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The Influence of Poisson's Ratio on the Vibrational Spectrurst

R. J. Duffin
Abstract

This note concerns the normal modes of vibration of an elastic body
subject to standard boundary conditions. The Poisson coefficient enters
into the problem in a rather complex way, both in the differential equations
and in the boundary conditions. To simplify this situation the Rayleigh-Ritz
variational principle is introduced in arder to define the narmal modé fre-
quencies as stationary values. This leads to a perturbation formula for
the frequencies as a function of the Poisson coefficiént. In sonme cases
it is found that this formula can be evaluated exactly. In any case the

formula furnishes upper and lower bounds for the variation.

% Prepared while the author was visiting professor at the State University

of New York at Stony Brook.




The Influence of Poisson's Ratio on the Vibratiicnal Spectrum

1. Introduction

If an elastic rod is stretched by r percent of its length then
experiment shows that its diameter decreases by ¢ r psrcent. The con-
stant o is termed Poisson's ratio and it serves to determine the increase

in volume. Clearly if ¢ were .5 there would be no change in volume.

However measurement shows that o is in the range o < 0 < .5. For metals
o is about .3 while for rubber o is almost .5.

A problem of frequent occurrence in technology concerns the change
in the vibrational spectrum of a mechaniéal system resuliing from a change
in the Poisson coefficient. For example such a problem arises when the be-
havior of a system is to be inferred fme a scale model. However, it may
not be feasible to construct a model with material haviﬁg the same value of

" Poisson's ratio.

In this note the vibrational spéctrum of an elastic system is anslyzed
by means of the calculus of variations. A perturbation formula is developed
which relates the variation in frequency of a‘normal mode of vibration re-
sulting from a variation in Poisson's ratio. To use this formula in a precise
way it is necessary to know a factor g depending on the mode shape. How-
ever certain ineqﬁalities are easily deduced from the perturbation formula.

Before taking up the general case of a three dimensional body it seems
best to treat the two dimensional limiting case of a thin flat plate. The
problem of the transverse vibration of a plate is somewhat simpler to pre-
sent because it is governed by a single differential equation rather than a
system of three differential equations. Moreover, the plate problenm is

sufficiently important to warrant special attention.




2. Dimensional Analysis of the Vibrating Plate

The vibrating part of many.mechanical gystems may be accwr ately
described as a.clamped plate. The dynamicalvproperties of such systems
are developed in the elements of the theory of elasticity [1, p. 250].
Considerable simplification results because: (1) the plate is regarded
as flat and (2) because the thickness is a fraction of the surface di-

nensions so the plate is thin. TUnder these simplifying hypotheses the

theory shows that a normel mode of vibration of a thin flat plate is
determined by the following biharmonic wave egquation,
dtw o*w 3*w _ phf®w

+ 2 +
ax* Xyt oyt D

Here: x and y are orthogonal coordinates in the plane of the plate,

=
1

= w(x,y) is the deflection of the plate normal to its plane,
p is the density of the plate,
is the flexural rigidity,

is the thickness of the plate,

H b U

is the angular freguency.
In the derivation of the above equation it is shown that the flexural

rigidity is given by the formula

p=-_En®
12(1-6%) °

Here: E is Young's modulus of elasticity,

g is Poisson's ratio.




Of equal importance are the boundary conditions. The three main types of
boundary conditions are: clamped edge, hinged edge, and free edge. The
derivation gives the following mathematical relations which must hold on

the boundary [1, p. 251].

w=20 '
Clamped edge { s
- g
on
w=0
Hinged edge {
2 2
.a_E. + [o} é—.@ = O’
on® a2
2 ' 2
a—f_\l + g .a__?l = O
Free edge an® at?

3% 4 (20) 2w,

an® dndt®
Here n denotes a normal direction and t denotes a tangential direction to
the boundary. Both these directions are in the plane of the plate.

A problem of concern is how the normal freqﬁencies depend on the
following properties: (1) the scale, (2) the thickness h, (3) the modulus
of elasticity E (L) Poisson's ratio o, and (5) the density.p.

To treat this problem it is assumed that the plates have similar
plan form but differ in scale. The scale is determined by a linear

dimension L which gives the "diameter" in a certain directionm.




W

Let the basic differential equation be multiplied by 1* end let X = x/L;

Y = y/L, and % = phf*D®*'L%. This gives

3w + 64‘1# d*w
ax* I G oYt ?

a dimensionless equation. The corresponding boundary conditions for a free

edge are,

where N = n/L and T = t/L.

Suppose that'th.e boundary value pro"blem is solved for these dim-
ensionless equations. The normel modes of vibration may be denoted as
Wy Wo, Wa, «.. With the corresponding eigenvalues:

M <A <Az eee o |
Then the following formula gives the m-th angular frequency fy for a
plate of 1ineaf dimension L, thickness h, density p and elastic modulus E

\E h®
12p(1-0°)1*

The dimensionless differential equation does not contain the variables
h, L, p, E or 0. The dimensionless boundary condition for a clamped

edge does not contain these variables either. Thus if the plate is

clamped all around the eigenvalue A, is not a function of the variables

h, L, p, E or g. Then we can form the frequency ratio for two rlates whose




plan forms are geometrically similar, Then A\, cancels and we obtain the

scaling formula

f i 3 2 % 2
omoo_e% E_ 1-o% by I*
-0 &7 ED e .

a
It is worth noting, in comnection with this formula, that the elastic

constants of metals have considerable variation. Far example steel has

E = 20 x 10-! dynes per em® and o = 0.3 while gold has E = 8 x 1011 and

]

o = 0.h.

If there are hinged edges or free edges then the boundary conditioné
contain Poisson's ratio. Thus in this case the éigenvalue ;‘m is expected
‘ to be a function of o. Moreover it can not be supposed that eigenvalue
ratios such as A,/)\p are indeperdent of o.

If free edges are present then the above scaling formula holds
rigorously if o* = g. Presumsbly the scaling formula is reasonably
accurate if o* is close to o. To attack this question the next part of

this paper will show how to estimate the variation in fregquency due to

variation of Poisson's ratio.




3. Variational Treatment of the Plate

We have seen that an eigenvalue A is determined by solving the bi-
harmonic wave equation for the deflection w,

4 4 4

ax* xPdy® oyt

subject to one of the boundary conditions: clamped edge, hinged edge, or free
edge. It is desired to find the variation in A resulting from a variation
in 0. It seems most difficult to get a hold on the problem when it is
formulated in this direct way. However the calculus of variations affords
an equivalent but more tractable formulation. This formulation, termed the
Rayleigh-Ritz method, will now be sta‘bed..

Let two expressions V and T be defined by the following integrals

cver the area of the plate.

V(w) =JJ (v + w2+ 2w+ 2ow_w__ - 20w~ )dxdy
x © yy xy xx<"yy xy

T(w) = I_F w® dxdy
Here V is proportional to the elastic energy of a state with deflection w.
Likewise T is proportional to the kinetic energy if w were a state of
velocity rather than displacement. Then the eigenvalues A, are the

stationary values of

A= %E%%— (The Rayleigh quotient).
Here w and its variation are required to satisfy the clamped boundary
condition and w = O for the hinged boundary. In appraximate calculations

it is not necessary to satisfy the free boundary condition. This is so




because the free boundary condition turns out to be a "natural boundary
condition" as defined in the calculus of variationms.

The variational definition of eigenvalues is very useful for num-

erical computation, In particular the smallest eigenvalue is simply the
minimum of the gquotient V/T for the smooth function w satisfying the

clamped boundary condition. The variational method will now be applied to

determine the rate of change of fregquency with respect to Poisson's ratio.

Theorem 1. let f be the fregquency of a normal wmode of vibration of a thin

flat plate which is clamped on part of its boundari, hinged on another part cf

its boundary, and free on the remaining part of its boundary. Then the

rate of change f with respect to Poisson's ratio o is given by the foarmula

=Y = + P
fdo 1-6° 1+2¢cp

where p is a dimemnsionless shape factor defined as

| j\f (vr W f&dydy

ﬁ. (w2 + w°_ +2w®)dxdy
x=x ¥y Xy

Here w(xy) is the deflection of the narmal mode of vibration of concern.

Proof. _A variation 8¢ in ¢ gives rise to a variation &\ in A and a varia-

tion dw in w so . 2 |

- : 2‘” (w w -w" )dxdy
d) X ¥y Xy

do T(w)

[v1w+éu)__ V(w)
T(w+dw (w)

But the variation of V/T vanishes when w is a natural rdode so the last tem

is zero and J
14 2 "Txxwyy ny)dxav )
X do v(w) 1+2¢p

From the formula for f we see that

+L1adr,
A do

This is seen to ccmplete the proof of the theorem.

8.



To use the formula of this theorem it.is necessary to ¥mow
the second derivatives of w in order to compute p. There are three
conceivable Wa&s to obtain this information: (1) in analyticel solution w
might be available for a cértain value of 0. (2) The deflefléction w could
be obtained by experiment. (3) The deflection w could be approximated
by the Rayleigh-Ritz method.

In the Rayleigh-Ritz method we assume a mode shape depending on
a set of parameters. Then the Rayleigh quotient is minimized with respect
to these parameters. This gives an upper bound to the lowest eigenvalue A.
The minimizing deflection is taken to be an approximation and p can be

cormputed. A similar procedure is available for higher eigenvalues.

Corollary 1. The variational formula

holds for a plate clamped on all edges.

Proof: If a function satisfies the boundary condition w = 0 it follows
that dw/dt = O. Hence the conditions w = O and ow/dn = O together
imply d3w/ax = O and dw/3y = O. Then integration by parts with respect to

X gives

Jj WWyydxdy = —Jj waxyydxdy

because the boundary term has w_ as a factor and so vanishes. Likewise
-

integration by parts with respect to y gives



Xj WyyWxydxdy = - j} WyWxyydxdy «
Subtracting these two equations gives

o 2 . -

Jj‘(wkxyyy - ny) gxdy 0.

Hence p = O and the proof is complete. This confirms the result obtained
in Section 2 by a different argument.

Corollary 2. The variational inequality

1 1df o 1
5(1+0)~ T do — 2(1-0

holds under the hypothesis of Theorem'l.

Proof: At any point Q of the plate let

.;h = Wixﬁjy - ka
De=w? +w o+ wE
XX yy Xy
But clearly
+ 2N = 2
D N (Vx * Wiy) R
- _ 2 2,
_D - 2N (" Pyy) + 1 Wy

Then the following inequality holds between the integrand N in the

numerator of p and the integrand D in the denominator of p

10.




"D S_ 2N _<- D'
Consequently -1 < 2p <1 and substitution of this inequality in the

relation of Theorem 1 completes the proof of Corollary 2.

Corollary 3. For a rectangular beam df/dc = O.

Proof: A long rectangular plate may be regarded as a beam. We take the

X axis along the middle of the beam. By syrmetry we see that Wy = 0 along
the x axis. To the degree of approximation employed iﬁ beam theory it may

be assumed that Wy = 0. Thke boundary condition along the edges of the

beam is wyyZ"owm. In the beam theory approximation it follows that
Wyy = = OWyxye Making these approximations we see that
2
-0 ” Wyy dxdy
-0
P = 1+6® °*

(1+%) H w;x dxdy

Substitution in Theorem 1 completes the proof.




i. Vibration of a Three Dimensional Body

This section concerns the normal modes of vibration of a three-
dimensional elasticvbédy. The treatment invgeneral except for the
restrictioﬁﬁthaﬁ the material is isotropic and homogeneous. Again the
problem of concern is the variation in natural frequencies due to a
variation in Poisson's ratio.

We begin by a formulation of the equation of elasticity; for the
purpose of definiteness we follow the notation of Courant-Hilbert
[1, p. 268]. Suppose that the body in question occupies a region G in
(%15 X2, Xs) space with piecewise smooth boundary surface I'. Iet

(uy, Uz, ug) denote a small deformation of each point (x;, Xz, X5) from

the rest position. Then the straihs are defined as the ‘tensor

. qu, ou
PR G )
32 axj axg
The dilatation is defined as
€=€ +¢ +€¢ . ¢
11 22 33

If sij is the stress ‘tensor . then Hooke's law, stating that stress is
proportional to strain, is

Sij = a EiJ +p £ ,513

)

Here i3 is the Kronecker symbol and a and b are constants. By applying

these relations to the stretching of a rod it is easy to show that

CE (B | -
I s b = (1+o I-20

where E is Young's modulus and ¢ is Poisson's ratio.

12.




The condition for equilibrium in the interior (oi“ G is

0813 .

®y tPicO
where P; denotes the body force density components. The equilibrium con-~
dition on the boundary I of G is

z Sijnj— p; =0.
Here nj denotes the exterior normal components and p; denotes the surface
force density components (tractions).

It now follows from Newton's equation that a normal mode of free.
vibration satisfies the equations
asij

o

_ 2
==p f ui

where p is the mass density end f in the angular frequency of vibration.
0f course, the type of boundary condition must be specified. There are
two types of boundary conditions commonly considered;and defined as
follows: }
(a) Fixed boundary, u; =uz = ug = 0>
(b) Free boundary, p; =p2 = ps = 0 .
There are also two kinds of boundary conditions introduced by Somigliana:
(e) Normal fixed, up =0, py, = 0
(d) Tengential fixed, uy = O, Pn. =0.
Here un denotes the normal component of the displacement and py denotes

the tangential component of the surface traction. Further information on

13.




Somigliana boundary conditions is given in reference [2].

By a mixed boundary condition we shall mean that over a part Iy of

the surface the boundary condition (a) holds, over a part I} of the sur-
face the boundary cordition (b) holdé, etc. Note that in a mixed boundary
condition Z p; u; = 0 on the boundary.

The potential energy of a state of equi]:ibrium is

Suppose that a mixed boundary condition is in force so that the integrand
of the last integral vanishes. Moreover suppose that there are no body

forces so the potent:TLal energy becomes

V(uw=_a[Z€,d&+b € ax .
— l —
2da Y 2 Ja

Also of concern is the kinetic energy gquadratic form

p
T = =5 1% dx .

Then the square of the normal frequencies are the stationary values of the

N

Rayleigh guotient

The reason being, of cowrse, that the above differential equations defining
a normal mode of vibration are simply the Euler equations of the Rayleigh
variational principle.

Theorem 2. Let f be the frequency of a narmal mode of vibration correspond-

ing to an arbitrary mixed boundary condition. Then the rate of change of f with

respect to Poisson's ratio is given by the formula

2af .1 ., 1 1
f do (1+o) o(1-20) o(l-20+0g)

(o}

where q is a dimensionless shape factor defined as

1L,



q¥.[ € ax Iz?.mc
L€/l Td;

Here eij is the strain tensoéor.: of the narmal mode of concern.

Proof: Since f is a stationary value it follows that the variation in
uj due to a variation in ¢ can be ignored. The reasoning is analogous
to that used in Theorem 1 so

_ 14y
-'ch

2 df
f do

2V=b(a/b+q)‘fﬁ€?ljdx

‘log Vv = - log (1 + o) - log (o %-2) + log (o *-2+q) + const.
lav _ 1 1 _ 1 ]
Vdo (1+o) (o *-2) o (d t-2+q)

This is seen to complefe the proof.

Corollary L. Let a normal mode of vibration be a pure _shear . Then

q =0and

where L is a "wavelength" and cp is the transverse velocity of sound.

Proof: The tensor Q_,-_j is a pwe shear if the trace vanishes; in other words
€ = 0. A pure shear may also be described as an incompressible flow because
div u = 0. The torsional vibration of c¢cylinders are examples of pure shear
modes.

Since € = 0 it follows that S;4 = a &3

Substitution in the equations of motion gives
2 2
o7y . T 0%uj

L a
+
2

_ pf2 uj -

TS
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The second summation vanishes snd so

2

=—2-. )
cTAu:-L £ vy .

Thus a pure shear mode satisfies the ordinary wave equation. Reducing this .

equation to dimensionless form completes the proof.

Lemma 1. Let Eij be the strain iénsor corresponding to a displacement u .

satisfying the condition that the normal component of u vanishes on the.

boundary. Then .

.[ Zez.dx=f{div u)z'dx+%j'(curlu)2 dx.

¢ G d
Proof: By definition
2 — 2 2
2g, - €= 2€,- .6, * €, - &€,

The first two terms on the right can be written as

2
* 631 - Eaaen)

262 - 2€ € = ;é (BU.]_ 4 al’llg\’)z _2 Bul Bug
12 11 22 :
sz axl &1 BXQ
}é < Bul auajb » Bul aug Bul aug |
—_— — + C— — — —_— —
X Xy Xz OX; axy Xz,

Adding such expression gives the identity:

: /du; dus  Juj ouj
T E.= (divw)® +%(curl u)®+ ¥ j_ 3\ .
1 - aRAC & & =y
The 1ast: surmation can be written as J

7O By E‘ij)=div,r:
XXy an J an

where the vectar T is defined as
ou; . - .

16.°




To show that the integral of div r over the i"egion G vanishes it is suf-
ficient to show that the normal component of r vanishes at an aribitrary
point of the boundary. At such a point choose the coordinate system so

that the x, axis is al.ong the normal deviation. Then

- owy
ry - ES;C_: U.j - 0 €
J

If boundary condition (a) holds thig obviously vanishes. If (c¢) holds
then y = 0 and if the boundary is smooth at this point then 3y /dxz and

~duy /3xa also vanishes o r;=0. This is seen to complete the proof.

Corollary 5. let a normal mode of vibration be such that the displacement

u is irrotational in the region and such that the normal component of u

vanishes on the boundary. Then q =1 and

2.af _ 1,1 1.
fdo ~ (1+0) o(1-20) ~ o(l-o)

Moreover under scaling

1 -
[_EQ-) 1"
£-L [ (Ito)(1-20) =~ T °L

4

where L is a "wavelength" and c, is the longitudinal velocity of sound.

L

Proof: Since u is irrotational curl u = 0. It then follows from Lemma 1

that g = 1.

An irrotational vector can be written as u = grad ¢ where ¢ is a scalar

Thus

17.



The equation of motion becomes

39

- 2, o.p2  do -
az o S jEi+b EiAcp~f2p s
This may be written as
2 2
c1, Aui f oo

Thus an irrotational mode satisfies the ardinary wave equation. Reducing

this equation to dimensionless form completes the proof.

- Corollary 6. Suppose a normal mode satisfies a boundary condition in which

the normal component of the displacement vanishes on the boundary then

O<g<l and

[o 9

af 1 1 1

dg = - ‘(l+c) * 9(I-20) ~ o(1-0)

1
1

N

+0'_<_

Proof: By definition it is clear that q > 0. On the other hand Lemma 1
gives q 51. Then 0 < g < 1. Moreover experiment shows that 0 < o < % so
the right side of the formula of Theorem 2 is a monotone function of q. |
Putting q = 0 gives the first inequality and putting g=1 gives the seconc}

inequality.

Corollary 7. Let a normal mode satisfy an arbitrary mixed boundary condition.

Then
124 _ 2
“(o+l) = T do =T(T-20)
Proof: By the Caiichy inequality
€-(ze)P<31E€<3cé&,.
(Te)f<33€<33€,
Thus 0 < g < 3. Substituting g = 0 and g = 3 into the formula of Theorem 1

yields the proof.
It is worth noting that Corollary 7 wogld apply to a plate. However,
it is seen that Corollary 2 gives a better upper bound.

. 18.



5. Discussion

This note was suggested by problems encountered by engineers in
scaling models. The wfiter is indebted to H. C. Nathanson, W. E. Newell,

G. Mott, and A. C. Hagg of the Westinghouse Research Laboratories for dis-
cussions concerning such quesfions. Such models may be smaller or longer
than the actual machine. Thus the model of a sﬁeam turbine rotor is smaller.
On tl_ze other hand, the model for a resonant gate transistor is larger. -

The treatment given here shows that there is no difficulty in scaling
Young's modulus. It is only Poisson's coefficient which leads to difficult
questions of scaling. However, in some cases, such as the beam and the
fully ¢ g_lampf_ﬂé ... plate, the problem is easily resolved.

The treatment given here indicates that it would be worth while to con-
sider other special cases. For example Raleigh studied inextensional vibrations
of shell; and the frequencies for cylinders and spheres are given in Love's
"Elasticity", pp. 513-51L of the Lith edition. In a recent paper Ross ard
Matthews [3] have treated domes and have obtained frequencies for different
kinds of modes. For mcdes of bending type they obtained formulas (2), (20),
and (l1). For high frequency modes of membrane type they obtained formula
(L3). |

In the analysis given here it has been assumed that the material has
isotropic and homogeneous elastic properties. However, it is apparent from
the derivation that the theorems still hold even if the mass density is not
uniform in the body.

In this paper the approach to the problem has been by the way of avoid-
ing boundary integrals. Presumably other results could be obtained by phras-
ing the problem in terms of such integrals. This latter approach proved quite

successful in a somewhat similar problem [L1, [3].

19.
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