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~ INTRGDUCTION -

In this report we describe an algorithm which minimizes

; F : : 1 2 n

a real valued objective function f of n variables x, X, ..., X
subject to constraints of the form

A T B Sl o ey )

= 0.
More generally theré may be several constraints of the type (1 - 1)
- and indeed there may be some of the more general inequality form

(1 -2)
g(xl,xg, e, X)) £ 0.

The objective function f and the constraints must be differentiable
; : : 1 2 n
functions of the n variables x, x , ...,X . However, they need not

be quadratic or convex but may be any genéral non-linear functions.

This report is divided into two parts, the first being a
description of an algorithm. The second part will consist of explicit
instructions on how to use a Fortran version of the algorithm. This
deck will be available from the author or from the Computing Center,
S.U.N.Y. at Stony Brook. The computer program is limited to'problems
of moderate size but otherwise seems capable of handling examples oflcon—
siderable complexity. We feel that this is perhaps the most effective
computer algorithm available today for the constrained minimization of non-

- linear functions.
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~ THE ALGORITHM -

Before beginning a discussion of the method of solving the general
non-linear programming problem we establish some notation. The gradient of
f will be denoted byV£f. In general x will deﬁote an n dimensional cﬁlumn
vector and x; will denote the ith such vector in a sequence of vectors.
Similarly, the ith matrix in a sequence of positive-definite matrices will
be denoted by H;. The constraint equations will be indexed as g5 with g
standing for the m element vector with components g5+ The n by m Jacobian

of g is written as G where the columns of G are'the_gradients §7gl,§?g2,...

Ugm-

Without loss of generality we may assume that all the constraints
are of the equality type [equation (1-1) ] by means of the following device:
Constraints of the inequality type [equation (1-2) ] are equivalent to

equality constraints given by

2 .1 1 2
(2-F g5 (25 B peves®®) Malay 25,0 o) = 0

where

5 (O if gj(xl, x2,..., ) Lo

n
seessX ) =
(1 if gj(xl, %2, ..., ) >0

(2-2) u.(xl, %
J
Under suitably mild hypothesis one can show that the minimum of f
subject to the constraints g = 0 j=1,2,...,m can be found by solving the
sequence of unconstrained problems in which the augmented functions fj are

minimized where



(2-3) £, = £ +(1/2'Kg for K-res.

Here K is an m by m diagonal matrix with positive components k.
along the diagonal and K=»<< means that the kj each increase without bound.
gT denotes the m constraints gj arranged as a row vector since the T super-
script indicates transpose. The function fK is minimized for eack X, each X
matrix being larger than the previous one. It is intuitively reasonable
that for K large the minimum of £ requir;a_s that Cl./égTKg be at most moderate
in size. But this means that in the limit we expect g to be.zero, which is
. indeed what happens. This method is due to R. Cowrant and is called the
penalty argument since the effect of letting K-*<= is that it penalizes the

functions fK for constraint violations.

From (2-3) one may derive the well known Lagrange and Kuhn-Tucker

multiplier rules. In fact, from (2-3) one obtains

(2-4) UE =Uf + KgVg
and at the minimum of the unconstrained fK we have

(2-5) Vi =0=vf+ Kg¥ g.

Passing to the limit in (2-5) we find that Kg tends to the multipliers A

and one then obtains the familiar rule
(2-6) VE = GA.

We have only sketched the penalty argument and multiplier rules here. The

reader is referred to Chapter 2 of the book [1] where a thorough discussion



3.
of the penalty argument is given along with concise statements and proofs

of the above mentioned multiplier rules.

We turn now to a discussion of how one can minimize the functions
fx as given in(2-3). Computationally there are several problems we are
confronted with. We cannot on a computer really allow K to increase without
bound. Also in practice there may be some difficulty in choosing initial
values for the penalty constants ki. An up-to-dste discussion of the various
numerical difficulties encountered in the solution of non-linear problems is
given in [2] and a discussion of how to choose the initial K matrix may be

found in [1].

To minimize fK’ let us assume that we have made a judicious choice
for the initial penalty.matrix K and one has a starting guess X, = (xl, x2,
..., X) for the location of the minimum. We then form the augmented function
fﬁ as given by (2-3) and carry out an unconstrained minimization according to
one of several options, all of which are variants of the Davidon algorithm as
modified by Fletcher and Powell [3]. This method has theoretically exact
convergence for quadratic functions in a finite number of steps and in practice

it achieves rapid convergence once a neighborhood of the minimum is attained.

The iterative process proceeds according to the following equation:
(2-7) % 1 = % -l VHp(x).

Here H. is a positive definite n by n matrix generated by a suitable rank
1

two correction to Hi 1 and H0 is chosen to be the identity matrix I.
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The positive scalarso{i are chosen so as to minimize fK evaluated along
the direction - H; V¥V fK(xi) starting at the point x;. Fletcher and Powell
in [3] establish a number of interesting properties of the algorithm. They
prove that for a quadratic function the minimum is found in n steps. In
addition, the H matrix tends to the inverse of the Hessian of f at the
minimum. That is, if we define a matrix F by
2
(2-8)  F3: = D°f
] i
a Xis.Xj s
then as the procedure converges H tends to F_l evaluated at the minimum.

Later on in this report we will show how this converged H matrix will be

used in a refinement phase based on Newton's method.

Let S; = - Hivf}(,i where for 31mp11c1‘tnyK’i is the gradient of
fx evaluated at the point x;. Also let P; =a~i8i where.é.‘i is chosen so that

fK(Xi +04;5;) is minimized and let Y. =N

K, i+1 —Vf}(’i. The equation for

updating the H matrix is then

_ T T
(2-9) H = Hi + PiPi - H.Y.Y: Hi

ek
T

T
Py Y4 Y;H Y,

i+ 1

Equation (2-9) is the formula as given by Fletcher and Powell in [3j. The
second and third terms each provide rank one corrective terms. Fletcher in N
[4] discusses the possibility of other updating formulas for the H matrix.
The following formula, a result also found by Broyden [5], may be used to

update the H matrix:



= ; = = Py L 3 T . T
(2-10) H Hy - PiY;°Hy - HyY,Po© +f1 + Y3H;¥5\ PiP.
T

B g T
Py Ty Betily Bl f OB

Let the matrix H; resulting from using equation (2-9) be denoted by H°

I, o

and let the corresponding matrix from use of (2-10) be denoted by Hl. Tt
is known that in certain ill-conditioned problems use of (2-9) alone may

lead to singularity of H° and it may be that use of (2-10) alone may cause
gt to become unbounded. Fletcher in [4] suggests the use of a convex com-

bination of H® and Hl, that is,

(2-11) H=(1-§) 8 +§nl,

where ¢E[O, 4], to improve the algorithm. In practice one uses H® or

equation (2-9) if PiTYi<:YiTHiYi and Hl otherwise. Note that if £ is quadratic
then replacing P, by F_J'Yi the above relation becomes YiTF_lYi<inTHiYi which

if true indicates that Hy is "larger" +than F*l and hence updating using the

"smaller" H® formula is indicated. However if YiTF_lYiEf YiTHiYi is true, then

the indication is that Hi is "smaller" than F_l so that Hl should be used.

Other problems arising out of ill conditioning of the H matrix can

occur. If H; is nearly singular then the direction —Hi(7fK s may be nearly

orthogonal to V £ and the algorithm will take extremely small steps and may

K

possibly halt. One possible remedy is to discard'Hi and let Hi be the

+ 1
identity matrix I. Bard in [7] suggests that whenever the cosine of the angle
between HJ._V fl{ 5 and fK ; turns out to be less than 10—5 (we use double

- 3

precision calculations and prefer to use 1078 for this tolerance), then
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reinitialize H, to a diagonal matrix whose jj element is minus the ab-
solute value of the jth element of Pi to the jth element of’ﬁﬁk’i. In

a personal communication from Prof. R.P. Tewarson of the Dept. of Applied
Analysis of S.U.N.Y. at Stony Brook another remedy for the ill conditioning
of the H matrix was brough to our attention. The denominator of the

second term in equation (2-9) is the factor PiTYi which may become very

small and hence cause the elements of the matrix

T
(2-12) P-Pi

to be extremely large. Adding these elements to the elements of the other
correction terms in (2-8) may cause the contribution of the first and third
terms to be negligible. Tewarson suggests that the first and third terms be

multiplied by a factor @ where

(2-13) P = p. 1P,

This then leads to the updating formula

T
0 e

. ~ T
(2-14)  H; .4 _ﬁ Hy - H;Y.Y;"H,\ + P;P;

T T
Yi HiYi Pi Yi

which is uéed only when the cosine of the angle between H117fK ; and V£ i
3 3

is less than 10~%. Favorable results on a badly scaled objective test function



Te
f were noted using this rescaling factor. A similar factor for updating
Hi using equation (2-10) was also developed. The only change in (2-10)
is to mﬁltiply By by the factor i/// .
Py Iy

The selection of the scalorwwéi so that fKFXi +ed, iSi) is mini-
mized does not appear to be a formidable task at first glance. However,
in practiﬁe a great number of function evaluations, which in some problems
are quite costly, may be needed. The importance of.finding this one
dimensionai minimum is necessary to prove the finite step convergence
property of the algorithm when the function to-be minimized is quadratic.
Consider fK(Xi +‘*1i8i) and, using the chain rule, set the derivative with

respect to b(i equal to zero to obtain

df .
K2 % 1 AL
—_—2 - = Vs . S. = 0
do(i | K, 1+1 1
which also implies
T -
(2-15) §7fK, ;1438 =0

Equation (2-15) is needed to show quadratic convergence by Fletcher and
Powell in [3]. A number of methods may be used to find the precise.value

of “Li at each step. Interval splitting techniques and comparison of function
values at interior points may be used. One may also fit é polynomial through
several points and then find the minimum of the polynomial. Experience has

shown however that one of the most powerful techniques is one due to Johnson
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and Meyers [6] which is a combination of Golden Section search and cubic
fit. Beltrami in Chapter 3 of [1] gives a discussion of Golden Section

search which is a simplification of the Fibonacci procedure.

As with all calculations done on a computer the exact value of
o(i may not be found by the one dimensional search. Suppose that we start

at x; and proceed to x

5 according to equation (2-7). If theeX N

i+ 1
found in the one dimensional search was not at the exact minimum of

f(xi + °<i8i) then x; , ; will not be the exact minimum along the direction

Si = =Hy ?f}(,i' Denote the exact minimum by Qi s 1 Then
(.2*16) P T +ﬁsi

where S, = x, 1 —‘xi , or

(2-17) B L ;=% + (1 -p)s,

where 6is generally small. Also assume that the function fK is roughly

i

quadratic in the region where the one dimensional minimization is performed,

so that F = 3 2f is approximately a constant matrix.
dx.9x,
e

We know that .VfK(Q. . J_) is orthogonal to the direction S; but in general
l ©
LTE G " " l) is not itself orthogonal. This means that the new direction
1

Bt ' T ~Hs l‘TfK(xi . 1) will not be conjugaﬁe to the previous direction

and this may lessen the effectiveness of the Davidon Fletcher Powell Algorithm.
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The Davidon Fletcher Powell Algorithm is such that conjugate directions

are generated, that is for a quadratic

(2-18) PiTFP =0 for 0€ick

k

as shown in [3]. We wish to estimate the true but unknown value of the

,~
.

gradient of fk at x; L 9>

Fas .
VfK(xi+ l), using ‘?fK(xi " l). By use of

Taylor's theorem one can derive the following correction formula,

2-19 Ve (R = - : i
( ) £ (% . I-OVE(x; . 408 . ;
Ki+ 1
T
m7fl<(}'(i + 1) SJ‘.
where
(2-20)  AVE (x; ) = VELx; 4 ) - VE (x,)
is the difference in gradients. This vorrected gradient will then be nearly

orthogonal to the direction S; and will help preserve the convergence properties
of the algorithm should the one dimensional search produce a value of:ﬂi not
exactly at the minimum. This gradient correction scheme is due to Kelley and

Hyers [8].

Our discussion of the Davidon Fletcher Powell Algorithm and its
~variations and refinements is now nearly complete. We mention in passing that 
Fletcher in [4] shows that the one dimensional search.to determinec(i may not
have to be done at each iterate. This sacrifices the quadratic convergence
of the algorithm but may cause é sizable reduction in total function evalu-

ations. He shows that-thea<i chosen without one dimensional search must
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satisfy simultaneously

(2-21) 1 -M>[ Af 3_/4

T
V£, 8;

where 0 <f‘ &1 and

(2-22) S.TY. > 0.
1 1

Assuming that we have performed a minimization of fy for fixed

K via the Davidon Fletcher Powell Algorithm we wish now to update the

penalty constant matrix K. The penalty constants are enlarged according

to the relationship

E.

J

if lgjl‘y ej’ where éj is a predetermined tolerance based on how much the
user will accept constraint violations. This updating relationship is given

in Johnson [9] and discussed in Chapter 3 of Beltrami [1].

After increasing the penalty constants we wish to again minimize fK

using the Davidon Fletcher Powell Algorithm. To do this we will have to up-
date the H matrix for the change in the penalty constants. The updating of

H may be done.'by_

Akj T
T vesH
1+ Ax.Vg.'HVg,
: ] 7] 5

(2-24) H* = H - HQg.

where H* is the new H matrix and ng is the gradient of the jth constraint.

Equation (2-24) is derived in Kelley et al [10]. The matrix form of (2-24) is
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(2-25) H* = H - HG [eTHG + (Ak)™1 171cTx

where it is assumed that each kj is increased so that (AK)_l exists.

After sufficient minimizations by thg DFP Algorithm and updating
of the penalty constants we may now use the converged H matrix in a Newton
type acceleration phase. Following Kelley et al [10] or Johnson in [9],
we proceea as follows. The first order necessary conditions for the con-
strained minimum problem is given by the system of equations

Vf + 6N = 0
(2-26)

g = 0
where A is an m vector of multipliers and g is the m vector of constraint
equations gj. Application of Newton's method to the system of equations

(2-26) gives

{ 2-27) (f + ?\Tg)xx VQ Dx V£f+ GA

?gT 0 L AN

=5 -

L B .

i
where (f +A Tg}xx is the matrix of second partial derivatives of f + A g.

This matrix may be approximated by

- (2-28) Hl .- VgkvgT

where we have made use of the converged H of the DFP Algorithm. In terms

of known quantities, the expression for Ax obtained from (2-27) is
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(2-29) Ax = - [H- HVg(V glHV ) 101V £
HVg(VgHVg) g

Equation (2-29) is used in an iterative manner starting with the last
solution obtained from the DFP Algorithm along with the converged H
matrix from that algorithm. The convergence rate of the iteration
described by (2-29) should be nearly as rapid as Newton's method pro-
viding that the quantities k.ig. furnish good approximations to the

173
multipliers )\j.

Should all the constraints be satisfied after use of the DFP

Algorithm, then the simple Newton's method

(2-30) X

is used starting with the solution obtained from the DFP minimization phase.

Iteration in each phase is stopped by the standard techniques
‘employed in nuﬁericai analysis. Whenefer two subsequent function values
differ by less thaﬁ some predetermined tolerance than the iterations are
‘terminated.. In addition a test to determine if the gradient of fK is
sufficiently small is alsc used in the DFP phase. In all cases it is felt

- that at least n iterates, where n is the number of independent variables in

the problem, is required for each minimization phase.

o
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- NUMERICAL RESULTS -
As an example of the numerical results obtained by using

the algorithm we consider a problem due to Ivan L. Johnson of NASA,

Houston, Texas. The objective funetion f is given as
(3-1) ¥ = x = x ),

subject to the constraints

e =
gy % + X, = 1 =0
2 -
(3-2) g, =X X -%; =0
2 -
g3 = xh - xe =0

The constrained minimum of f lies at

: X = 0.793700
(3 - 3)
x, = 0.707106
2
Xy = 0.592731
x), = 0.840896
where f has an exact minimum of - 0.25. Using the.algorithm on the

problem as given in (3 - 1) and (3 - 2) with starting values of

;s u B 0.8
(3-14) s © 0.8
X3 = 0.8

"

0.8
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and initial penalty const ants of 103 we found that the DFP phase
after 12 iterates brought the value of £ to - 0.250299 with all
the constraints less than 10-3. After five applications of the
Newton Acceleration phase the value of f agreed with -0.25 to 16 .
places and the constraints all zero to 16 places. At this point

the value of I!?f{l was less ‘than 1077,

In order to evaluate the performance of the differeﬁt
variatiqns and options in the algorithm a formidable test problem
was needed. It was decided to rescale the NASA test problem described
above in such a way that the resulting probleﬁ was sufficiently
.difficult and also improperly scaled. This rescaling or distorition
was accomplished by rescaling X5 to be 10 times larger and x), to be
10 times smaller than in the original problem. For the tests and
comparisons however, X, was rescaled to be 100 times larger and x),
was rescaled to be 100 times smaller than originally. Total iterates
of the DFP Algorithm and total function evaluations were noted for
each variation of the algorithm as soon as the " ﬁ'fﬁ was less than

-5 3

10 and the constraint equations were all less than 10° Each test

was started at the same initial point as in equation (3 - 4) and initial
3

penalty constants were 10~. All calculations were done in double precision

on an IBM 360/67 computer. The results are given in the following table.
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Total function

Option Dis- Final wvalue Total

Used tortion of function f Iterates evaluations
5° update None -.250299 12 82
H° update 10%,,1/10 x, -.250299 45 k1
H° update 100x,,1/100x, -.250299 123 1818
Bard's H reset " ~.250299 96 1037
Tewarson's reset " -.250299 86 91h
Hl update b -.250299 83 719

o I n )
d H
zomgznation ~»£I0239 9 71k

In addition to thé NASA test problem described above, a number of

other test problems were tried.

In each case the results obtained com-

pared favorably to other methods of constrained minimization.
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- A Fortran Program For Nonlinear Programming -

This part of the report will deal exciusively with the use
of a Fortran program to implement the algorithm described in Part I.
The algorithm and hence the program were designed primarily for
nonlinear problems. Use of the program for linear problems is not.
encouraged since there are a number of more efficient algorithms

available for such problems.

The program is comprised of a main program.which-reads
initial data from punched cards, call the subroutines, updates the
?enalty constants and the H matrix, and prints some of the output.

The following is a list of the subroutines and their primary function.

Subrcoutine Name Function
NEWT Newton's Refinement Phase
DAVIDN DFP Algorithm
CUBIC . ~ Cubic polynomial fit
IMT ~ Computes augmented function T
FFXCGGX '  Calls FUNT, computes constraints,

¥ £, and gradients of constraints
 MATIN _ .~ Matrix Inversion

FUNT ; Computes value of function f

The user must supply in subroutine FUNT the algebraic
expression for the objective function. In FUNT the variables x; are

called ALPHA (I) and the function is called FNT.
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For example if

f = xi + xg + 3x3

then the user must insert in subroutine FUNT

FNT = AIPHA (1), 4 2 + AIPHA (2) , , 2

+ 3.0D + 0 , ALPHA (3)
In subroutine FFXGGX the user must insert the following:

i) Between comment cards INSERT CONSTRAINT EQUATIONS; the
expression for each constraint equation, equality con-
straints first, where g; is coded as CGBAR(I) and the

variables x, as ALPHA(I). For example if

= = o= -y =
g; Xy + 2x2 = Wy g5 X, = 0

then the user must supply

GBAR(1) -ALPHA(1) + 2.0D + O , ALPHA(2)

GBAR(2) -ALPHA(3)

ii) Between comment cards INSERT GRADIENT OF F; the expression

for each component of the gradient of f where %g is coded
. : %,

as.FNTX(I). Following the previous example for

pf  _ °f _ af -
- 23{l’ -bx2 - 2X2’ ax3 3

.the user must supply

FNTX(1) = 2.0D + O, ALPHA(1)

FNTX(2)

2.0D + 0, ALPHA(2)

FNTX(3) 3.0D + 0

L}
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iii) Between comment cards INSERT GRADIENTS QF CONSTRAINTS;
the expression for the gradient of each constraint as a
row of the m by n matrix G. Row i of G is the gradient
of constraint i and following the previous example we have

s=[3 3]

so that one must insert

Gf1,1) = 1.0D + 0
G(1,2) = 2.0D+0
ete.

In addition the user must supply the following as SYSIN
input data on punched cards with the formats as specified in

parenthesis..

N number of variables, (I5)
MEQ number of equality constraints, (IS)
MINEQ number of inequality constraints, (I5)

XBARS(I) the initial guess or choice of the n independent variables
x, , (D23.16)

DELF a tolerance on the difference bg ween two successful values
of f,, generally equal to .1x10 °, (D23.16)

CAYY(I) the starting values for the penalty constants, there are
MC = MEQ+MINEQ of these values to be supplied,(D23.16)
See note 1. .

GEPS(I) Tolerance on the value of the constraints generally all are
taken to be 10~3, (D23.16)  See note 2.

DELFEBR a tolerance similar to DELF except that DEIFBR is used in the -
Newton acisleration vhase to stop iteration, generally equal
to 1xi0 ", (D23.16) ; : _
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KUBIC parameter which signifies which search method is to be
used for the one-dimensional minimization, (I5)
See note 3.
KEYH parameter which signifies which updating formula for
the H matrix is to be used in DAVIDYN subroutine.
KEYH = O signifies use of H° (Davidon-Fletcher-Powell),
KEYH = 1 signifies use of 5l (Broyden), and KEYH = 2 '
signifies use of H® or H™ depending on the criteria
given in Part 1 of this report, (IS).

In addition to the value of the cobjective function and the
v

values of the independent (solution) variables }fL other useful
information is clearly identified and printed out. Of particular
interest are the values of the constraint eqﬁations and the value
pf the gradient of f at each iterate. For the equality constraints
and the activé inequality constraints the Lagrange and Kuhn-Tucker
multipliers are printed out. At the end, the values of the active
and inactive constraints in addition to the multipliers (which are

associated with the equality and active inequality constraints) are

printed out.

To illustrate the use of this deck on a sample problem consider
the function
2

f(xl,x

D) = (2)% ¢ (o)

which is to be minimized subject to the constraints
gl ek § = K. =0 ‘<o
-1 1772

!
gy(x5%,) " = %) + x5
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The constrained minimum of f occurs at X, = 8 x2 =1
where the value of f is equal to 1. Both constraints are active at the
minimum and the multipliers are each 2/3. Input information for this

problem is N = 2, MEQ = 0, MINEQ = 2, XBAR(1) = 0.0D+0, XBAR(2) = 0.0D+0,

1]
n

DELF = 0.1D - 08, CAYY(1) CAYY(2) 16.0D+0, GEPS(1) = GEPS(2) = .001D+00,

I

2, KEYH

1

DELFBR'= 0.1D - 12, KUBIC 0. Partizl output for this problem

at the last iterate is

SOLUTION VECTOR IS

0.1D+01 0.1D+01
FUNCTION VALUE F = .999—>990+00
GBAR(1) = GBAR(2) = 0.0D+00

The deck is supplied with this sample problem included. The
user should run this problem to familiasrize himself with the use of the
deck. For further information concerning this program contact
Mr. J.P. Indusi, Department of Applied Analysis, S.U.N.Y., Stony Brook,

New -York.
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—~ Notes -

At present no precise manner of choosing the initial values of
the penalty constants is known. Typical values range between
15 and 100. A reascnably safe try is 15 and if no convergence

is observed then one should try larger values in subsequent trials.

The tolerances GEPS(I) are reduced or tightened automatically in

the program.

There are 4 search options available. They are discussed briefly

below and in the references given in Part 1.

i) KUBIC = 0 is search by Golden Section. A fairly

sophisticated method of finding one dimensional

minimum.
ii) KUBIC = 1 is search by cubic interpolation method.
iii) KUBIC = 2 is a combination of i) and ii) above. It

is the most sophisticated of all the search options
and requires the most number of function evaluations.
For certain problems the program will switch from KUBIC =1
fo KUBIC = 2 automatically.

iv) KUBIC = 3 is search by simple quadratic interpolation.
-Uses fewest function evaluations but should not be used
when user suspects that the objective function is very non-

linear.



MAIN PROGRAM FLOW CHART

22
;L N, MEQ, MINEQ, XBAR(I),
S DELF, CAYY(I), GEPS(I),
DELFBR, KUBIC, KEYH
VAN
H, ¢—1I Initial H matrix is the
identity. :
<
e ]
7
rank of T e
G <€ MC J -
F
N7 CALL
active con- y._T >
‘\straints = ¥ DAVIDN
. i
/ CALL \ Simple
_ Newton's Increase K,
) NEWT Method Update H,
' - : Reduce
. Tolerances A
A2
PRINT FINAL FUNCTION VALUE,
SOLUTION VECTOR, VALUES
oy OF CONSTRAINTS, MULTIPLIERS, etc.
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