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R. J. Duffin

Abstract

0f concern are the set of differential equations which are the
equations of motion of a passive mechanical system. Of course any actual
systen of this type ha.s‘ damping. If the differential equations have con-
stant coefficlents then it is an elementary problem to show that any
effect of the initial conditions on the motion’ dies out at an exponential
rate. The main problem treated in this paper relates to the situation
in which the damping is not constant but is variable betweén limits. This
problem is analyzed by a speclal method naking use of the Laplace trans-
form. It results, as is to be expected, that any effect of the initial

condition on the motion dies out exponentially.

® Prepared while the author was a visiting professor at the gtate Sﬁigi:m “
sity of New York at Stony Brook, and partially supported by eie?i; T
DA-AR0-D-31-121,-G951, Arny Research Office, Durham, North Garo-ina-




STABILITY OF SYSTEMS WITH NONLINEAR DAMPING

R. J. Duffin

1. Introduction

This paper 1s concerned with the forced vibration of electrical .or-
mechanical system with damping. More precisely it is a study of the ef-
fect of replacing constant linear damping with variable nonlinear damp-
ing. The stability property assumed for the(constant linear system is
that any effect of the initial conditions on the velocity decays exponen-
tially to zero. From a physical standpoint, it is reasonable to expect
that the same stability property holds when the constant damping is re-
placed by damping -Va.rying arbitrarily between constant limits. The pur-
pose of this paper is to give a mathematical proof of such stability.

This paper is one of a series of papers on.the subject of nonlinear
networks. In particular, the paperé (1], [2], [3] and [L] listed below
are also concerned with the stability problem studied he}“e. The present
paper makes no appeal to this previous work because the hypotheses are
somewhat different. The hypotheses in this paper are in some ways less
general than assumed in [L] and in other ways more general. The essen-
tial difference is that in [L] it was assumed that resistance was present
in every circuit of the network while here some circuits may be without
resistance. This means that the resistance matrix may be singular.

In [L] the stability proof depended on the construction of a func-
tion of Liapunov type. Bj contrast, the stability proof developed here
does not make use of the methods of Liapunov.

The type of nonlinearity permitfed in the damping is the same as

: £13 " The same
that introduced in [1] and termed a "quasilinear replacement L

: i ilinear re-
concept was used in the other papers of this series. A quasil
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i i et o i st

1ocement arises in an electrical network wne i i
o b n resistors obeying Chn's
Law are replaced by nonlinear conductors whose differential resistance
. .y P} NS g
1ies between positive limits. Minty [5] has termsd such nonlinear con-
n ] n h 15 i
ductors "monotone resistors" and has given far-reaching applications of

thege concepts [6]. Browder [7], Zarantello [8] and others have developed

similar theories.

2. Eguations of motion with constant coefficients

0f concern are electrical or mechanical systems with damping. First
attention is confined to systems with constant damping; later the constant
damping will be replaced by variable damping. The systems with constant

damping are assumed to obey the following vector differential equation

I§%+T~@9+Ré9'+’8q=e ‘ (1)
dv dt dat

Here L, T, R and S are n by n matrices whose matrix elements are real
constants: The vectors q and e have n components. In the usual mechanical
interpretation (1) is the Lagrange equation of motion for the system.
Thus q is the displacement vector, q' = dg/dt is the velocity vector,
and ¢° = d®q/dt? is the acceleration vector. Then Iq” is the inertia force,
Tq' is the gyroscopic force, Rq’ is the damping force, Sq is the spring
force, and e is the applied force. Fnergy considerations demand that L,
R, and S be symmetric semi-definite matrices. On the other hand, T is
skew symmetric. The electrical network interpretation of the differential
equation (1) is equally familiar. Then q' is the current vector and e 1s
the applied electromotive force. The matrix T appears when the network
contains gyrators, a concept introduced by Tellegen.

Attention is restficted in this paper to those systems having 1o
undamped free motions. Tor an equation with constant coefficients the con

dition that there be no undarped motion is completely specified by the
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following theorem.

w A necessary and sufficient condition that all solutions

of +the homogeneous equation

”

Lg" + Tq’ + qu +5q = _O _ (2)

i _ , |
be such that the velocity vector g approaches zero as t - +® is that

N
27" et ("L + 2T + R +8) £ 0 . (3)

for Re (z) 2 0. Here N is the nullity of S.

Proof. In this theorem the matrices L, T," R,and S can be completely
arbitrary. If |
det (L + aT R+ 8) =0 (L)
there is a non-zero vector g, such that
(ZQL+ZT+ZR+S)QQ=O. (5)
Thus q = qpeZt solves (2). If z # 0 and Re (2z) 2 O then ¢’ = zq eZ% does
not vanish at +». If z = 0 and if (L) has multiplicity greater than N
then it is shown in reference [9] that (2) has a solution of the form
Q=q *te,» #0 (6)
Then g’ = ¢ does not vanish at +». The necessity of condition (3) is
thereby proved.
To prove the sufficiency note that if z =0 then there is a set of
N independent constant vectors sétisfying (5)- These vectors are solutions
of (2) but have zero velocity. According to [J] these are the only so-
lutions corresponding to z = 0. Also according to [9] the solution of the
equation can be written as a finite sum of terms of the form qmtmeZt.
If Re (2) < O then this term and its derivative vanish as t = *+°.

This proves Theorem 1. Moreover the proof has the following ccrollary.

s equation (1).
Suppose that g (t) and g (t) are two solutions of the non-homogeneous equa (1)




e

Then their difference satisfies the homogeneous equation (2) and so

7/
lay () - q;,{(t)HGCt-* 0 as t= +», (7)
Here ¢ is a positive constant which depends only on the coefficients of
the differential equation. In other words the folldwing statement holds

Stability Property 1. Any effect of initial conditions on the ve-

Locity decays exponentially to zero. The main goal of this paper is to

extend this property to systems with nonlinear damping.

3. Equation of motion with wvariable damping

The linear equation (1) is now replaced by the nonlinear equation
Lg" + Tq" +V(g’) + Sq = e. (8)
The only change is that the constant linear damping term Rq’" is replaced

by a variable nonlinear term V(q’). We term this a quasilinear reolace-

ment if V(y) is a continuous vector function which satisfies the followy-
ing condition,

V(yy ) - V() = U 'l(}’1'y}2) 9)
where U is a symmetric matrix satisfying the quadratic form relation

D (By,3) s (Uy,y) < D (By,y) (10)
for a positive constant D independent of the vectors yy, ¥o, and y and
the time t. The physical interpretation of a quasilinear replacement in
an electrical network is the replacement of constant linear resistors by
variable nonlinear resistors whoée differential resistance lies between
positive limits. A proof of this is given in [1].

It is permissable to have V depend on the time explicitly as well
as implicitly through q’. In particular equation (8) includes the linear
equation

Lq" +Tq' +Ug’ +Sq=e hai

. 3 ime and which
where U is 3 matrix which is a continuous function of the tin
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satisfies inequality (10).

;. An energy insguall®;

Suppose that thers are two solu utions,qy and g of the nonlinear dif-

ferential equation (8) corresponding to the same applied force e but
differing in initial conditions at time t = 0. Then let w = G - and it
is seen that w satisfies the homogeneous equation

L’ + T’ o+ Uy’ + Sw = 0. (11)
In this equation all coefficients are constanu except for U which is a
function of fche time because of iis aependence on q;: and q{ It shall be
assumed that qi and g are continuous functions of the time. Thus w and
U are continuous functions of the time. In ﬁhat follows the only other
property assumed about U is thé.t it satisfies the inequality (10). It is
desired to show that Stability Property 1 h.olds. This will be deduced by

means of a series of lemmas.

Lemma 1. If w is a solution of eguation (11) then

> 2ct . Pa

Jo (tw” ,w')dt < ¢ eZCD[(LW’,W,) + (Sw,w)]dt + B. (12)

Jdo

Here a and ¢ are arbiirary constants and the constant B depends only on w.

Proof. Multipljwr the differential equation (11) by w' leads to the

-2

relation
(ow’ ,w’) = -(1/2) [ (I’ ,w’) + (Sw,w)]’ -

. ; e P i £t is continuous sO we
According to the hypotheses the function on the left is ¢

may multiply by e20t and integrate. Integration by parts then gives

a -
f 2Ct(Uw ,r') dt = cj\ 2et [ (I’ ,u’) + (Sw,w)]dt
o ) o

a
—(eZCt/Z) [ (L’ ,w') + (Sw,w)] (0.

coa ogitive seni-
But e [(w’,w’) + (Sw,w)] > O because L and S are pos
L) ¢ Sl

t=a
definite. This proves the lemma Wl th 2




The integral on the left of inequality (12) 3y be regarded as

a

. ) Sk 3 I .
weighted sum of "dissipated energy." The integral on the right may be

regarded as a weighted sum of "kinetic energy" plus "potential energy.n
) ) - &l g .

This is a principle lemma in the proof; the following lemms is

Lemma 2. The functions (Uw',w’), (Rw',w’)

» and HRW,HE are of class
L ,(0,)-

ji (Uw’,w’) at < B,
Allowing a to approach infinity pr.oves the first statement of the lemia.
Then hypothesis (10) gives (Rw’,w’) < D (Uw’,w’). This proves the second
statement of this 1emma. To prove the third statement we note that if P

is any positive semi-definite ma‘brix
APl = (Px,x) < 4Pl (13)

Where 4 1s a positive constant dependent on P but not on x. Thus taking
P =R and x = q' completes the proof.

S. Reduction of variable damping to constant damping

The homogeneous equation with variable damping can be reduced to an
inhOmogeneoué equation with constant damping by virtue of Lemna 3 to fol-
low. This reduction permits application of well known methods of analysis
developed for differential equations with constant coefficients.

Lerma 3. The differential equation (11) may be written as

Iw” + Tw' + Rw’ + Sw = Rf . (1h)

where f is a continuous vector in the range of R and

£]7 < 2 (0w ") (15)

for a constant A, independent of w.

a corollary.



of: s standard argument it follova from T
Proof: By gHRENL 1t Tollows from hypothesis (10) that

!

ve the same range. In pariicy — o
U and R have ¥ g n particu nd Us’ are both in the

,__J
f45]
I
o
1
:
N
jii)

range of R. Thus we can solve the followiy

[}

Rf = Bw’ - Uy’
by the formula |
+
f =R (Rw' - ww’).

- + 2 ~ . 1
Here R denctes the inverse of R in the ran

o
=3

a

subspace. Then f is in the

+
range of R and this is the same as the range of R because R is seni-

]
o

definite. Clearly f is continuous and if A; is the norm of R+ then

el = salle’ - v

< Lal[Ra"l| + soflUw’]}.
This inequali’.oy together with inequalities (10) and (13) gives (15) and
the proof is complete.

It is desired to solve the equation (1L for w in terms of f. Since
the equation (1l has constant coefficients the Laplace transform furnishes
a good way to do this.

6. Analysis via the Laplace transform

The following lemma is needed to determine the algebraic structure
of the Laplace transform.
-1 -~ - ~
Lemma l,. Tet G = (zL + T + R + z-8) R; then G, zLG, and z7°SG

are uniformly bounded matrices for Re(z) = O.

Proof. First suppose z is real and in the range 1 £ z < ». Then according
to Theorem 1 relation (3) holds and G exists. Let h be an arbitrary vector
and let x = Gh so

(2L + T + R + 2 -8)x = Rh.

Since T is skew symmetric (Tx,x) = O and

7(Ix,x) + (Rx,x) + 7t (sx,x) = (Rh,x).




On the right sidc we use the inequality
(Rh,x) = (Bk) = [Jo] ]
On the left side we apply inequality (13) to the three semi-definiic

matrices. This yields
2 [ lll” + el < ] o

From this inequality it is apparent that HRY“ is uniformly bounded as

-

q

z + +o. It then follows that ||Ix| = Ozmlf3 and ||Sx| = 0z .

From the definition of x it follows that

Il = 2 flzad] « [|Bxd] + 27{|sod] + IR

Then émploy_ing the bounds obtained for the terms on the right we find
|| = OZ%. Thus ||[(L + T + R + 8)x| = OZ%, and since L + T +R + S is a
nonsingular constant matrix we see that I« = Oz;é. Since h is an arbitrary
vector it follows that.a matrix element of G, say Gij’ must satisfy
lGijl = Ozlé. But Gij is a rational function of z 80 if Gij were unboundcd
it would increase at least as rapidlyl as lzi Thus actually Gij is uni-
formly bounded as z approaches +o. ‘

To show that G, is uniformly bounded for z in the range 0 < z < 1

J
let 2’ = 1/2 and the above argument can be repeated with L and S inter-
changing roles. Thus we have shown that Gi,j does not have a pole at z =

and also at z = 0. But by condition (3) of Theorem 1 it follows that Gij

has no poles for Re z = O and |z| > 0. Therefore, it may be concluded trat

Gi,j is uniformly bounded for Re(z) = O. This proves the statement of the

lemma concerning G.
By what has just been proved zLG 1is bounded at the origin. Write

-1
721G = -TG - RG - 272G + (2L + T + R *z s)a

)

-TG - RG - z*SG + R.

i}

3 infinity so this
The four matrices on the right are uniformly bounded at infinity

‘ strice rgument denon-
Proves the statement of the lemma for zLG. A symmetrical argu

-9- '




strates the statement of the lemmg concerning 271 SG and the Proot is cor

plete.

Temma 5. Equation (LL) has a solution ¥ such that w and v/ are con

S

‘timmous .

Py

(=3

Proof: In this lemma it is assumed that f is given a priori as
function of the time. It follows from Lemma 2 and Lemma 3 that £ € L,(0,=).

Thus the integral

[=2]

o(z) = [ =" £(t) at (26)
exists for Re(z) > O. .Of course, ié the laplace transform of £ and is
symbolized as ¢ = £(f). Since fhe matrix elez‘nents of G are uniformly
. bouﬁded rational functions it follows that there is a continuous function
u, such that £(u) = Gp.Let w = jz u dt so w =1 and £(w ) = 27 Gy,

E(lay + Twy + Ry + S ‘Jrz wdt) =
(L + 27T + z75R + 27°8) Go= z " Ro.
Then by the uniqueness theorem of the Laplace transform for continuous
functions we have ,
Ly + Twy, + Rwy + S jz w dt = jz RE dt.

Differentiating this completes the proof.

Lemma 6. The solution wy of Equation 1k sativsf‘ies:

t
Ly ‘fo K,(s) £(t-s) ds,

fl

. £t
Sy J"O Ka(s) £(t-s) ds, .

where K,(t) and Kp(t) are continuous matrix functions such that K, (t) =0e

and K =0 e ¥ £or any positive constant k such that -k exceeds the renl

part of any pole of G.

: | ; unded for
Proof. Lemma L shows that both zLG and LG are uniformly bounded I0

-1 2 7, pd O.
Re(z) = 0. This implies that actually IG = o1 + |a)? for Re (a)

5 = K
Then by the elementary properties of the Laplace transform LG £

-10-
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where K, is a continuous matrix function such that K1 =0 e

~-kt.

It also follows from Lerna L that SG and z7*SG are uniformly bounded
for Re(z) = 0. Hence 275G = 0(2 + |z|)™ and so 278G = £(K,) where K,
is a continuous matrix function such that K = 0O g%,

It is a consequence of the proof of Lemma 5 that LGo = L(Iw ) and
z *SGep = £(Sw ). The inversion of these relations by the convolution

theorem of the Laplace transforn ccmpletes the proof.

7. Application of a convolution irnsguglity

The following lemma is needed to carry on the analysis; it is a gene-
- g

ral property of convolutions.

Lemma 7. Let f(t) € Lo(0,a) and let K(t) € L,(0,a) where a>0. Then

the convolution

g(t) = 52 %(s) £(t-s) ds

satisfies the inequality

[ Y gePas < [

IR O S Ra HOUS

where c¢ is any real constant.

Proof. The existence of g(t) for almost éll t as a measurable function
is well known. First consider the special case when K and f are real valuéd
non-negative functions and ¢ = 0. Define £f(t) = 0 for t < 0. Then the fol-
1owi;1g three relations actually are equalities:

=

g(t) = [ K(s) £(t-s) ds,

[ < [ [ K(s) K(x) £(t-5) £(t-r) ds dr,
o " © ‘

j [eg(t)Pat < j I, K(s) K(r) fi £(t-s) £(t-r) dt ds dr.

But by the Schwarz inequality
2

[f £(t-s) £(t-r) dt] 3 [£(t-s)]%at j [f(t r)]? dt.

-11-
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Since f£(t) = 0 if t < 0 then
a 2 a-s . a
j [£(t-s)]® at = Lr [£(x))%ax < J‘ [£(x) P ox.
(o] o) o
Combining the last three inequalities gives

a a - a
[ [e(t)]2at < [j K(t) dt] J [£(s)Pat.
fe) ) 0 ' 0

This is seen to prove the lemma in the special case.’

In the vector case it is assumed, of course, that the norm of a

matrix is defined 50 that

I 2l =< (s ]l

Then by the definition of g

leColl < [ K] [2(e-s] c.

Since norms are non-negative scalar functions the argument given above

holds and proves the lemma in the case ¢ = O. But for arbitrary c
ct, b ‘ c(t-s) )
[e®%(£)] = [ [e®S K(s)] [e®V"7%/1(2-8)] ds
o

and this is seen to complete the proof.

Lemma 8. Let w Dbe the solution of equation (1L). Let a and c be

constants such that a > O and ¢ < k where -k exceeds the real part of any

pole of G(z). Then

@ 2 ot
J ezct[(va',lxw{) + (w ,5m)]ldb < Ay [ e Uzl at
(e} o

- where the constant A, is independent of a and c.

Proof. Direct application of Lemmas 6 and 7 gives

a \
] [ el
[o]

a .
f eZCt 1| Lo |
o

a
244 < U‘ ect s
o

But by definition of c

“12-




a a (=)
1 P ) ,
[ e lkalat = | &% fikyllat = [ &% i,
o] o} [e]

This last integral is independent of a and c. It converges because of

the definition of k. Moreover since L is a positive semi-definite natrix

the inequality (13) applies and gives

a, T a
‘J‘ e Ct(w_{,h&')dt < Ag f o2C" | £l17 at
o

0
where As does not depend on a or c. A strictly analogous argument shows
that
a a
2ct |
J e Ga ,5wm0at = a, [ 2% |4 as.
o o

Adding these inequalities proves the lemma with Ay = Ag + Ag.

8. The main stability theorem

To prove the stability property of w it is first necessary to show
that the last lemma can be modified so as to hold for w.

Lemma 9. Let w be a solution of equation (11). Let a and c be posi-

tive constants and let c¢ < k. Then

a . . | % a -ZC’D ’ ’ c
U e2Ct[(w’,Lw') + (W,Sw)]dt] < BIU e (w ,Uw )dt] + By
o (o]

i ' is incependent
Wwhere B, and B, are constants independent of a and ¢ and B, is in.er

of was well.
Proof: Let x = w - w . Then x is a solution of the homogeneous

equation (2). Let us use the notation

1

a ]
Wl = [ ) - Gnsmlat]

ac fo)

Clearly the triangle inequality applies to such a norm. Thus
ol = T+ ol < Tl * ¥l

-13-




MoreoVer

Il <, = |

%

= BE e
ok

Here B; 1s finite because all solutions of the homogeneous equation (12)

Koy’ and %% are in L2(0,). However Sx = -Lx' - Tx' - Ry’

are such that e
S0 Xt 5x is also in L,(0,w).

Lemma 3 gives || f|> = Ao(w',Uw’) so according to Lemms 8

| B2 oot .
lenac- < (A.A5) [f e“C '(1;«7’,Uw.')d*c:]l .
0

i
This completes the proof with B; = (A4h,) .
The following is the main stability theorem.

Theorem 2. Suppoée that all soclutions of the differential eguation

with real constant coefficients

2
L%'*TQ‘E'FR-@E"‘SX:-O
a+? dt at

are such that the velocity vector dx/d’c; + 0 as t * +=. Here L, R, and S

' 3 . - . - . _ m‘__‘.. - vy b ond =
are symmetric semi-definite matrices and T is a skew-symngorlc mAuriX.

Let V(dx/dt) be a guasilinear replacement of R dx/dt and suppose that

for t = O the vectors q(t) and e(t) satisfy the nonlinear differential
gquation

2
L%§+T%+V(%%)+Sq=e-

. . xponentially
Then the effect of initial conditions on the velocity decays exponent

. . TF A S tions with con-
t0 zero in the following sense. Lf g and g are o solu

tinuous first derivatives then

7 2ct o dog g2 o (18)
J & g - e

Where ¢ is a positive constent independent of g.

~1h-
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Proof. We let w = q - gz and substitute the inequality of Lemma 9
into the inequality of Lewma 1 and obtain
L2ct 2ct P
' Io (w',0w’)at < ¢ [BiLf e “(w,Uw )dtJ + EgJ + B.
1 .
Choose ¢ such that ch~< 1. Then it is apparent that the integral on the
left must converge as a - +°, It then follows from Lemma 3 that‘

b € Ly(0,). Since the matrix G is wniformly bounded for Re (z) = -k
it follows that G = Gy + G where G, is a constant and G = 0(1+|z])™.
Since £(w) = GJQ + G we see thar'

| w o= Gf(t) + j K3 (s) £(t-s) ds. (19)
Here; just as in Lemma 6, the matrix function satisfies Ka (t) =0 e kb,
Multiply relation (19) bj ect then the first term on the right is in
L,(0,2). The convoluﬁion inequality of Lemma 7 can be applied to the second
“term of (19) and consequently it is in Lo(0,°). Thus eétw{ € Ly(0,%). But
v o= w + x’ and we already know that ¢’ € Lo(0,). Hence % € L,(0,=)
and the proof of Theorem.2 is complete.

Theorem 2 shows that the system has a stability property such that
the effect of initial conditions on the veloéity decays exponentially to
zero. More precisely relation (18) formulates the exponential degay as

convergence in mean rather 'than pointwise convergence as originally stated

in relation (7).
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