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ABSTRACT 

Integral equations for density profiles of fluids inside a slit pore and a 

spherical pore are derived using an Ornstein-Zernike system of equa- 

tions. For a hard-sphere fluid we specialize to a Percus-Yevick (PY) 

closure and a hypernetted-chain (HNC) closure, and also consider the 

BBGKY hierarchy with a kind of superposition-approximation (SA) clo- 

sure. The bulk correlation needed in the OZ aystern of equations is 

obtained from the PY approximation. These approximations, which 

will be referred as the PY/PY and the HNC/PY approximations and 

the BBGKY-SA scheme, are applied to a pure hard-sphere fluid. It is 

shown that the BBGKY-SA equation is the same as the HNC equation 

used with a simple approximation for bulk direct correlation functions. 

The density profiles, partition coefficients, and solvation forces for the 

hard-sphere fluids inside a slit and a spherical pore are calculated and 

compared with simulation results. It turns out that the PY/PY approx- 

imation give us a better overall agreement with simulations than either 

the HNC/PY approximation or the BBGKY-SA scheme in the slit-pore 

system. However, the PY/PY approximation yields some unphysical re- 

sults for high concentrations and certain values of the ratio of spherical- 

pore diameter to hard-sphere diameter, while the HNC/PY approxima- 

tion is the best among the three approximations in the spherical-pore 

system when compared with simulation results. A non-local density- 

functional form of closure, introduced by Blum and Stell for the flat-wall 

problem, is also discussed, but not assessed numerically. 
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I. INTRODUCTION 

Recently, the structure and thermodynamics of fluids inside micropores have 

attracted wide attention1-ll. This is because such systems are not only related 

to various sepaxation proceases such M adsorption, exclusion chromatography and 

membrane transport, but they also exhibit a richer variety of thermodynamic1 and 

structural behavior than bulk fluid systems. Glandt and also Post and ~ l a n d t ~  

have considered the partitioning between the pore and bulk phases and obtained 

the density expansion of the density profile inside various pores. McQuarrie et alS 

have considered the virial expansion of the grand potential for the particles in- 

side spherical and slit pores. Computer simulations of a spherical4, s l i t - l i l~e~*~ and 

cylindrical have been carried out for hard-sphere4s517 and Lennard-Jones 

fluids6g8. Integral-equation theories for fluids inside a slit pore have been investi- 

gated by means of a BBGKY hierarchy with a kind of superposition approximation5 

(using a method in which both bulk and average densities have to be inputted), as 

well as a shielding approximationg, in which the resulting density profile is a product 

of the density profile of a single-wall and an exponential factor. In this approxi- 

mation for a hard-sphere fluid, the contact value of particles at the surface of a 

slit pore is the same as the contact value of hard spheres in contact with a single 

wall, which is not necessarily a good approximation for a small pore. Some other 

methods, such as the generalized Van der Waals theory10 and the use of an sim- 

ple one-dimensional modell1 have also been applied to the slit-pore problem. To 

our knowledge, there have heretofore been no general integral-equation theories for 

fluids inside a spherical pore, which we shall develop in this paper. 

Unlike the system of a semi-infinite fluid against a single wall, a fluid inside a 

single spherical micropore is a finite closed system. As a result, the homogeneous 

bulk phase that is the most appropriate reference system to use in describing the 

confined fluid is not so obvious. One choice is to take the homogeneous system which 

has the same chemical potential as the fluid inside a pore. However, the chemical 

potential is often not so easy to calculate, either by computer simulations or by 
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means of integral equations. Therefore, this choice, as it has just been described, is 

often not useful in establishing the relationship between bulk and fluid in a pore. 

However, this choice can be described in an alternative way. That is, the bulk phase 

corresponding to the confined phase is taken to be the homogeneous syetem that is 

found when the external force for maintaining the inhomogeneity of a system in a 

grand ensemble12 is turned off. We find that the use of this reference state (which 

is not new) is extremely convenient in deriving and understanding the integral 

equations for pair correlations in confined fluids. 

As the first of a series of papers on fluids confined to micropores, the purpose 

of this paper is to establish integral equations for a fluid inside of a spherical and 

slit-like pores by using two methods: the Ornstein-Zernike (02) equation12 and the 

BBGKY hierarchy13. The OZ equation is given a formally exact closure from which 

the Percus-Yevick (PY) closure and hypernetted-chain (HNC) closure are obtained 

with the bulk correlation needed in the OZ system of equations obtained from the 

PY approximation. The B B G K Y ~ ~  hierarchy is closed with a kind of superposition 

approximation ( S A ) ~ ~ ~ *  closure. These approximations will be referred to here 

as the PY/PY approximation , the HNC/PY approximation, and the BBGKY- 

SA scheme. Integral equations for the system of fluids inside a cylindrical pore 

will be the subject of another paper. It should be noted the 0 2  equation with 

an HNC/MSA closure (where MSA stands for mean spherical approximation) has 

already been applied to an ionic system confined between two walls15. Here we 

shall derive these equations in a nonionic case (where MSA = PY ) in a different 

way. We obtain equivalent equations of a simpler functional form by introducing 

somewhat different functions from those used in ref 15. 

This paper is organized as follows: general formulations for the fluid inside a 

pore in terms of the OZ equation and the BBGKY hierarchy are given in section 

- I1 and 111 respectively. Numerical methods for solving these integral equations for 

a hard-sphere fluid are described in section IV . Quantitative results are discussed 

and compared with simulation in section V. For simplicity, we focus in 

this paper on a one-species hard-sphere system of particles inside hard spherical and 
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slit pores. A density-functional closure considered earlier in the bulk-fluid problem 

by one of us and introduced into the flat-wall problem by Blum and Stell may prove 

advantageous in considering system with attractive potentials. This is discussed in 

section VI. 

A pure fluid of particles inside a spherical or slit pore can be considered as 

a special case of a binary mixture of two species : molecules, which are taken as 

hard-core molecules of diameter dm and indicated with a subscript m, and a pore, 

indicated with a subscript p, which is modeled as a hard core which has a radius 

of Rp enclosed by a concentric hard spherical shell which hss an inner surface of 

radius of % + L  and an outer surface of radius of RL. It is obvious that we have 

a spherical pore i f  we take away of the inner hard core and a slit-like pore when 

R p = o o .  

In terms of this model, we shall consider a simple hard-core pair potential 

with a soft tail between molecules 

Pumm(t) = rn if t 5 dm 

= pukm(r) otherwise 

where dm is the diameter of molecule species, and we let the potential between a 

molecule and a concentric spherical pore be 

Pump(.) = oo if < (R, + 
= aukP(r)  if(^^+&) < r  < ( R p + L - R m )  

=OO ~ ~ ( R ~ + L - R , ) c ~ < ( R : , + R , )  

= 0 otherwise 

. where R, = dm/2 and the tail potential u&(r) comes from the interpction of a 

molecule with the inner hard core and the inner surface of the pore. Finally, we let 
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the potential between a molecule and a spherical pore be 

= 0 otherwise 

The OZ equation b directly applicable to this binary mixture. ~~e have, 

where cij ,  hi j  are the direct and indirect pair correlation functions between particle 

species i and j respectively, and p; is the number density of particle of species i .  

Since we only consider one pore, that is, pp + 0, equation (2.3) becomes the 

OZ equation for a one-component hard-core fluid. We have 

In the simplest case of hard spheres, a solution is well known if the Percue-Yevick 

(PY) closure is used16. Equation (2.4) in this limit is also simplified: 

hmp - cmp = Prnhmm * Cmp 

= Pmhpm * Cmm 

which can be rewritten as 

grnp ( r )  = Cmp(r) + ~ m h m m  * Cmp 

= Cmp(r) + Pmcmm * gmp 

where we have wed equation (2.5) and the relation 

Here gmp(r) is the density distribution function of molecules when the pore is fixed 

at the origin. We have also introduced 
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where a1 is 
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a1 1 - pmZmm (0) - (2.9b) 

with the tilde denoting a 3-D Fourier transformation. 

Regarding hmm and em, as known functions, one can introduce aa exact 

clwure by giving a second exact relation between hmp and Cmp, independent of 

(2.6), which in general must be expected to also involve bulk correlation functions. 

For example we can writelS 

where fmp(r) is the Mayer f-function, emp = Lp + 1, and dmp(') is a tail function. 

Alternatively, we can write 

where BmP(r) is a bridge-functionlS. Neglect of dmp and Bmp yield PY and HNC 

approximations, respectively, which we consider below. Closures of a somewhat 

different unon-localn form that may prove especially useful when considering urn, 

and ump that have soft attractive contributions are discussed in section VI. 

If one use the analytical solution for cmm(r) in the PY approximation12~16 for 

hard spheres, then, one finds 

a1 = (1 + 2r1I2 
(1 - r1I4 

where q is the packing fraction, which is defined as 

If we turn off the external force(pumP = 0), then equation (2.7) with the PY 

closure or the HNC closure12 will give us a solution 

where pm(r) is the density profile of the molecules inside a pore. Therefore, the 

solution of the OZ equations will give us the mean distribution of particles in the 



Fluids inside a Pore I. Spherical and Slit Ports 7 

inner sphere which is in equilibrium with a homogeneous system with a bulk density 

of p,. Now we divide our treatment of the equations for spherical and slit pores into 

two subsections. At this point, for computational simplicity, we consider the most 

easily handled case of the hard-sphere fluid in hard-wall pores, with the uk,(r)  of 

equation (2.1) and u k p ( r )  of (2.2) l e t  equal to eero. 

1. A Slit-like Pore 

If we use the PY closure12, then we have 

where we have used equation (2.2a). Or, equivalently, from equations (2.8) and 

(2.9) 9 

Cmp(r)  = a1 if (Rp + &) < r < (Rp + L - &) or r > (RL + &) (2.146) 

By using bipolar coordinates and equation (2.14a), the second equality of 

equation (2.7) becomes 

By noting the fact thatla 

it is easy to see that the last term in equation (2.15) is zero if r < (4 + L - R,) 

That means the distribution of particles inside the hard spherical shell is indepen- 

dent of how thick the hard shell is, as it should be. Similarly, it is easy to show 
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that the distribution of particles outside a hard spherical shell only depends on 

the radius of the outer sphere, RL. Therefore, we see that the solution of the OZ 

equations will satisfy these exact conditions if one uses the PY approximation in 

the bulk-fluid regions. 

Since the form of the pair correlation functioru gmp ( r )  b i d e  s rpherical mhell 

is independent of the radius of the outer sphere, R;, from now on, we shall let 

R:, -+ 00 (2.18) 

for simplicity. In this limit, it is obvious that equation (2.17) is valid for all distances 

r if one reapplies equation (2.14a) to equation (2.7). Then it is easy to prove from 

equation (2.17) 

where we have used equation (2.16). 

In the limit of % -+ 00, equations (2.7) and (2.19) with the PY closure (2.13) 

become17, after changing coordinates to z = r - 4 - L / 2  

CmP(z)  =a1, - L / 2 + &  < Z <  L / 2 - R ,  ( 2 . 2 1 ~ )  

where ~ ( z )  n y(r - Rp - L / 2 )  and y is the gmP or Cmp function. It is easy to 

verify that equation (2.20) with closure (2.21) is invariant under the transformation 

a * -2. Therefore the solution of these equations will be symmetric, as it should 

be. 

The partition coefficient2 is defined as the ratio of the averaged density pm 

inside the core to the bulk density, p,, 
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where 9 ,  is the average density inside a pore. For a slit pore, we have 

L12-R" gmp (z) dr 
K =  210 L 

Using the 1-D Fourier transformation of the second equality of equation (2.20) with 

equations (2.21b,c), we have, 

(L'2+G) CmP (E) dz)  ~ = ~ o + = { l  (L12-Rm) 

where 

KO 5 (1 - A) 

is the so-called Henry's-law constant2(~) for a slit pore, and X e dm/L. 

As p, -t 0, we have, from the first equality of equations (2.20) and equation 

(2.21a), if (-LIZ - &) < z < (-L/2 + &) or (L/2 - &) < < (L/2 + &), 

Therefore, the second part of equation (2.22b) goes to zero in this limit and the 

partition coefficient calculated via equation (2.22b) has the right low-concentration 

limit18. 

K + K o  ifpm-+O (2.24~) 

In addition, it is easy to show that equation (2.22b) satisfies the exact limiting 

conditions 

K - + 1  ifA+O (2.24 b) 

The Gibbs absorption for a slit pore, which satisfies the equation1 

has a diiect relationship with the partition coefficient 
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where we have used equation (2.22a), the definition of KO = 1 - A, and pm(z) = 

pmgmp(z). Since "the adsorption process is one of volume-filling rather than of 

surface-covering in micropores"2(c), we shall focus on the partition coefficient in- 

stead of the Gibbs absorption, I". The solvation force1 per unit area inside a slit 

pore satisfies the following equation 

which becomes 

Bf 2pmGrnP(L/2 - %)) = 2ppW 

where we have used the symmetry of hrn(z) and where pW is the pressure exerted 

by molecules on walls. We note that the relationship between amp(z) and urnp(.) 

is same as the relationship between gmp(z) and gmp(r). pW should approach the 

bulk pressure as the distance L between two hard walls increases according to the 

exact contact-value theorem for a single hard-wall problem14. 

2. A Spherical Pore 

The derivation of the equations for a fluid inside a spherical pore is very similar 

to the slitpore derivation. Therefore, we shall not dwell upon its details. By using 

equation (2.2b), we have the PY closure for a spherical pore 

and we also have 

Cmp(r) = O  if T > L+ Rm 

where we have used equation (2.18). 

For a spherical pore, we have the partition coefficient, from it's definition 

(equation (2.22)), given by 
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where the tilde indicates a 3-D FFT. Using the second equality of equation (2.7) 

along with equations (2.29b,c), we have 

Here 

KO ~ ( 1  -A) '  

is Henry's-law constant2(~) for a spherical pore and X &/L. 

Again, we have 

K + K o  ifpm+O 

The solvation force inside a spherical pore satisfies the equation 

which becomes 

if we substitute equation (2.2b) into (2.34). Therefore, 

where pB is the bulk pressure which satisfied the ideal-gas behaviour as the density 

of molecules goes to zero. 

It is worth noting that L represents here the radius of a spherical pore, whereas 

we have used it to denote a distance of separation of two walls in the slit pore 

problem. 

In summary, we need to solve the equations (2.20) and (2.21) in the slit-pore 

problem and equations (2.7) and (2.29) in the spherical-pore problem for density 

profiles in the PY /PY approximation. In the HNC/PY approximation, equation 

(2.7) with equation 

grnp (r) = 0 i f r > L - R ,  (2.36~) 
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forms a closed set of equations for the spherical-pore problem, while equation (2.20) 

with equation 

forms a closed set of equations for the slit-pore problem. 

Once the density profile is obtained in either approximation, the partition 

coefficient is calculated from equations (2.228) and (2.30) and the solvation force 

from equation (2.28) and equation (2.34) in the slit-pore and spherical-pore prob- 

lems respectively. 

III. THE BBGKY HIERARCHY 

The first member of the BBGKY hierarchy l3 is the equation 

where g1 (rl) and g2 (rl , r2) are the one-particle and two-particle distribution func- 

tions respectively and u(r12) is the pair potential between particles. The 4 is the 

external potential energy. We introduce a kind of superposition approximation5~14, 

given by 

82(rl,r2) = ~mrn(rl2)01(rl)~l(r2) (3.2~) 

where gmm(t12) is the distribution function of homogeneous system when the ex- 

ternal force is turned off. Physically this ansatz reflects the assumption that spatial 

inhomogeneities appearing in the two-particle correlation can be expressed as the 

independent effect of the inhomogeneities acting on each particle. When generalized 

to include momentum correlation through the coordinates xi = (ri,pij, where pi 

is the momentum of the i-th particle, the ansatz 



Fluids h i d e  a Pore I. Spherical and Slit Pores 13 

is the one implicitly used for the contact value rl2 = d for precollisional pi 

by ~ n s k o ~ l ~ ~  in his hard-sphere kinetic theory. More recently (3.2b) was used 

as the bases of the theory of the electron gas of Singwi, Tosi, Land, and 

sjaander (STLS) lgb. 

Equation (3.2a) becomes the familiar Kirkwood ruperpomition approximation 

in a special case1*. If the only source of the spatial inhomogeneity is the field of 

a single molecule at rs, then, g2 (rl , r2) becomes g3 (rl, r 2 ,  rs) , the three-particle 

distribution function, while gl(ri) --+ gmm(ri3) so that (3.2a) becomes 

which is just the Kirkwood superposition approximation for a molecular system. 

If we dehe5 V1G(r12) by the equation 

then, we have, after integrating over the equation (3.1) with help of equations (3.2a) 

and (3.3), 

where C is an integration constant which can be determined by turning off the 

external force(B4). 

The main difference between equation (3.4) and a similar equation obtained in ref 

5 is that our integration constant is directly connected to bulk properties and the 

constant of that reference is related to the average density inside a pore. The above 

equations in Sec. IIIare perfectly general for hard-core particles. We now specialize 

to the hard-sphere case, where we have6 

Therefore, 
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where we have used the Carnahan-Starling (CS) equations of state12 to obtain 

gmm (dm). 

Now, for a slit pore, using the previous notation, we have, 

1nPmp(z) = -Pamp(') + C - ~rnP / C(Ir - r'l)grnp(d)&' (3.8) 

When L 5 2 d ,  or X = dm/L 2 0.5, it turns out that the equation (3.8) can 

be manipulated analytically6 to give 

where 

ga / z2 gmP (3.10b) 

The equation (3.9) is still a non-linear equation that must be solved for go and g2. 

However, we can at least immediately see from it that ingmP(z) is a function of z2 

if X = dm/L 2 0.5. The partition coefficient and solvation force for a slit pore in 

the BBGKY with the kind of superposition approximation given by equation (3.2a) 

can also be calculated from equations (2.22a) and (2.28). 

For a spherical pore, we have, from equations (3.4) and (3.7), 

2?r L-& min(r+a,L) 
b m p  (7) = ~mm(dm) [81) - T ; ~ m  /O ' P ~ P  J r-a1 tdt] (3.11) 

It is easy to see that gmp(~)  is a constant inside a spherical pore when L 5 2Rm or 

A = &/L 2 0.5. We have 

At low density, we have 

The partition coefficient and solvation force will be, if X 2 0.5, 
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Bf = (1 - X)'pmgmp 

where equations (2.30) and (2.34) have been used. The density expansion of equa- 

tion (3.14) gives us 

K = (1 - qS 
+ (-9XS + 30X2 - 39A + 28 - 15X-I + 6 ~ - 2  - x - ' ) ~  

(3.16) 
+ (-63Xs + 264X2 - 507X + 628 - 567~-'+ 

6 2 378~- '  - 1 8 9 ~ - ~  + 72X-' - l8X-' + 2X- )q 12 

where the first two terms are exactly same as the result obtained in ref. 2(c). 

It is interesting that the BBGKY-SA equation (3.4) can be related to the OZ 

equation (2.6) with the hypernetted-chain (HNC) closure l2 

Combining 0 Z equation (2.6) with equation (3.17), we can immediately obtain 

equation (3.4) if we assume the bulk direct pair correlation function 

which is, for hard sphere molecules 

where we have used equations (3.6). For a hard-sphere system, this is exact in 

the limit in which one of the molecules is a point molecule, but otherwise not as 

good as an approximation as the PY approximation ( which is also exact in the 

same limit). In particular, it will violate the core condition gmm(r) = 0 for r < dm 

when used with the m - m OZ equation. As a result, in terms of its two-particles 

correlation function input, we would not expect the BBGKY-SA to be as good 

an approximation as the HNC/PY approximation. Equation (3.18) is also used in 

the STLS theory1%. Since there is no extended repulsive core in the electron-gas 

problem, the violation of the core-condition is not as serious in that approximation. 
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N. NUMERICAL METHODS 

For the spherical-pore problem, as the diameter of a pore dp + oo, the solution 

of equations (2.7) with a PY closure relation (2.29) should approach the solution 

of the problem for hard spheres againat one single hard wall with the PY closure 

for both the wall-particle and bulk problems. In order to solve equations (2.7) and 

(2.29), we use a reference direct pair-correlation function which is obtained from the 

analytical solution of the binary hard-sphere mixture in the PY approximation16. 

In our notation, this gives us 

c$(r) = c$ (r) + a1 (4.1) 

where ~ ~ ~ ( d ~ , d ~ , p l , p 2 ,  r) is the analytical solution of the distinct direct pair cor- 

relation of a binary PY hard sphere mixture with hard-sphere diameters dl, d2 and 

densities pl,p2 respectively16. As a result, we have 

where 

x = (dp +dm)/2 - r 
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which approaches the analytical results of a PY hard-wall problem17 as dp + m. 

Then, the second equality of the equation (2.8) becomes 

where 

ACmp ( r )  = emp ( r )  - c:! ( r )  (4.5) 

which is nonzero only in the region (dp - dm)/2 < r < (dp + dm)/2. Equations (4.4) 

with (2.29) can be easily solved by an iterative method through the FFT technique. 

The equation (3.11) which is derived from the BBGKY hierarchy for the 

spherical-pore problem can be easily solved by using 3-D FFT methods. 

The solution for a slit pore is very similar to that of a spherical pore. First, 

since both gmp(z) and CmP(z) are even functions, we have, 

00 
y (k)  jm dzcik'* (2) = 2 /0 dzcos(kz)*(z) 

-00 
(4.6) 

where y (k )  is one-dimensional fourier transform of y(z), which is an even function, 

and g is Cmp(z) or gmP(z) function. Then equation (2.20) becomes 

where 

kmm (k)  7 d t ~ ~ h  (k r )  hmm ( r )  (4.8) 

Multiplying equation (4.7) by e i k x / ( 2 r )  and integrating over k from -00 to m, 

We have, 

Pm jm dkcos(kz)imm (k)  Cmp (k )  gmP(z) - Cmp(z) = - = 0 
(4.9) 

since both Amm(k) and Cmp(k) are even functions. 

Cmp(z) can also be divided into a reference part and fluctuation part just as 

Cmp(r) is in equation (4.5): 
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Here, the reference part will be taken from the analytical solution of the PY hard- 

wall problem17. Substituting equation (4.10) into (4.9), we have a equation similar 

to (4.4) which can be solved by an iterative method. 

The equation (3.8), which is derived from BBGKY hierarchy for the slit-pore 

problem, can be easily solved iteratively by using l-D FFT methods. 

For the HNC/PY approximation, the method of solving integral equations is 

basically the same. We shall therefore not give the detailed development here. 

V. QUANTITATIVE RESULTS 

1. Results for a Slit Pore 

Partition coefficients, K/KO, are shown in Figs 1-2, where they are given 

as functions of the ratio of molecular diameter to ditance between two hard walls, 

d,/L, and of the bulk density of molecules , calculated in the PY/PY and BBGKY- 

SA schemes. It can be seen that the average density obtained from the BBGKY-SA 

is higher than that obtained from the PY/PY approximation. 

The pressure acting on the wall, /?pWd%, which is obtained by the simu- 

lation method5, the BBGKY-SA, and the PY/PY approximation, is plotted as a 

function of L/dm - 1 in Fig.3. It is seen that at a very small separation of walls 

[(L-dm)/dm < 2/31, the results of PY/PY give us good agreement with simulations. 

However, because the PY/PY approximation does not satisfy the contact-value the- 

orem at one single hard-wall problem14, the pressure obtained by this approxima- 

tion does not approach to the bulk pressure aa the ditance between two walls (L) 

increases, while the results obtained from BBGKY-SA schemes do have the right 

l i t  and are in rough agreement with simulation results for (L - dm)/dm > 2/3 al- 

though the BBGKY-SA pressure appears to approach the bulk density much faster 
- than the simulation pressure does. It should be noted that here and hereafter in 

this paper the bulk pressure is calculated from the Carnahan-Starling equation of 

state12 . 
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The solvation force (which is twice as large as the molecular pressure acting 

on the wall) as a function of density is also shown in Fig.4. 

Results of density profiles obtained from the PY/PY and HNC/PY approxi- 

mations as well as the BBGKY-SA approximation are compared with the simulation 

mults6 in Fig.6. It turns out that the PY/PY approximation givea ur better twultr 

than either the BBGKY-SA or the HNC/PY approximation. It should be noted 

that results of the BBGKY-SA equation obtained in ref. 5 give good agreement with 

simulations when L < 2d,. This is because simulation values of average densities 

are inputted in that reference. Therefore, the resulting equation is a semi-empirical 

equation in such comparisons. 

2. Results for a Spherical Pore 

Partition coefficients, K/Ko, calculated by means of the PY/PY and 

HNC/PY approximations and the BBGKY-SA are plotted as a function of the 

diameter ratio, A, at different densities in Fig.6. It turns out that results ob- 

tained from the PY/PY approximation are again smaller than that obtained by the 

BBGKY-SA (just as in the case of a slit pore) and the HNC/PY approximation. 

Partition coefficients as a function of reduced molecular density are also plot- 

ted in Fig.?. In Fig.8, the reduced solvation force, f/[pS(l - A ) ~ ] ,  as a function 

of molecule/pore-diameter ratio shows an oscillating structure as shown in Fig.3. 

Again, we see that only the BBGKY-SA satisfies the contact value theorem as 

X + 0. The reduced solvation force as a function of the reduced molecular density 

at the fixed diameter ratio is shown in Fig.9. 

Results of density profiles for the particles ineide a spherical pore are plotted as 

a function of distance in Fig.10. In Fig.lOf, results obtained by using the PY/PY 

and HNC/PY approximat ions and the BBGKY-S A scheme have been compared 

with a recent simulation result6. It is seen that HNC/PY results are the best among 

three approximations compared with the simulation data. The results from the 

BBGKY-SA scheme show an unrealistic crystallization of fluids inside a spherical 
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pore(fig. l0f) , while the PY/PY approximation gives us unphysical (negative) gW (r) 

results(Fig.lOb,d) at certain values of A. 

Fig.11 shows the direct comparisons between density profiles in different pores. 

It turns out the density profile inside a spherical pore hae a more pronounced 

structure than that inside a slit pore. This is because the ~phericd pore involves 

more spatial hindrance than the slit pore. 

In. summary, compared with simulation the PY/PY approximation is the best 

approximation among the three approximations we studied in the slit-pore case, 

while the HNC/PY approximation is the best in the spherical-pore problem. Sev- 

eral earlier methods, which were used for improving the PY/PY approximation in 

the single-hard-wall problem [for example, renormalized HNC (RHNC), generalized 

mean spherical approximation (GMSA), exponential (EXP) approximation20 and 

the Pliechke-Henderson method21)] may be applicable here. It will be very inter- 

esting to see how good these are when generalized to the pore systems. However, 

more simulations are clearly needed for further comparisons. 
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VI EXTENSIONS 

There is evidence22 that standard closures of the sort used in section V will 

not provide an adequate treatment of "surface* phases important to wetting phe- 

nomena that occur in system in which the moleculax pair potential and the pore 

molecule potential have attractive terms. We briefly outline below an alternative 

closure formalism of a non-local density-functional form that may prove useful in 

this regard. It is based upon an expansion of the direct correlation function that 

was i n t r o d u ~ e d ~ ~ * ~ *  some time ago by one of us to study critical phenomena, and 

subsequently extended by Blum and ~ t e 1 1 ~ ~  to the wall problem and by Sullivan 

and stellZ6 to the two-phase interface problem. The wall-problem extension of 

Blum and Stell is immediately applicable to the pore problem except for trivial 

notational changes. Instead of (2.10), equation (44) of [24] yields 

Here 

and, for n 2 2, 

where p is the chemical potential of species m, and ilp. (r) is p evaluated at pm = 

p*(r), a function we discuss below. Also, 

When p&(ri) is taken to be p,, (6.1) reduces to a local density-functional expansion 

of cmp(t) yielding an expansion that stands to the mean-spherical approximation as 

(2.10a) and (2.10b) stand to the PY and HNC approximations, respectively. The 

non-local analogs of (2.10a) and (2.10b) are obtained form (48) and (47) in ref. 
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(251. In that reference, p*(r) is taken to be pmgmp(r). For asymptotic analysis 

this is a natural choice, but as a source of integral-equation closures, the choice 

is computationally awkward one, primarily because of the large rapidly-varying 

excursions from one that hmp(r) can be expected to make as a function of r for 

small r and large p,. Instead a smoothed weighted mean of gmp (r) of the form 

with m(r) an appropriate weight function, appears to be a much better choice. 

Perhaps the simplest choice appropriate to the problem at hand has already been 

considered by one of us as part of more general discussing of effective-density 

approaches1gc. It yields the result [ Eq. (12-13) of ref. 19c ] 

where f (r) is the mayer f-function, f (r) + 1 = exp[-/9umm(r)]. A choice that 

is equivalent for hard spheres was subsequentely considered by ~ a r a z o n a ~ ~  and 

Tarazona and ~ v a n s ~ ~ .  in the somewhat different context of a non-local density- 

functional theory for free-energy functionals. Other less simple choices were also 

discussed in ref. [lQc] as well as in later work by ~ a r a z o n a ~ ~  and by Curtin and 

~ s h c r o f t ~ ~ .  Their work is not in the integral-equation context we consider here, 

however. Further investigation will be needed to determine which choice yields best 

results for pore problems in the presence of attractive terms. For such problems an 

analogous non-local closure may well prove necessary in the determination of the 

bulk direct correlation function too. 
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Figure Captions 

Fig.1 The partition coefficient, K/Ko, for a slit pore as a function of the diameter 

ratio ,A(= %), at reduced bulk densities pmdL= 0.5. The PY/PY approxi- 

mation (-), the BBGKY-SA (- - -). 
Fig.2 The partition coefEcient, K ,  for a slit pore as a function of the reduced density, 

pmd&, at different diameter ratios. From lower to upper sets of curves X = 

0.5,0.25. Other symbols as in Fig.1. 

Fig.3 The reduced pressure acting on the wall, ppWd&, as a function of (L-&)/dm 

at a fixed reduced density p,dL = 0.5. Simulation resultsS 
( 0 ) .  Straight line: 

the reduced bulk pressure , ppBd&. Other symbols as in Fig.1. 

Fig.4 The reduced solvation force ( flpB) for a slit pore as a function of the reduced 

density, pmd&. From lower to upper sets of curves at pm& = 0.6, X = 

0.25,0.5. Other symbols as in Fig.1. 

Fig.5 The density profile, pm(z)d&, inside a slit pore as a function distance, 

z/(L/2 - h). The PYIPY approximation (-), the HNCIPY approximation 

(- - -) and the BBGKY-SA (- - -). Simulations of ref. 5(m). 

a. p,d& = 0.5, X = 111.5 

b. pmdL = 0.5, X = 112.0 

c. p,dL = 0.5, X = 113 

d. pmdL = 0.5, X = 114.78 

e. pmd& = 0.5, X = 1/5.5 

Fig.6 The partition coefficient, K/Ko, for a spherical pore as a function of the 
d diameter ratio, A(= f ). pmdL = 0.5, Other symbols as in Fig.5. 

Fig.7 The partition coefficient, K for a spherical pore as a function of the reduced 

density, pmd&, at different diameter ratios. From lower to upper sets of curves, 

X = 0.5,0.25. Other symbols as in Fig.5. 

Fig.8 The reduced solvation force, f/lpB(l - x ) ~ ] ,  for a spherical pore as a function 

of the diameter ratio A. pmd& = 0.5. Other symbols as in Fig.5. 
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Fig.9 The reduced solvation force, flpB, for a spherical pore as a function of the 

reduced density, pmdL,. From lower to upper sets of curves X = 0.5,0.25 

respectively. Other symbols as in Fig.5. 

Fig.10 The density profile, gmP(r), for a spherical pore as a function of distance, 

r/dm. In fig.lOf, simulation data%). Other symbols as in Fig.5. 

a. pmdh = 0.5, X = 112 

b. p,d& = 0.5, X = 113 

c. p,d& = 0.5, X = 114 

d. p,d& = 0.5, X = 115 

e. p,d& = 0.5, X = 1/10 

f. Pmd& = 0.86, X = 1/13 

Fig.11 The density profile inside slit and spherical pores. pmd& = 0.5, X = 115.5 

The solid lime: the PY/PY result in a slitpore problem, dashed line: the 

HNC/PY result in a spherical-pore problem. 
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