore, which satisfies the equation®

/L/2 R,,.

—L/2+Rm Pm() Pm)1 . (2'25)

has a diiect relationship with the partition coefficient

T = puL(K — Ko) (2.26)
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where we have used equation (2.22a), the definitiond Ko = 1— A, and pm(2) =
Pmimp(2). Since "the adsorption process is one o volume-filling rather than o
surface-covering in micropores”z("), we shall focus on the partition coefficient in-
stead of the Gibbs absorption, I'. The solvation forcel per unit area inside a slit
pore satisfies the following equation

ag ﬁmp (z)

Bf = "/ngmp(z) (2.27)

which becomes
Bf = 20mImp(L/2 — Ry)) = 28PY (2.28)

wherewe have used the symmetry of gpm(2) and where P% isthe pressure exerted
by moleculeson walls. We note that the relationship between fimp(2) and ump(r)
is same as the relationship between gmp(2) and gmp(r). PY should approach the
bulk pressure as the distance L between two hard walls increases according to the

exact contact-valuetheorem for a single hard-wall problem14.
2. A Spherical Pore

Thederivationd theequationsfor afluid insideaspherical poreisvery similar
to the slit-pore derivation. Therefore, we shall not dwdl upon its details. By using
eguation (2.2b), we havethe PY closurefor a spherical pore

gmp(r) =0 ifr>L—Rp (2.29q)

Cmp(r) =a; fr<L—-Ry (2.290)
and we aso have

Cmp(r) =0 ifr>L+ Ry (2.29¢)

where we have used equation (2.18).
For a spherical pore, we have the partition coefficient, from it's definition

(equation (2.22)), given by
gmp(0)

K= Gaynre

(2.30)
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where the tilde indicates a 3-D FFT. Using the second equality of equation (2.7)
aong with equations (2.29b,c), we have

3 [(L+Rm) ,
K =Ko+ /(L—R,,.) r2Cpmp(r)dr (2.31)
Here
Ko=(1-2)3

is Henry's-law constant(®) for a spherical poreand A = R,,, /L.

Again, we have

K—- Ky ifpyu,—0 (2.32a)
K—-1 ifA—=0 (2.32a)
K—-0 ifi—1 (2.32b)

The solvation force inside a spherical pore satisfies the equation

BF = —4nr / rzpmgmp(r)%—'%n:—('-.ldr (2.33)
which becomes
Bf = Los = (1= )omtmp(L — B (2:34)
if we substitute equation (2.2b) into (2.34). Therefore,
;% =(1=2)? aspm—0 (2.35)

where p® isthe bulk pressurewhich satisfied the ideal-gas behaviour as the density
of molecules goes to zero.

It isworthnoting that L representsherethe radiusd aspherical pore, whereas
we have usad it to denote a distance d separation of two wa | s in the slit pore
problem.

In summary, we need to solve the equations (2.20) and (2.21) in the dlit-pore
problem and equations (2.7) and (2.29) in the spherical-pore problemfor density
profilesin the PY /PY approximation. In the HNC/PY approximation, equation
(2.7) with equation

gmp(r) =0  ifr>L-R, (2.36a)
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Ingmp(r) = gmp(r) — Cmp(r) —1+a; ifr<L—Rp (2.360)

formsaclosed set o equationsfor the spherical-pore problem, while equation (2.20)
with equation

Imp(2) =0 2<~L[2+Rporz>L[2—Ry (2.87q)

Ingmp(2) = Fmp(2) = Cmp(2) —1+a; f ~L/2+Rp<z<L/2—-Rp (2.37))

forms a closed set o equationsfor the slit-pore problem.

Once the density profile is obtained in either approximation, the partition
coefficient is calculated from equations (2.22a) and (2.30) and the solvation force
from equation (2.28) and equation (2.34) in the dlit-pore and spherical-pore prob-
lems respectively.

IoI1. THE BBGKY HIERARCHY

Thefirst member of the BBGKY hierarchy 13 is the equation

Vig1(ry) = —(BV14)91(r1) — pB f Viu(rig)ga(ry,re)drs  (3.1)

where gy (ry) and g(r1,r2) are the one-particleand two-particle distribution func-
tions respectively and u(ry3) is the pair potential between particles. The 4 isthe
external potential energy. We introduce a kind of superposition approximation5:14,
given by

92(r1,73) = gmm(r12)g1(r1)g1(r2) (3.2a)

where gmm(r12) is the distribution function o homogeneous system when the ex-
ternal forceisturned off. Physically thisansatz reflects the assumptionthat spatial
inhomogeneities appearing in the two-particle correlation can be expressed as the
independent effectdf the inhomogeneitiesacting on each particle. When generalized
to include momentum correlation through the coordinatesx; = (r;, P;), Where p;
is the momentumd the i-th particle, the ansatz

g2(x1,x2) = ga(r12)g1(x1)g2(x2) (3.2b)
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is the one implicitly used for the contact value rj9 = d for precollisond p;
by Enskog!9 in his hard-sphere kinetic theory. More recently (3.2b) was used
as the bases 0 the theory of the eectron gas of Singwi, Tosi, Land, and
Sjolander(STLS)19%,

Equation (3.2a) becomesthe familiar Kirkwood superposition approximation
in aspecial cael*. If the only source o the spatial inhomogeneity is the field of
a single molecule at rg, then, ga(ry,rz) becomes gs(ry,ra,rs), the three-particle

distribution function, while gy () -+ gmm(rs3) o that (3.2a) becomes

93(r1,72,T3) = gmm(r12)9mm(r18)gmm(ras)

which isjust the Kirkwood superposition approximationfor a molecular system.
If we define® V,G(r13) by the equation

V1G(r12) = gmm(r12) V1u(r12) (3.3)

then, we have, after integratingover theequation (3.1) with help of equations (3.2a)
and (3.3),

Ingy(r1) = —B¢ + C — pB [ G(riz)gu (ra)drs (3.4)

where C is an integration constant which can be determined by turning off the
external force(84).
oo
C = 4npfB /0 t2G(t)dt (3.5)

The main differencebetween equation (3.4) and a similar equation obtained in ref
5is that our integration constant is directly connected to bulk properties and the
constant of that referenceis related to the averagedensity insidea pore. The above
equationsin Sec. IIlare perfectly general for hard-core particles. We now specidize
to the hard-spherecase, where we have®

ﬁG(r) = {(ﬂ)mm(dm) : Z g: ] (3'6)

Therefore,

C = 8ngmmldm) = 4-(';—(2_—;’-)1’} (3.7)
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where we have used the Carnahan-Starling (CS) equations o state!? to obtain
gmm(dm)-
Now, for adlit pore, using the previous notation, we have,

InGmp(2) = ~Blimp(2) + C — pmsB / G(Ir = ¥'|)Bmp (#')dr’ (3.8)

When L £ 2d,, or A = d,,/L 2 05, it turns out that the equation (3.8) can
be manipulated analytically® to give

lnﬁmp (2) = C + Tpmgmm (drn)[QO(‘z2 - d?n) + 92] (3'9)

where
do = / Gmp(2)dz (3.10a)
g2 = / 2 Gmp(2)dz (3.100)

The equation (3.9) is still a non-linear equation that must be solved for go and g3.
However, we can at least immediately seefrom it that lngmp(2) is a function of P
if A=dn,/L 2 05 The partition coefficient and solvation force for a dlit porein
the BBGKY with the kind of superposition approximationgiven by equation (3.2a)
can aso be calculated from equations (2.22a) and (2.28).
For a spherical pore, we have, from equations (3.4) and (3.7),
L min(r+e,dm)

Ingmg (*) = Imm (dm) (81 — =P / *9mp(s)ds Jir—s| tdt]  (3.11)
It iseasy to seethat gmp(r) is a constant insideaspherical pore when L < 2Ry, or
A=Rpn/L 205 Wehave

(1-x3

lngmp = ﬂgmm(dm) (8 S gmp) (3-12)

At low density, we have

g A3 (8ngmm (dm) + 1)
™= X ngmm(dm) (1 — A)

The partition coefficient and solvation forcewill be, if A > 0.5,

(3.13)

= (1= 2)%gmp (3.14)
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Bf=(1- A)zpmgmp (3.15)

where equations (2.30) and (2.34) have been used. The density expansion d equa-
tion (3.14) givesus
K=@-2)3
+ (—9a3+ 3022 —30a + 28— 1501 t6r"2 - 273)y @16
+ (6323 + 26422 — 507) + 628 — 56721+
378072 —189A~3 + 7204 — 1825 + 227 6)pn?/2
where the first two terms are exactly same as the result obtained in ref. 2(c).
It isinterestingthat the BBGKY-SA equation (3.4) can berelated to the Oz
equation (2.6) with the hypernetted-chain(HNC) closure 12

Ingmp(r) = hmp(r) — emp(r)- (3.17)

Combining OZ equation (2.6) with equation (3.17), we can immediately obtain

equation (3.4) if we assumethe bulk direct pair correlationfunction

emm(r) = —BG(r) (3.18)
which is for hard sphere molecules

emm(r) = { g Smm{dm) 7 < dm (319)

r>dn,

where we have used equations (3.6). For a hard-sphere system, this is exact in
the limit in which one of the molecules is a point molecule, but otherwise not as
good as an approximation as the PY approximation ( which is also exact in the
same limit). In particular, it will violate the core condition gpmm(r) =0 for r < d,,
when used with the m — m OZ equation. As a result, in terms o its two-particles
correlation function input, we would not expect the BBGKY-SA to be as good
an approximation as the HNC/PY approximation. Equation (3.18) is also used in
the STLS theory1%. Since there is no extended repulsivecore in the electron-gas

problem, the violation o the core-condition is not as seriousin that approximation.
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N. NUMERICAL METHODS

For the spherical-poreproblem, as the diameter of a poredp — o, thesolution
of equations (2.7) with a PY closure relation (2.29) should approach the solution
of the problem for hard spheres against one single hard wall with the PY closure
for both the wall-particleand bulk problems. In order to solveequations (2.7) and
(2.29), we usea referencedirect pair-correlationfunction whichisobtained from the
analytical solution of the binary hard-sphere mixture in the PY approximation!®.

In our notation, this gives us

Crif () = cmp () T ay (4)
cv':‘{(r) = cﬂy(—dpr dm, Pp>Pm, “'r) (4.2)

where efY (d1,dz, p1,p2,7) is the analytical solution of the distinct direct pair cor-
relation of a binary PY hard sphere mixture with hard-spherediametersds, dg and
densities py,p9 respectivelyl®. Asa result, we have

if r < (dp — dm)/2
crl(n) = {(bz — ddpmdz® + dzt)[r if (dp —dp)/2 <r < (dp+dm)/2 (4.3)
if r > (dp + dm)/2

where
z=(dp+dm)/2—r (4.3a)
dpm = (dp + dm) [2 (4.3b)
b= —3nmdmginn(dm)g12 (4.3¢)
d= %nmal (4.3d)
g12 = ("dpgmm(dm) + dmﬂyp) (4.3¢)
=[(1-n) - nmdmdp]/ (1-n)? (4.3f)
ﬂmm(dm) %);5)’27—) o (4.3g)
Nm = 7[6pm (4.3h)

dp =2L (4.34)
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which approaches the analytical resultsdf a PY hard-wall problem!7 as dp — m.
Then, the second equality of the equation (2.8) becomes

Imp(r) = Crmp(?) + Pmbmem * Ched + Pmbhmm * ACmg (4.4)
where
ACnp(r) = Crnp(r) = Ciel () (4.5)

whichis nonzeroonly in theregion (dp — dy) /2 < r < (dp +d,,) /2. Equations (4.4)
with (2.29) can be easly solved by an iterative method through the FFT technique.
The equation (3.11) which is derived from the BBGKY hierarchy for the
spherical-pore problem can be easily solved by using 3-DFFT methods.
The solution for adlit pore is very similar to that o a spherical pore. First,
since both gmp(2) and Cpmp(2) are even functions, we have,

v = [ dzeey(e) =2 [ decos(kz)u(2) (4.6)

where y(k) is one-dimensional fourier transform o y(z), which is an even function,

and y is Cmp(2) OF gmp(z) function. Then equation (2.20) becomes

Imp(k) = Crnp(k) = Prhmum () Crnp (F) (4.7)
where

Frmem (K) = f‘ki '[0 * drrsin (kr) A () (4.8)

Multiplying equation (4.7) by e~*%#/(2x) and integrating over k from —oco to m,
We have,
(2) - C = Pm /oo dkcos(kz)hmm (K)Crmp (K (4.9)
Imp(2) — mp(z) =7 Jo mm (K)Cmp(K) .
Since both A (k) and Cypmp(k) are even functions.

Cmp(2) can also be divided into a reference part and fluctuation part just as
Cmp(r) isin equation (4.5):

ACmp(2) = Cmp(2) — Cred (2) (4.10)
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Here, the reference part will be taken from the analytical solution of the PY hard-
wall problem!?. Substituting equation (4.10) into (4.9), we have a equation similar
to (4.4) which can be solved by an iterative method.

The equation (3.8), which is derived from BBGKY hierarchy for the dit-pore
problem, can be easily solved iteratively by using 1-D FFT methods.

For the HNC/PY approximation, the method of solving integral equationsis
basicaly the same. We shall therefore not give the detailed development here.

V. QUANTITATIVERESULTS
1 Resultsfo a Sit Pore

Partition coefficients, K /Ky, are shown in Figs 1-2, where they are given
asfunctionsd the ratio of molecular diameter to ditance between two hard walls,
dm /L, and d the bulk density of molecules, calculatedin the PY/PY and BBGKY -
SA schemes. |t can beseen that the averagedensity obtainedfrom the BBGKY -SA
is higher than that obtained from the PY/PY approximation.

The pressure acting on the wal, BPW d3,, which is obtained by the simu-
lation method®, the BBGKY-SA, and the PY/PY approximation, is plotted as a
functiond L/d,, —1in Fg3. It isseen that at a very small separation of walls
((L~dm)/dm < 2/31, theresultsdf PY/PY giveusgood agreement withsimulations.
However, becausethe PY /PY approximationdoes not satisfy the contact-valuethe-
orem at one single hard-wall problem!4, the pressure obtained by this approxima-
tion does not approach to the bulk pressurees the ditance between twowalls (L)
increases, while the results obtained from BBGKY-SA schemes do have the right
limit and are in rough agreement with simulationresultsfor (L — dp,)/dp > 2/3 a-
though the BBGKY -SA pressure appearsto approach the bulk density muchfaster
than the ssimulation pressure does. It should be noted that here and hereafter in
this paper the bulk pressureis calculated from the Carnahan-Starlingequation o
statel?,
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The solvation force (which is twice as large as the molecular pressure acting
on the wall) as afunction o density is aso shown in Fig.4.

Resultsd density profiles obtained from the PY/PY and HNC/PY approxi-
mationsas wel as the BBGKY -SA approximationare compared with thesimulation
results® in Fig.5. |t turns out that the PY/PY approximationgives us better results
than either the BBGKY-SA or the HNC/PY approximation. It should be noted
that resultsdf the BBGKY -SA equation obtained inref. 5 givegood agreement with
simulationswhen L < 2d,,. This is because ssmulation values o average densities
areinputted in that reference. Therefore, the resulting equation is a semi-empirica
equation in such comparisons.

2. Resultsfor a Spherical Pore

Partition coefficients, K/Kgp, caculated by means o the PY/PY and
HNC/PY approximations and the BBGKY-SA are plotted as a function o the
diameter ratio, A, at different dendties in Fig.6. It turns out that results ob-
tained fromthe PY/PY approximationare again smaller than that obtained by the
BBGKY-SA (just as in the case of adlit pore) and the HNC/PY approximation.

Partition coefficientsas a function o reduced molecular density are also plot-
ted in Fig.7. In Fig.8, the reduced solvation force, f/[pB(1 — A)?], as a function
d molecule/pore-diameter ratio shows an oscillating structure as shown in Fig.3.
Agan, we see that only the BBGKY-SA satisfies the contact value theorem as
A — 0. The reduced solvation force as a function of the reduced molecular density
at the fixed diameter ratio isshown in Fig.9.

Resultsd density profilesfor the particlesinside aspherical pore are plotted as
afunction o distancein Fig.10. In Fig.10f, results obtained by using the PY/PY
and HNC/PY approximations and the BBGKY-SA scheme have been compared
with arecent simulationresult®. It isseen that HNC/PY resultsare the best among
three approximations compared with the ssmulation data. The results from the
BBGKY-SA scheme show an unredlistic crystallization o fluids insde a spherical
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pore(fig.10f), whilethe PY /PY approximationgives usunphysical (negative) gmyp ()
results(Fig.10b,d) at certain valuesd A.

Fig.11 showsthe direct comparisonsbetween density profilesin different pores.
It turns out the density profile inside a spherical pore has a more pronounced
structure than that inside a dit pore. This is because the spherical pore involves
more spatial hindrance than the dlit pore.

In.summary, compared with simulationthe PY/PY approximationis the best
approximation among the three approximationswe studied in the dit-pore case,
while the HNC/PY approximationis the best in the spherical-pore problem. Sev-
eral earlier methods, which were used for improving the PY/PY approximationin
the single-hard-wall problem [for exampl e, renormalized HNC (RHNC), generalized
mean spherical approximation( QVBA) , exponential (EXP) approximation? and
the Plischke-Henderson method?!)] may be applicable here. It will be very inter-
esting to see how good these are when generalized to the pore systems. However,
more simulationsare clearly needed for further comparisons.
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VI EXTENSIONS

There is evidence?? that standard closures o the sort used in section V will
not provide an adequate treatment of "surface* phases important to wetting phe-
nomenathat occur in systems in which the molecular pair potential and the pore-
molecule potential have attractive terms. We briefly outline below an alternative
closure formalism of a non-local density-functional form that may prove useful in
this regard. It is based upon an expansion d the direct correlation function that
was introduced?3:24 some time ago by one o us to study critical phenomena, and
subsequently extended by Blum and Stell?3 to the wall problem and by Sullivan
and Stell?® to the two-phase interface problem. The wall-problem extension of
Blum and Stell is immediately applicable to the pore problem except for trivial
notational changes. Instead df (2.10), equation (44) o [24] yields

Cmp(r) = —Bump(r) — Blttpe(r) = 1 — Pmhmp (");9?;;} + 2 Salr) (6.1a)

n>1
Here
S1(r12) = Pm / [hmp(r1s) — hmp(r12)][é(ras) s (12) — E(ras)]drs (6.10)
and, for n 2 2,
o= n+1
Sa(riz) = / Hzlhmp("u) = hmp(r12)]8(2,- -+ ;7 + 2) po(13)drs - - drnyg, (6.1¢)

where u is the chemica potential of species m, and Bps(r) IS K evaluated at pm =
p*(r), afunction we discuss below. Also,

&(ras) = c(ras) — 6(r2s)/pm., (6.1d)
a 5" 2%(r
B0 s M) = Btre] o= (6.1¢)

When py(r;) istakento be p,,, (6.1) reducesto aloca density-functional expansion
o emp(r) yieding an expansion that stands to the mean-spherical approximationas
(2.10a) and (2.10b) stand to the PY and HNC approximations, respectively. The
non-local analogs o (2.10a) and (2.10b) are obtained form (48) and (47) in ref.
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[25]. In that reference, p*(r) is taken to be pmgmp(r). For asymptotic analysis
this is a natural choice, but as a source of integral-equation closures, the choice
is computationally awkward one, primarily because o the large rapidly-varying
excursions from one that hmg(r) can be expected to make as a function of r for

small r and large py,. Instead a smoothed weighted mean of gy (r) of the form

p*(r12) = [ gpm(riz)mlras)drs, (6.2

with m(r) an appropriate weight function, appears to be a much better choice.
Perhaps the simplest choice appropriate to the problem at hand has already been
considered by one of us as part of more general discussing of effective-dengity
approaches!®. |t yieldsthe result [ Eq. (12-13) of ref. 19¢ |

m(r) = £(r)/ / f(r)dr (6.3)

where f (r) is the mayer f-function, f (r) T 1 = exp[—Bumm(r)]. A choice that
is equivalent for hard spheres was subsequentely considered by Tarazona?? and
Tarazona and Evans?8. in the somewhat different context of a non-local density-
functional theory for free-energy functionals. Other less ssimple choices were aso
discussed in ref. [19¢] as well as in later work by Tarazona?® and by Curtin and
Ashcroft30. Their work is not in the integral-equation context we consider here,
however. Further investigationwill be needed to determinewhich choiceyields best
resultsfor pore problemsin the presence of attractive terms. For such problemsan
analogous non-local closure may wdl prove necessary in the determination o the
bulk direct correlationfunction too.
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Figure Captions

Fig.1 The partition coefficient, K/Kg, for a dlit pore as a function o the diameter
ratio ,A(= 4gl), at reduced bulk densities ppd$,= 05. The PY/PY approxi-
mation (—), the BBGKY-SA (— - —),

Fig.2 The partition coefficient, K , for adlit poreas afunctiond the reduced density,
Pmds, at different diameter ratios. From lower to upper sets o curves A =
0.5,0.25. Other symbolsas in Fig.1.

Fig.3 Thereduced pressureacting on thewall, BPW d3,, as afunctiond (L—dy,)/dm
at afixed reduced density py,d3, = 0.5. Simulation results® (). Straight line:
the reduced bulk pressure, 8p€d%,. Other symbolsas in Fig.1.

Fig.4 The reduced solvationforce (f/pP) for adlit poreas afunction of the reduced
density, pmds,. From lower to upper sets o curves at ppmds, = 06, A =
0.25,0.5. Other symbolsas in Fig.1.

Fig.5 The density profile, pm(2)d3, inside a dit pore as a function distance,

z2{(L/2— Ryp,). ThePY/PY approximation(—), the HNC/PY approximation

(- = -) and the BBGKY-SA (— - 5. Simulationsd ref. 5(e).

pmdy =05, A =1115

Pmdin = 0.5, A =1/2.0

Pmdn =05, A =1/3

Pmdin =05, A = 1/4.78

e pmdin =05, A =1/5.5

Fig.6 The partition coefficient, K/Kg, for a spherical pore as a function o the
diameter ratio, A(= g:). pmds = 0.5, Other symbols as in Fig.5.

Fig.7 The partition coefficient, K for a spherical pore as afunction o the reduced
density, pmds,, at different diameter ratios. From lower to upper setsof curves,
A =0.5,0.25. Other symbolsas in Fig.5.

Fig.8 The reduced solvationforce, f/[pP(1— )], for a spherical poreas afunction
o the diameter ratio A. pyd¥ = 05. Other symbolsas in Fig.5.

a0 9o
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Fig.9 The reduced solvation force, f/p?, for a spherical pore as afunction of the
reduced density, pmdi,,. From lower to upper sets o curves A = 0.5,0.25
respectively. Other symbols as in Fig.5.

Fig.10 The density profile, gmp(r), for a spherical pore as a function of distance,
r/dm. In fig.10f, simulation data®(e). Other symbolsas in Fig.5.
pmd =05, A =1/2
Pmdin =05, A =1/3
Pmdin =05, A=1/4
Pmd> =05, 2 =1/5
Pmdin =05, A =1/10
f. pmdS, = 0.86, \ = 1/13
Fig.11 The density profileinsideslit and spherical pores. pmds, = 05, A = 1/5.5
The solid line: the PY/PY result in a slit-pore problem, dashed line the

® 2 o0 T w

HNC/PY result in a spherical-pore problem.
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