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ABSTRACT

A system of particles with spin interaction in an external
magnetic field is studied using a genéral formalism applicable to
the solid, liquid or glassy state. Explicit results are given in
the Mean Spherical, LOGA and EXP approximations. The Laplace
transform of the wall-particle correlation function near a surface is obtained.
From it, analytical expressions for the ofientational density profile
are derived and used to calculate the magnetization and magnetic

susceptibility in the bulk. Magnetostriction is alsc discussed.

KEY WORDS: Amorphous magnetic material, magnetic liquid, solid-fluid

interface, wall-particle distribution function.



I. INTRODUCTION

In an earlier paperl a general formalism was sketched that can
be applied to the computation of the structure of a classical statis-
tical-mechanical system at equilibrium in the presence of a wall
and/or other external-field source. Here we apply that
formalism to the computation of the one-particle distribution function
and the magnetic susceptibility of a system of magnetically active
particles with an interﬁarticle spin interaction of either Ising or
classical Heisenberg symmetry. (The level of approximaticn upon which
We obtain explicit analytic results in this paper is insensitive to
the difference between the Ising and Heisenberg cases, since it yields
spherical-model-like results that are independent of spin dimensiocnality.
As Hgye and Stell have argued,2 one expects these results to be exact
in the limit of infinite spin dimensionality.)

Because of the generality of our model, our results are not restricted
to a particular phase -~ solid, glassy, liquid or gaseous. Indeed, in
principle they offer a systematic means of determining the phase in which
one will find a system defined by a particular set of parameters (density,
temperature, extgrnal field, interaction strength), although we do not
;ﬁtembt éuch ééterminations in.this ﬁaper and the adeqﬁacy of the particular

approximations treated herein remzin to be determined in this regard.

Our general formalism —
is derived for systems in thermal equilibrium, and therefore is most

obviously appropriate to the treatment of annealed rather than quenched
systems. As discussed ‘in some detail in ref. [2], however, the results
we obtain in the Mean-Spherical Approximation (MSA) and Lowest-Order

Gamma-ordered Approximation (LOGA) are



probably just as relevant to quenched as to annealed systems, (In a

solid that has been quenched the translational and orientational

correlations are completely decoupled, a situation exactly described
; 3 x 2;3

by the aforementioned approximations.)“?

In ref. [2] Hpye and Stell already discussed the bulk field-free
properties in the MSA and LOGA of the model we éonsider here and
established in those approximations the existence and location of a
_Curie point in the ferromagnetic case. In Section II of this paper
we extend that work to consider the one-particle distribution function
in' 2 constant magnetic field in the vicinity of a smooth surface. In
. Section III we consider the spin orientation distribution function
away from a wall as a function of field strength and use it to obtain
the relationship between magnetization and field strength. We note the
way in which our results manifest magnetostriction effects and reduce
to those of Langevin in the paramagnetic limit of weak spin interaction
between particles.

The model and approximations we use here complement the usual
lattice-model approach to magnetic systems, which has been fine tuned
over the past few decades to successfully capture the subtle and special
coope:ative behavior that comes into its own in the critical region,
With our model, much more sophigticated approximations than those we
discuss in this paper will be necessary to faithfully capture the nuances
of critical behavior. Even to obtain the classical mcan—field.H o« M3
behavior of the tritiéal isotherm requires going a bit beyond the approxi-

mations we consider here (presumably, to the level of a Quadratic



Iypernetted Chain (QHNC) approximation).

On the other hand, certain features of magnetic systems that
are either totally absent in the usual lattice-model approach (or
are present only after being built in rather laboriously) g&ﬁ be
easily studied in our particle model, which reveals its censiderable
richness of structure efen in the rather simple apbroximatiﬂns we use
in this preliminary work. It is structure on precisely the scale of
distance -- the interparticle distance -- that is typically neglected
in the critical region, where it becomes too small compared to the
correlation length to be important. One example of this structure is
-the way spin ordering in a field changes on the scale of interparticle
distance as one leaves the bulk and approaches a smooth wall. Another
is the phenomenon of magnetostriction, which is absent by definition
in the usual rigid lattice-model treatments of magnetism. In tﬁis
paper we consider briefly the simplest manifestation of magnetostriction;
namely the change in overall volume of an isotropic hoﬁogeHGOus element
of magnetic material (such as an amorphous sample in thermal equilibrium,

or a magnetic fluid).



II. THE WALL-PARTICLE GﬁIENTATIONAL CORRELATION FUNCTION IN THE

PRESENCE OF A MAGNETIC FIELD

e consider magnetically active particles interacting with a

pair potential™ between particles 1 and 2 of species i and j given

- J(i3)DA(12) r > R,. (2.1)

where r is the distance between the particle centers, is a

Y v
0,13
nommagnetic short-range interaction, D is spin dimensionality (3 or
1 for Heisenberg and Ising interactions respectively), A(12) is Qlogz
with %i a unit spin vector, and Rij is a diameter inside of which
only the nonmagnetic u, .. is felt. (For u, .. we have in mind as model
0,13 0,i] .

potentials, e.g., a hard-sphere interaction of diameter Rij or a Lennard-Jones
oo ¢ oo BT : s '

interaction with Oij =Rij'J In this paper J(ij) is chosen to be a Yukawa
potential:
k Ki: =0z o (P=Ra o)

L

I3 == : , (2.2)

although we can readily generalize our work to a sum of Yukawas with
different Kij and aij'3’4 When Kij > 0, Eq. (2.2) represents a ferro-
magnet while for Kij < 0 it represents an antiferromagnet. Adding
nonmagnetic species interacting with each other_(and with the magnetic

particles) with a nonmagnetic potential u (rl?) leaves the mathe-

0,1j
matics of our procedure essentially unchanged; the system then serves

as a model for alloys.



The Ornstein-Zernike (0Z) equation for a mixture of particles

of species & =1, ..., 0 has the form

- (2.3)

d(3)
¢

0
B (12) 508k (127 & : 3 s 52
113( ) lj( ) % DR’ J C]_E,(ld)hﬂj (3 ) )
where hij(12) and cij(12) denote the total and direct correlation
functions respectively and d(i) means an integration over position
EZ and orientation ﬁ} of particle-i, with normalization such that
[ a@@. = Q.
i
In the MSA we can represent hij(l2} and cij(12) by a truncated

expansion of the form2

B o, Wp g
hy(12) = hy7(x) + hyS(X)DACIZ)

c;4(12) = uiﬁ(r) . ci?(r)DA(lE) , (2.4)

wvhere hi?(r) and ci§(r) are the spherical symmetric parts of the total
and direct correlation functions respectively, and the second term
represents the orientational parts of those functions. Introducing
these expressiéns into the OZ relation, one obtains two decoupled

equations for the spherical and the orientational parts of hij(12) and

cij(IZ}:
Sy = .5 4 § SUR T ), S (x1)dT (2.52)
i_'] (I‘) B CLJ (1”) x il pﬂ, Ci£(|1 =T ) 12{]( J H .
Jﬁ B A. g: N A 12‘_“-’ ‘*:}! |)-. ﬂ{‘r')d?f b (2 Sb}
hij(r)\” cij(r) + % Py Lig(,i -1 nﬂj L :

-

[The truncation Eq. (2.4) and the decoupling of translational and

orientational correlations appropriate (o the MSA are not generally



valid for any approximation, we should note.] The MSA closure for the
o i - s S | g v o
Z relations (suitably generalized™ from its original hard-core formu-

lation to encompass soft-core potentials) is given by

S

Sin 1
S
cij(r} = —Buo,ij(r) e Rij 4 (2.6)
and
A
hiJ(r) = 0 T K Rij
¢.b) = gra2) r > R, (2.7
ij ‘ ij - N

These equations can be transformed to treat the situation in which a
fluid is in the presence of a magnetic field coming out of the wall.

If we label one of the species w (for "wall") and take lim B 0

lin R . > @ with pwﬂii > 0, Eq. (2.5 ) with the closure (2.6)- (2.7) describes
a system of particles interacting with pair potential uisfr} Iin the
simultaneous preéence of a field and a wall. " Such equations have
already been soived by us and by others for the case of polar particles
in the MSA and related approximationS,5 Taking the same limit

here [and suitably scaling the J(w,i) to increase appropriately
as R . does] allows one to study the correlations in the presence of a
magnetic field. In the above limit Eq. (2.5b) becomes:

z+1
2y = L)+ 2mp, | dt t Bt 4z H25) 5 2.8)
0 0 1 0 B ot 4]



where z is the perpendicular distance of a particle from the wall,
the subscript 0 denotes a wall-particle correlation function, cﬁ(t)
is the bulk direct correlation function (which is considered known),
and 0y is the fluid density. Here we have restricted ourselves to
the case of a one-component magnetic system of species 1 in the
presence of species 2 that, in the limit, becomes the wall and field
source. To transform closures (2.7), we introduce the wall and
particle diameters Rw and R such that Rwl = (Rw + R)/2 and take

>R o+2, Kogo+ e, Ro> o such that le/Rw is finite, .We note from
Eds. (2.1) and (2.2) that the orientational part of the potential in

the limit Rw + « becomes (with o = alz):

lim u (z,ﬁ ,51) = =l §(5l) 0 o 0(z-R/2) (2.9)

where the magnetic field generated in this limit is given by

N Dleﬁ

WEwmTy

Here fl = g(ﬁ?) is a unit vector in the direction of the spin associated
with the "particle' that has beccme a wall and p is the magnetic moment

associated to the spin ﬁ(ﬁ}. )

e

i

N’

<:m Then the closures can be written as

0 z < R/2

hg(z)

c‘é(zj- = %{ e (z-R/2) ., 5/ (2.10)



where H is the magnitude of the magnetic field, which is coming out
of the wall in a fixed arbitrary direction given by §(§w). Using

Baxter facterizati0n6
ho o s
1 - p &0 = Q00T (-1 (2.11)

where Eg(k) is the Fourier transform (FT) of cg(r) and

QT =1 - 2mp, E dr e ¥ (r) (2.12)

is the FT of the factor correlation function Q(r), we can write Eq. (2.8)

for z > R/2 as7

h’f‘)(z) - 2mp, J[: dr hg(z--r}Q(r) = - Jrz; dk $(k) {0 (-} " tetk? |

(2.13)

In the MSA 5[k} is the FT of the wall-particle potential +Bulw(z)“ Ay

(k) = Bﬁlw(k) and the r.h.s. of Eq. (2.13) becomes

1 ikz

i Res [Balw(k){"QT(--k)}“ 5 (2.14)

Iy _
L-zm

where z are the poles of Bﬁln(k) in the lower half complex plane.
i 1]

Since

300 = J;z az eiF%(z) = (BUL HR/Z (2.15)

g 8
the expression (2.14) has a pole at k = -ia. Hfye and Blum have
obtained Q(r) in the MSA for a system interacting with a Yukawa potential

~ 5 ¢ 8 :
or a sum of Yukawas. In the former case the result is (with q = all):



]
—_—
L]
—t
I

= Q,(x) + de” ¥ | % Bl (2.16a)

Q) =0, r >R

I

cle™ T . EFQR) , <R . (2.16b)

with ¢ and d related by the equations

BX L
11
d = T, .
qQ (iq)

prldcqe_zqR
q(c+d)

=T ) (217
2qQ (iq)

where ﬁTiiq} can be calculated from Eq. (2.12). Thus Q(k) and ﬁT(nkj
are known functions and one can evaluate the residue Eq. (2.14). Then

Eq. (2.13) becomes

. —a{z-R/2)
hﬁ(z) ~ 21p, Jw dr hg(z—r)q(r) = H? Enfjf---_- , (2.18)
0 Q (io)
with
-qR
A -1 - (a+g)R 4 -CR
l{1(1) =1 - Zﬂplc k;:7T [e (a+q) - 1] + E?fﬂ.{e - 1}]
Zﬂpld

The Laplace transform of Eq. (2.19) yields

Wl C-SR/Z
KT “s+a

1

ah
ho(s) = e ;
v 0 (i9)

(2.20)

where Q! (is) has the same functional form as 8 (o) .

LA



When a # 0, the magnetic field decays exponentially with the distance
from the wall. When a = 0, H is constant and we can study the corre-
lation function in the bulk infinitely far away from the wall. Thus,

vhen o = 0,

iy =Mle € ' (2.21)
0 s od'as) |

The inverse transform of this formulz provides a means of studying the
orientational correlation function and the magnetic properties of a
magnetic system in the presence of a constant magnetic field at any
distance from a smooth wall.

One useful representation of ﬁ%(z} is a zonal representation

-sR/2

obtained from the inversion of L(s) = e /sﬁi(is). We have

(b ey » LHL(S)
k1Q (0)

. (2.52)

From (2.19) we can write

aT(is) 5 1 e"RS [Efé%?? + B(s)eSR] (2.23a)
vhere
A= Zﬂplcethq (2.23b)
Zﬂpls(c—d) + ZWplce"qR(Q+5)
B(s) = - P (2.23¢)

s(q+s)

It follows that

o ~ ) n
a1t = @ A B(s)esﬂ 2% (2420

10



Then,
~-sR/2 -1
N = € _1yR,.-sRin | A SR _
L(s) = E () s = ["‘"—“s(qm} + B(s)e ] =
n=1
~ @  n-1, ~(n-1)s
g obas § A _lqes)e — . (2.25)
n=1 [s(q+s) (1 +B(s)]
The equation E(s) = 0, where
E(s) = s° + sq + Zﬂplcequ - 2mp; (c-d)] + Zﬁplcethq .
(2.26)
2

gives the poles of each term of (2.25). As in Smith and Hendersen,
we can write
w .
L(z) = Inv[L(s)] = ) gx(z-n+1)6(z-n+1) , (2.27)
n=1

where 6(x) =1 for x > 0 and 0 for x < 0 and

n,n-1
; n=l plE=t.) L “dgEt)
gr(x) = Gla} Y lim d : [ 5§ EES ] Jt(x~R/2)
21 t.=0 toty At (t _

(2.28)

where t, are the roots of E(t). One can proceed following Henderson

and Smithlo and convert g;(x) to the form

1 =1 )
. o _1
gl = } exp t; (x - R/2) Y (x-rR/)™T B;r (2.29)
ti:{) r=( A

with

gi - [n_].] § [1’) A (£.)B. (t.) (2.30a)

15 AR §] Hyr=8Y 1T n st i ‘

s=0

where

A (®) = [Alrt)]® (2.30b)

11



‘ (t—ti) n (k)
5 - {lre] )

. 3 th . 5
and the superscript (k) denotes the k~ derivative.

(2.30c)

12



III. BULK MAGNETIC PROPERTIES

In this section we study Eq. (2.21) in the limit z » « when wall
cffects are not present, More precisely, we consider Eq. 42.5b) in
the limits Rw + @, then z + « (in that order). In this case the
inverse transformation of Eq. (2.21) can be made very easily, We

obtain then

A ~ 8% o 1
Bon3@h « Ay =p B0 __
(@' )

. (5,13
2

This function is independent of position and enables us to calculate

: « y i ci E J =
the one-particle orientational density function pCR(ﬁ;H}y which in the
MSA is given by

P
OR = == 1 r ~
o NG = - [1 + Ho() (3 « )]

P ~ &

1 < H

- 1w Fd . 6.2)
where
':"T 2 Mlﬁ “t& - p

Fe [T0]° = 11 - p (0] = [1+ ol . (3.3)

From its definition2 the LOGA result for pOR is the same as that given
by Eqs. (3.2) and (3.3) but with F associated with the exact spherically
symnetric short-range correlation function rather than the approximation
to it. In the classical Heisenberg case, in which spin orientation is

continuous in 3-space, magnetization M is given by

M = u J o R @&, Mcosy dy (3.4)

.

. Wwhere cosy is the angle between the magnetic field and the spin of a



given particle in the fluid. Substituting Eq. (3.2) in Eq. (3.4),
we obtain

2 =
. WPyl

M = =T (3.5)

: eoually
both for thec MSA and the LOGA. This result isgeppropriate for liquid,

solid and glassy systems on the level of aprroximétion upon which
we work. In particular, the LOGA should give a good representation

- of quenched alloys. From Eq. (3.5)
; 2
M/H = Bu"p,/3F
or equivalently in the Heisenberg case
~A -1 _ 2
[t - pluB[Oj} = 3M/Bu Pyt . (3.6)
The left-hand-side of this equation can be identified with the dif-
ferential isothermal susceptibility y = 9M/9H in the limit H - 0
according to the relation
~A -1 ~A 2

which is the magnetic analog of the well-known compressibility equation
relating ES{O) and isothermal compressibility op/dp. Abeve the Curie
temperature, isotherms in the H-M plane can be expected to approach the
origin linearly, so that
lim x = M/H.. - (3.8)
H~0
Comparing (306).and (3.7), using (3.8), we find consistency in the

" low-field limit, H -+ 0. In the MSA and LOGA, which rest on Eq. (2.1)



and thus are fundamentally linear theories in the field, the linear
regime is all we can hope to treat faithfully. Hgye and Stell2 found
that these approximaticns do predict a Curie pointll at which

1 - plEﬁ(ﬂ) = 0 for the ferromagnetic case (K,, > 0). DBelow the Curie

11

temperature these approximations are not useful. When Kll < 0 (the
antiferromagnetic case) no orientational transition is found. We note
that if the magnetic interaction is described by a magnetic dipole-
dipole potential, no orientational transition is found in these theories
either.,12

To go beyond the linearity of the MSA and LOGA, we can consider
the relevant extension1 aof the EXP approximationl3 to the problem at
hand. This approximation is accurate for arbitrary field strength to

lowest order in density. Its one-particle density function in the

1imit under consideraticn is

- p éoﬁ
: pExp(ﬂ,H) = T%-exp [i%?ﬁ?_] (3.9)
which gives for the magnetization
M = upL(n) (3.10)

with n = pH/KTF and L(n) is the Langevin function cothn - 1/n. In (3.10)
p is the density established gfzgg'the field H is turned on. Whenn + @
(from either H > ® or F + 0), L(n) ~ 1 and M = pp, i.e., complete satura-
tion is obtained. When no correlations between spin particles are

present, F =1 and the classical Langevin result is recovered. At T =T

s

c’

15
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F = 0 so that for any H = 0, n > o and M = up. This indicates that
the critical isotherm in the H-M plane defined by F = 0 is of zero
curvature; a more sophisticated approximation is needed to get a
realistically shaped isotherm.

The fact that the density which appears in Eq. (3.10) differs
from the density Py (the density in the absence of the magnetic field)
is due to magnetostriction. The MSK or LOGA do not predict this

effect. The EXP does, giving

p = J oEXP @ Byall = o5 Si;'}m . (3.11)

. 2 ; G
Expanding p to order H™ we find, as & measure of magnetostriction

2
Ap _ 1 | H .
"% [k_’l‘F} (5.19)

where Ap = PPy We can compare this formula to a thermodynamic

formula exact through O{HZ}:14

pp _ 1 [a I‘] H
Py 2Ki T

. — 3.13
p Q 2

where g is chemical potential, Q = B/DIKT’ Koy is the zero-field iso-
‘thermal compressibility and XL is the "linear' susceptibility M/H in
the limit H -+ 0, which can be identified with the differential sus-
ceptibility x in this limit.
Equation (3.12) is exactly compatible with (3.13) only for an
ideal-ggs Kp = B/p1 (Q = 1) and an ideal-gas susceptibility gi?en by
XL = 8u291/30"The comparison between (3.12) and (3.13) shows that



the EXP result is likely to be useful only for magnetic fluids of
rather low density, i.e., magnetic gases, in strong fields. Very
recently, electrostriction has been studied using the Quadratic

) s e — : -
Hypernetted Chain approximation (QHNC). The techniques used in
that computation are exactly amalogous to those necessary in the

computation of magnetostriction, and we refer the reader to that

15 . . ' a o
work™ for computational details. The magnetostriction result is

QHNC _
Ap 1 (gH
e 3.14

\ ( )

N 6
This is a considerable improvement over the EXP result, although it
too is exactly consistent with (3.13) only for F = 1, which is com-
patible with the ideal susceptibility XL = BuszXS. The most useful
of these expressions is (3.13), into which XL and Q obtained from
the field-free properties of any onc of the approximations considered
here can be insertedu. The XL and Q from the MSA are particularly
convenient for tﬁis purpose, since they have a relatively simple

analytic structure as discussed in ref. [2].
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