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ABSTRACT

A system of particles with spin interaction in an external

magnetic field is studied using a general formalism applicable to

the solid, liquid or glassy state. Explicit results are given in

the Mean Spherical, LOGA and EXP approximations. The Laplace

transform of the 1'lall-particlecorrelation funotion neax" a surface is obta.ined.

From it, analytical expressions for the orientational density profile

are derived and used to calculate the magnetization and magnetic

susceptibility in the bulk. Magnetostriction is also discussed.

KEY WORDS: Amorphous magnetic material, magnetic liquid, solid-fluid

interface, wall-pa.rticle distribution function.
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1. INTRODUCTION

In an eaTlier paperl a °general formalism was sketched that can

be applied to the computation of the structure of a classical statis-

tical-mechanical system at equilibrium in the presence of a wall

and/or other external-field source. HeTe we apply that

formalism to the computation of the one-particle distribution function

and the magnetic susceptibility of a system of magnetically active

particles with an interparticle spin interaction of either Ising or

classical Heisenberg symmetry 0 (The level of approximation upon which

we obtain explicit analytic results in this paper is insensitive to

the difference between the Ising and Heisenberg cases, since it yields

spherical-madel-like results that are independent of spin dimensionality.

As H~ye and Stell have argued,2 one expects these results to be exact

in the limit of infinite spin dimensionality.)

Because of the generality of our model, our results are not restricted

to a particular phase -- solid, glassy, liquid or gaseous. Indeed, in

principle they offer a systematic means of determining the phase in which

one will find a system defined by a particular set of parameters (density,

temperature, external field, interaction strength), a1 though rledo not

attempt such determinations in this paper and the adequacy of the particular

approximations treated herein remain to be determined in this regard.

Our gen-era.lr'ormalism
is derived for systems in thermal equilibriu.l1l, and therefore is most

obviously appropriate to the treatment of annealed rather than quenched

systems. As discussed 'in some detail in ref. [3], however, the :results

we obtainin theMean-Spherical Approximation (HSA) and Lowest-Order
"-

Gamm.a-ordered Approximation (LOGA) are
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probably just as relevant to quenched as to. annealed systems. (In a

solid ti1at has been quenched the translational and orientational

correlations are co!npletely decoupled, a situation exactly described

b h .r. ., ..
) 2,3Y t. e a~orementlonoa apprOxlmatlons. .

In ref. [2] Hpye and Stell already discussed the bulk field-free

properties in the MSAand LOGA of the model \ve consider here and

established in those approximations the existence and location of a

Curie point in the ferromagnetic case. In Section II of this paper

we extend that \Vork to consider the one-particle distribution function

in' a constant magnetic field in the vicinity of a smooth surface. In

. Section III we consider the spin orientation distribution function

away from a wall as a function of field strength and use it to obtain

the relationship bet\Vcenmagnetization and field strength. We note the

way in which our results manifest magnetostriction effects and reduce

to those of Langevin in the paramagnetic limit of weak spin interaction

bet\'leenparticles.

The model and approximations we use here complement the usual

lattice-model approach to magnetic systems, which has been fine tuned

over the past fe\.; decades to successfully capture the subtle and special

cooperativebehavior that comes into its O\',lIl in the critical region.

With our model, much more sophisticated approximations than those we

discuss in this paper.will be necessary to faithfully capture the nuances

of criticalbehavior. Even to obtain the classicalmean-field'H0: M3

behavior of tfi'e critical isotherm requires going a bit beyond the approxi-

mations \\'e consider here (presumably-, to the level of a Quadratic
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lIypernettedChain (QHNC) approximation).

On the other hand, certain features of magnetic systems that

are either totally absent in the usual lattice-model approach (or

are pl'esent only after being builtin rather laboriously) can be

easily studied in our particle model, which reveals its considerable

richness of structure even in the rather simple approximations we use

in this preliminary work. It is structure on precisely the scale of

distance -- the interparticle distance -- that is typically neglected

in the critical region, where it becomes too small compared to the

correlation length to be important. aile example of this structure is

the way spin ordering in a field changes on the scale of interparticle

distance as one leaves the bulk and approaches a smooth wall. Another

is the phenomenon of magnetostriction, which is absent by definition

in the usual rigid lattice-model treatments of magnetism. In this

paper we consider briefly the simplest manifestation of magnetost~ciction;

nmnely the change in overall volume of an isotropic homogeneous element

of magnetic material (such as an amorphous sample in thermal equilibrium,

or a magnetic fluid).

""-.
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II. THE WALL-PARTICLE ORIENTATIONAL CORRELATION FUNCTION IN THE

PRESENCE OF A MAGNETIC FIELD

We consider magnetically active particles interacting with a

pair potcntia12 between particles 1 and 2 of species i and j given

by

{

li
D . . (1')

,1J
U. . (12) :::

1J

UO,ij - J(ij)D~(12)

l' < R..
1J

r > R. .
1J . (2.1)

wh~re r is the distance between the particle centers, UO,ij is a

nonmagnetic short-range interaction, D is spin dimensionality (3 or

1 for Heisenberg and Ising interactions respectively\ ~(l2) is ~1 c~2

with'S. a unit spin vector, and R.. is a diameter inside of which
1 1J

only the nonmagnetic lio
.. is fel to

,1J
(For Uo .. we have in mind as model

,1.J

potential:

potentials, e.g., a hard-sphere interaction of diameterR.. or a Lennal<d-Jones
1J

interaction with 0~<! ::: R. . .) In this paper J (ij) is chosen to be a Yukawa
1J lJ

K.. -a.. (1' - R. .)
. J (

. .
)

1.J 1J 1J
1J ::: ---r- e . :

(2.2)

although we can readily generalize our work to a sum of Yukawas with

different K.. and a. ..3,4 Khen K.. > 0, Eq. (2.2) represents a ferro-
1J 1J 1J .

magnet while for K.. < 0 it represents an antif erromagnet. Adding1J

nonmagnetic species interacting with each other (and with the magnetic

particles) with a nonmagnetic potential U o . .(1" 2) leaves the mathe-, 1J ~ ~

matics of our procedure essentially unchanged; the system then serves

as a model for alloys.
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The Ornstein-Zernike (02) equation for a mixture of particles

of species t == 1, ..., 0 has the form

h..(12) == c..(l2) + I Po r c.o(13)ho.(32)d~)
~J ~J 9, N) Lv )'~J 0>1.

(2.3)

where h. .(12) and c. .(12) denote the total and direct correlation
~J ~J - -

functions respectively and d(i) means an integration over position

? and orientation ?:to of Particle -i, Hith normalization such that
1 ~

J d[!i == Q.

In the MSA we can represent h. .(12) and c.. (12) by a truncated
1J. 1J

expansion of the form2

S
h. .(12) == h.. (1')
1J 1J

c.. (12) :: c. ~(r)1J 1J

b.
+ h..(r)Db.(l2)

1.J

+ c.0Cr)Db.(12) ,
1J

(2.4)

where h.~(r) and c.~(r) are the spherical symmetric parts of the total
1J J..J

and direct correlation functions respectively, and the second term

represents the orientational parts of those functions. Introducing

these expressions into the 02 relation, one obtains two decoupled

equations for the spherical and the orientational parts of h. .(12) and
1)

c..(12).
1) .

- 0

f
h.~(r) == c.~(1') + I Po c.~(!i}-"1'I)ho~(r')d-;',
1J 1J J1, N v~ .vJ

h.0(1') :: c.0"(r) + I Po f c.~CI1~-"1!I)ho0(r')d-;' .

1J, ,1J iN" 1-" }',J

(2.5a)

(2.5b)

""

.[The trlUlcation Eq. (2.4) and the decoupling of translational and

orientational correlations appropriate to the MSA are not generally
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valid for any approximation, we should note<] The MSA closure for the

02 relations (suitably generalizedl from its original hard-core forInu-

lation to encompass soft-core potentials) is given by

S
h. . (1')
1J

S
c. .(r)
1J

::: h S
O,ij(r)

l' < R..
1J

= -SuO ' . (1')

,1J
l' > R.. ,

lJ (2.6)

and

D.
h. .(r) = a
1J

D.
c. .(1') :::SJ(12)
1J

l' < R..
1J

l' > R.. 0

1J (2.7)

These equations can be transformed to treat the situation in which a

fluid is in the presence of a magnetic field coming out of the wall.

If we label one of the speciesW (for "wall If)and take lim p -)-,0,W

1im R . -)-ro with p R3. + 0, Eq< (2.5) with the closure (2.6)- (2.7) describesWl W Wl

a system of particles interacting with pair potential uij(r)
in the

simultaneous presence of a field and a wall. Such' equations have

already been solved by us and by others for the case of polar particles

in the MSA and related approximations.5 Taking the same limit

here (and suitably scaling the J(w,i) to increase appropriately

as R . does] allows one to study the correlations in the presence of aWl

magnetic field. In the above limit Eq. (2.5b) becomes:

D. D.

r
D.

f

z+t D.

hO (z) = cO(z) + 21TP1 dt t cB (t) ds hO (5) ,0 z-t
(2.8)

"-.
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where z is the perpendicular distance of a particle from the wall,

the subscript 0 denotes a wall-particle correlation function, C~(t)

is the bulk direct correlation function (which is considered known),

and PI is the fluid density.
Here we have restricted ourselves to

the case of a one-component magnetic system of species 1 in the

presence of species 2 that, in the limit, becomes the wall and field

source. To transform closures (2.7), we introduce the wall and

particle diameters Rand R such that R 1 = (R + R)/2 and takew w w

r + ~R + z, K 1 + 00, R + 00 such that K l/R is finite.
w w W \-1 W

We note from

Eqs. (2.1) and (2.2) that the orientational part of the potential in

the limit Rw + 00 becomes (with a = (12):

;i.;: U12(Z,tiw,Ql) = -11 ~(~l) . H e-a(z - R/2)w
(2.9)

where the magnetic field generated in this limit is giv~n by

+ OK "-

11H = wlH(R ,~, .w

Here A = s(tiw) is a wlit vector in the direction of the spin associated

with the "particle!! that has become a wall and 11 is the magnetic moment

associated to the ~
.~.---_.

C Then the closures can be written as

'"

hO(z) = 0

. c~(zl = i~~ e-a(z - R/2)

z < R/2

z > R/2 (2010)
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where II is the magnitude of the magnetic field, which is coming out

lof the wall in a fixed arbitrary direction given by s(Q).w Using
-...

B
.

f . . 6
axter actorlzatlon

~b --T
1 - PlcB(k) == Q(k)Q (-k) (2.11)

where C~(k) is the Fourier transform (FT) of c~(r) and

-T

[
ikr

Q (k) == 1 - 27TPl 0 dr e Q(r)
(2.12)

is the FT of the factor correlation function Q(r), we can write Dq. (2.8)

for z > R/2 a/

h~(Z) - 21rPl [ dr h~ (z-r)Q(r) == - 2~ r dk ~ (k){C?(-k)rleikz0 _00

(2.13)

~

In the MSA <!>(k) is the FT of the waU--particle potential +Bulw (z) ,. i. e.,

~(k) == BUlw(k) and the r.h.s. of Eq. (2.13) becomes

i ResfSu (k){QT(-k)}
-l ikz

]L lw e k == zm
(2.14)

where zm are the poles of SUl...(1<:)in the lower half complex plane.

Since

~(k) == roo dz eikz<!>(z)== B~~ eikR/2
JR/2 1. . -~, ,

(2.15)

the expression (2.14) ,has a pole at k == -ia.

8
H~ye and Blum have

obtained Q(r) in the MSA for a system interacting with a Yukawa potential

or a sum of Yukawas. In the former case the result is8 (with q == all):



(2.16a)

C2.16b)

with c and d related by the equations

QK qR
fJ-11e

d =
-T
qQ (iq)

,

-2qR
2:rPldcqe

q(c+d) = -T
2qQ (iq)

, -T
where Q (iq) can be calculatedfrom Eqo' (2.12) 0

(2.17)

- -T
Thus Q(k) and Q (-k)

are known functions and one can evaluate the residue Eqo (2014). Then

Eq. (2013) becomes

hgCz) - 21TPI [ dr h~(Z-r)Q(r) = ~ e-a(z - R/2)0 KT
(2.18)

with

<'?Cia) = 1 - 21TP1c [a-}q [e-(CY,+q}R - 1] + e-aqR [e-aR - 1])

21TPId

q+a
(2.19)

The Laplace transform of Eq. (2019) yields

-sR/2
hll(s)=llHe 1 ,

0 kT s+ a. <?Cia.) (if (is) ,

\vhere C? (is) has the s~.me functional form as QT (ia) .

(2.20)

"'- .

9

I

I

I

. I

-qr r > O.Q(r) =Qo(r) + de ,

Qo(r) = 0 , r > R

-qr -qR
= c(e - e ). r < R
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When a. f:. 0, the magnetic field decays exponentially with the distcffice

from the wall. When Ci = 0, H is constant and we can study the corre-

lation function in the bulk infinitely far mmy from the \\'alL Thus,

when ex = 0,

h~(s )0
-sR/2 1

11H e "1'.. - .
= kT s Q1 (0) Q~ (is)

(2.21)

The inverse transform of this formula provides a means of studying the

orie11tatio11al correlation functionand the magneticpropertiesof a

magnetic system in the presence of a constant magnetic field at any

di~tance from a smooth \'iall.

One useful representation of 1)~(z) is a zonal representation

obtained from the inversion of L(s) :-: e-SR/2/s<? (is). lie have

fill(s) ::: llHLJ&
0 kTC? (0) .

(2.22)

From (2.19) we can write

-T -Rs r A sRl
Q (is) := 1 - e [s(q+s) + B(s)e J

(2.23a)

where

-qR
A := 21TPlce q (2.23b)

-qR
21TP1s(c-d) + 21TPlce (q~s)

B(s) = - (2.23c)

It follows that

ro

[ J

11
-T -1 -sR n A sR 11

rQ (is)] = \' (e -) ( ) + B(s)e (-1).. L s o+s11=0 - .
(2 . 24)
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Then,

-sR/2 co

l I
n

L(s) :: e I (-l)n(e-sR)n ~~ + B(s)eSR ::

s n=l S(q+s)

00 n-1 -(n-1)s
:: e-SR/2 I A (q+s)e n

n=l [s(q+s) (1 -1B(5)]
(2.25)

The equation E(5) :: 0, where

2 -oR -qR
E(5) = S + ~[q + 2uPlce L - 2uP1(c-d)] + 2uPlce q

(2.26)

gives the poles of each term of (2025)< As in Smith and Henderson,9

we can write

00

L(z) = Inv[L(s)]:: I g*(z-n+1)6(z-n+l) ,
n=l 11

(2.27)

where 8(x) :: 1 for x > 0 and 0 for x < 0 and

n n-1
)1 1 dn-1

t
(t-to)A (q+t

jg*(x) :: I 1im ]. ,
11 (n-l) ! t. =0 t+ti dtn-l E (t)].

et(x-R/2)

(2.28)

where t. are the roots of E(t). One can proceed following Henderson].

and SmithlO and convert g*(x) to the formn

1 11-1

g~(x):: I exp ti(x - R/2) L ex - R/2)n-r-1Si
ti::O 1'=0 nr

(2.29)

with

.

( 1J

l'

( )
]. - ~- l' A t B t

8nr - l' I s n r-s ( i) n S( i)s=o ' ,
(2.30a)

where

A ' ,
n,k{t) :: [A(q+t)](k) (2.30b)
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B ,(t ) =={[
(t-to)

j
n

}
(k)

n,l" - J.E (t) . (2.30c)

and the superscript (k) denotes the kth derivative.

'''. .
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III. BULK ~y\GNETIC PROPERTIES

In this section we study Eq. (2.21) in the limit z + co when wall

effects are not present. More precisely, we consider Eq.(2.Sb) in

the limits R + 00, then z -r 00 (in that order).w In this case the

inverse transformation of Eq. (2.21) can be made very easily. We

obtain then

+ A ~(Q) b Ii !- .

h~(f!)g(Q) & HO =]l kT [~T(0)]2
(3.1)

This function is independent of position and enables us to calculate

1 . 1 . . 1 d .' ~ . OR
(~ :))t 1e one-partlCl.eorlentatlonaJ. enslty 1:Unctlonp ~~,b >

HSA is given by

OR + + PI ~ A A
P (Q,H) = 12 [1 + ho(H) (s " 11)]

which in the

PI

[

SO 111

= 12 1 +]l kTF J
(3.2)

where

[
-T 2 r -~

]

-~ ~l
F = Q (0)] = II - PIcB(O) = [1 + pIhBeD)] (3.3)

From its definition2 the LOGA result for pOR is the same as that glven

by Eqso (3.2) and (3.3) but with F associated with the exact spherically

symmetric short-range correlation function rather than the approximation

to it. In the classical Heisenberg case, in which spin orientation is

continuous in 3-space, magnetization M is given by

f OR ~ +

M ~ P, P Ol,H)cosy dy ,
(3.4)

".

. where cosy is the angle between the magnetic field and the spin of a
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given particle in the fluid. Substituting'Eqo(3.2) inEqo (3.4),

we obtain

2 -+
-+ ]l P H
tv! = 1

3kTF (3.5)

both for the MSA and the LOGA.
equally

This result isia.ppropriato for liquid,'- ..

solid and glassy systems on the level of approxims.tion upon vhich

we worko In particular, the LOGA should give a good representation

of quenched alloys. From Eo.< ( 3 0 5)

. M/H = Sl/Pl/3F

or equivalently in the Heisenberg case

[1 - PlC~(O)]-l = 3M/S]l2PlH .
(3.6)

The 1eft-hand-side of this equation can be identified with the dif-

ferential isothermal susceptibility X = aM/aH in the limit H -+ 0

according to the relation

-~ -1 -~ 2
[1 - PlcB(O)] = 1 + PlhB(O) = DX/Sll PI (3. 7)

which is the magnetic analog of the Hell-known compressibility equation

relating (:S(O) and isothermal compressibility dP/dPo Above the Curie

temperature, isotherms in the H-M plane can be expected to approach the

origin linearly, so that

lim X = M/H..
H+O

(3.8)

CompaTing (3.6) 'and (3.7), using (3.8), we find consistency in the

. low-field limit, H -+ O. In the MSA and LOG!\., which rest on Eq. (2.1)
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and thus are fundamentally linear theories in the field, the linear

regime is all we can hope to treat faithfully. Hs;5ye and Ste1l2 found

h 1 .. d d' C . ,11 h' ht at tlese approxlmatlons 0 pre lCt a tirlepOlnt at W lC

1 - P1C~(O) :: 0 for the ferromagnetic case (Kl1 > 0).
Below the Curie

temperature these approximations are not useful. "~en Kll < 0 (the

antiferromagnetic case). no orientational transition is found. We note

that if the magnetic interaction is described by a magnetic dipole-

dipole potential, no orientational transition is fOillldin these theories

.
h 12

elt ere

To go beyond the linearity of th~ MSA and LOGA, we can consider

the relevant extensionl of the EXP approximationl3 to the problem at

hand. This approximation is accurate for arbitrary field strength to

lowest order in density. Its one-particle density function in the

limit under consideration is

[

+

j

EXP "" -7 PI j.ls. H
P (Q,H) = l'f exp kTF- (3.9)

which gives for the magnetization

M = JlpL (n) (3.10)

with n = j.lH/kTFand L(n) is the Langevin function cothn - line In (3.10)

P is the density established after the field II is turned on. Whenn ~ 00

(from either H -+ 00 or F -+ 0), L(ll) -+ land M:: llP, i.e., complete satura-

tion is obtained. t~len no correlations between spin particles.are

present, F ::.1 ~nd the classical Langevin result is recovered.
At T :: T

c'
"'-
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F ::: 0 so that for any H =: O. Tl ->- 00 and M ::: I1P. TIlis indicates that

the critical isotherm in the H-H plane defined by F ::: 0 is of zero

curvature; a Inore sophisticated approximation is needed to get a

realistically shaped isotherm.

The fact that the density which appears in Eq. (3.10) differs

from the density PI (the density in the absence of the magnetic field)

is due to magnetostriction. The MSA or LOGA do not predict this

effect. The EXP does. giving

P ::: J pEXP(Q.H)dIT ::: PI Si~hTl . (3.11)

Expanding P to order H2 we find, as a measure of magnetostriction

!J.p - 1
(

I1H,2
PI' - 6" kTFJ

0.12)

where !J.p ::: P - PI G
We can compare this formula to a thermodynarnic

formula exact through 0 (H2) : 14

ho 1

(

a L
)

H2

P~ ::: 2kT '-1p T Q,g
(3.13)

where g is chemical potential, Q ::: S/PIKT' KT is the zero-field iso-

thermal compressibility and XL is the "linear" susceptibility H/Hin

the limitH + 0, which can be identified with the differential sus-

ceptibility X in this limit.

Equation (3.12) ~s exactly compatible with (3.13) only for ml

ideal-gas KT ::: S/PI (Q::: 1) and an idea,I-gas susceptibility given by

XL :: 8t12p/3o "'The comparison between (3.12) and (3.13) shows that
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the EXP result is likely to be useful only for magnetic fluids of

rather low densityJ L e., magnetic gases, in strong fields. Very

recently, electrostriction has been studied using the Quadratic

H1~ernetted Chain approximation (QHNC).15 The techniques used in

that computation are exactly analogous to those necessary in the

computation of magnetostriction, and \'Ierefer the reader to that

work15 for computational detailso The magnetostriction result is

/1QHNC 1

[

H
)

2 1P - V
PI --"6 kTF Q.

(::).14)

This is a considerable improvement over the EXP result, although it

too is exactly consist~nt with (3.13) only for F = 1, which is com-

patible with the ideal susceptibilityXL = S1/P/3. The most useful

of these expressions is (3.13), into which XL and Q obtained from

the field-free properties of anyone of the approximations considered

here can be insertecL The XL and Q from the MSA are particularly

convenient for this purpose, since they have a relatively simple

analytic structure as discussed in ref. (2].
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