
?

I

I fJ5J'--

..-

J.P. Indusi

July, 1970

MAR

A

COMPUTER

ALGORITHM

FOR

CONSTRAINED

MINIMIZATION

('

/

5 1973 DECISION--MAKING

USE-1-1

of Engineering Report #175

VF::f'ic'G UF,\UM::t-,jT
i;- Fi,['

(- Si ~c~Y i\'-OOK

- INTRODUCTION -

In this report we describe an algorithm which minimizes

a real valued objective function f of n variables xl, x2, ..., xn

subject to constraints of the form
',r

(1 - 1) (
1 2 n

)g x ,x , ...,x = O.

More generally there may be several constraints of the type (1 - 1)

and indeed there may be some of the more general inequality form

(1 - 2)
(
1 2 n

) ~g x ,x , ...,x - O.

The objective function f and the constraints must be differentiable

functions of the n variables xl, x 2, ...,xn. However, they need not

be quadratic or convex but may be a.TJ.Ygeneral non-linear functions.

This report is divided into two parts, the first being a

description of an algorithm. The second part will consist of explicit

instructions on how to use a Fortran version of the algorithm. This

deck will be available from the author or from the Computing Center,

S.U.N.Y. at Stony Brook. The computer program is limited to problems

of moderate size but otherwise seems capable of handling examples of con-

siderable complexity. We feel that this is perhaps the most effective

computer algorithm available today for the constrained minimization of non-

. linear functions.

~

We wish to extend sincere thanks to Ivan L. Johnson of

the NASA Manned Spacecraft Center in Houston, Texas, for making

available to us a computer program which already i~corporates many

of the features of the present deck.

This report would not have been possible without the

continuous interest and support of Professor E.J. Beltrami of the

State University of New York at Stony Brook. Much of the text of

this report and the development of the Fortran program are the results

of his efforts.

-

The Algorithm.

Numerical Results.

TAB L E 0 F CON TEN T S

A Fortran Program for Nonlinear Programming.

Main Program Flow Chart.

. References.

. 13

. 16

. 22

. 23

1

,/"r'

1.

- THE ALGORITHM -

Before beginning a discussion of the method of solving the general

non-linear programming problem we establish some notation. The gradient of

f will be denoted by\7f. In general x will denote an n dimensional column

vector and xi will denote the ith such vector in a sequence of vectors.

Similarly; the ith matrix in a sequence of positive-definite matrices will

be denoted by H. .1 The constraint equations will be indexed as gj with g

standing for the m element vector with components gj.
The n by m Jacobian

of g is written as G where the columns of G are the gradients 'V g l' \] g2 ' . . . ,

'V~.

Without loss of generality we may assume that all the constraints

are of the equality type [equation (1-1)] by means of the following device:

Constraints of the inequality type [equation (1-2)] are equivalent to

equality constraints given by

Under suitably mild hypothesis one can show that the minimum of f

subject to the constraints g. = 0]
j = 1,2,. ..,m can be found by solving the

sequence of unconstrained probl~ms in which the augmented functions fk are

minimized where

(2-1)
212 n 1 2 n

gj (x , x ,...,x) u.(x , x ,...,x) = a. J

where

t . (1 2 n) < }
(2-2)

12 n - 01fx,x,...,x _0
u.(x,x,...,x)- 12J . n

. 1 if gj(x , x ,..., x) a

2.

(2-3) fK = f + (l/~?Kg fOl~ K-"Oo.

HereK is an m by m diagonal matrix with positive components k.
]

along the diagonal and K~~~ means that the kj each increase without bound.
T

h . .
hg denotes t e m constralnts g. arr.anged as a row vector Slnce t e T super-J

script indicates transpose. The function fK is minimized for eack K, each K

matrix being larger than the previous one. It is intuitively reasonable

that for K large the minimum of fK requires that (l/JgTKg be at most moderate

in size. But this means that in the limit we expect g to be zero, which is

indeed what happens. This method is due to R. Courant and is called the

penalty argument since the effect of letting K40.0 is that it penalizes the

functions fK for constraint violations.

F+"'om (2-3) one may derive the "lell known Lagrange and Kuhn-Tucker

multiplier rules. In fact, from (2-3) one obtains

(2-4) Q fK =" f + KgV g

and at the minimum of the unconstrained fK we pave

(2-5) V'fK = 0 =Vf + KgV g.

Passing to the limit in (2-5) we find that Kg tends to the multipliers)\

and one then obtains the familiar rule

(2-6) Vf = GA.

We have only sketched the penalty argument and multiplier rules here. The

reader is referred to Chapter 2 of the book [lJ where a thorough discussion

3.

of the penalty argument is given along with concise statements and proofs

of the above mentioned multiplier rules.

We turn now to a discussion of how one can minimize the functions

fK as given in(2-3). Computationally there are several problems we are

confronted with. We cannot on a computer really allow K to increase without

bound. Also in practice there may be some difficulty in choosing initial

values for the penalty constants k..1 An up-to-date discussion of the various

numerical difficulties encountered in the solution of non-linear problems is

given in [2] and a discussion of how to choose the initial K matrix may be

found in [1].

To minimize fK' let us assume that we have made a judicious choice

for the initial penalty matrix K and one has a starting guess x = (xl, x2,0

..., xn) for the location 'of the minimum. We then form the augmented function

fK as given by (2-3) and carry out an unconstrained minimization according to

one of several options, all of which are variants of the Davidon algorithm as

modified by Fletcher and Powell [3]. This method has theoretically exact

convergence for Quadratic functions in a finite number of steps and in practice

it achieves rapid convergence once a neighborhood of the minimum is attained.

The iterative process proceeds according to the following eQuation:

(2-7) xi + 1 = xi-o.(iHi '\7fK(xi)'

Here H. is a positive definite n by n matrix generated by a suitable rank
1

two correctionto Hi - 1 and Ho is chosen to .bethe identitymatrix T.

4.

The positive scalarso{i are chosen so as to minimize fK evaluated along

the direction -, HiVfK(xi) starting at the point xi'

in [3J establish a number of interesting properties of the algorithm.

Fletcher and Powell

They

prove that for a quadratic function the minimum is found in n steps. In

addition, the H matrix tends to the inverse of the Hessian of f at the

minimum. That is, if we define a matrix F by

2
F.. = ";;)f
1J

~xi~Xj

then as the procedure converges H tends to F-l evaluated at the minimum.

(2-8)

Later on in this report we will show how this converged H matrix will be

used in a refinement phase based on Newton's method.

Let Si = - Hi'V fK ' where for simplicity\! fK . is the gradient of~ ,1

fK evaluatedat the point xi' Also let Pi =~iSi wher~i is chosen so that

fK(X, +~,Si) is minimized and let Y. =Vf K ' -Vf K ..
1 1 1 , 1 + 1 ,1 The equation for

updating the H matrix is then

(2-9) H. 11 + = Hi + PiPiT-
T

p. y.1 1

TH.Y.Y. H.
111 1

Ty. H.Y.
111

Equation (2-9) is the formula as given by Fletcher and Powell in [3J. The

second and third terms each provide rank one corrective terms. Fletcher in

[4J discusses the possibility of other updating formulas for the H matrix. .'

The following formula, a result also found by Broyden [5J, may be used to

update the H matrix:

5.

(2-10) Hi + 1 = H. - Pl.y.TH.111
TH.Y.P.

111 +

t
+ Yi:i Y

j

'

p. Y.
1 1

p.p T
1 i-
Tp. y.

1 1
p.Ty.
1 1 p.Ty.

). 1

Let the matrix Hi + 1 resulting from using equation (2-9) be denoted by HO

and let the corresponding matrix from use of (2~10) be denoted by HI. It

is known that in certain ill-conditioned problems use of (2-9) alone may

lead to singularity of HO and it may be that use of (2-10) alone may cause

HI to become unbounded. Fletcher in [4J suggests the use of a convex com-

bination of HO and HI, that is,

(2-11) H = C1 - fin HO +; HI,

where ~ € [0, i J, to improve the algorithm. In practice one us es HO or

equation (2-9) if PiTYi<YiTHiYi and HI otherwise. Note that if f is quadratic

then replacing P. by F-Iy. the aNove relation becomes y.TF-Iy.<y.TH.Y. which
. 1 1 1 1 111

if true indicates that H. is "larger" than F-l and hence updating using the1

"smaller" HO formula is indicated. However if y.TF-ly.~ y.TH.Y. is t:rue, then
11. 111

the indication is that H. is "smaller" than F-l so that HI should be used.
1

Other problems arising out of ill conditioning of the H matrix can

occur. If Hi is nearly singular then the direction -Hi~fK i may be nearly. '

orthogonal to Vf K . and the algorithm will take extremely small steps and may
,1

possiblyhalt. One possibleremedy is to discard H. and let H. be the1 . 1 + 1

identity matrix I. Bard in [7J suggests that whenever the cosine of the angle

V
-5

between H. fK . and V fK . turns out to be less than 10 (we use double
1,1 ,1

.r

precision calculations and prefer to use 10-8 for this tolerance), then

".- ..'

6.

reinitialize H. to a diagonal matrix whose jj element is minus the ab-1

solute value of the jth element of P. to the jth element of ~ K .' In
1 ,1

a personal communication from Prof. R.P. Tewarson of the Dept. of Applied

Analysis of S.U.N.Y. at Stony Brook another remedy for the ill conditioning

of the H matrix was brough to our attention. The denominator of the

second term in equation (2-9) is the factor PiTYi which may become very

small and hence cause the elements of the matrix

(2-12)
Tp.P.

1 1-
TP. Y.

1 1

to be extremely large. Adding these elements to the elements of the other

correction terms in (2-9) may cause the contribution of the first and third

terms to be negligible. Tewarson suggests that the first and third terms be

multiplied by a factor r where

(2-13) ~ = p.Tp
1 i

~ y
1 .1

This then leads to the updating formula

(2-14) Hi +1

OPCi

- H'Y.Y
l
.TH

v

+
111

TY. H.Y.
111

T
p.p.
1 1

p.Ty.
1 1

which is used only when the cosine of the angle between Hi 'QfK . and VfK .

,1 ,1

is less than 10-8. Favorable results on a badly scaled objective test function

7.

f were noted using this resealing factor. A similar factor for updating

is to multiply Hi by the factor

developed.

~ ,
p.Ty.l l

The only change in (2-10)
Hi using equat~on (2-10) was also

The selection of the scalor~. so that f (x. +0(.Sl') is mini-
l K l l

mized does not appear to be a formidable task at first glance. However,

in practice a great number of function evaluations, which in some problems

are quite costly, may be needed. The importance of finding this one

dimensional minimQ~ is necessary to prove the finite step convergence

property of the algorithm when the function to be minimized is quadratic.

Consider fK(xi +~iSi) and, using the chain rule, set the derivative with

respect to c(. equal to zero to obtainl

dfK, i + 1 = T S.'t"7f .
+ 1 lV K, l

= 0

dO<:i

which also implies

(2-15)
rTfT P.
v K, i + 1 l

= 0

Equation (2-15) is needed to show quadratic convergence by Fletcher and

Powell in [3J. A number of methods may be used to find the precise value

of ~. at each step.
. l

Interval splitting techniques and comparison of function

values at interior points may be used. One may also fit a polynomial through

several points and then find the minimum of the polynomial. Experience has

shown however that one of the most powerful techniques is one due to Johnson

8.

and Meyers [6J which is a combination of Golden Section search and cubic

fit. Beltrami in Chapter 3 of [lJ gives a discussion of Golden Section

search which is a simplification of the Fibonacci procedure.

As with all calculations done on a computer the exact value of

o(i may not be found by the one dimensional search. Suppose that we start

at x. and proceed to x. + 1l - l according to equation (2-7). If the C>(.
l

found in the one dimensional search was not at the exact minimum of

f(xi + O<iSi) then xi + 1 will not be
the exact minimum along the direction

S. = -H. ~f K ..
l l ,l

.

h .. b 1\
Denote t e exact mlnlmum y x. 1

,
l +

Then

(2-16)
'"

xi + 1 = xi + 1 + r Si

where S. = x. - x. , or
l l + 1 l

(2-17)
~i + 1 = xi + (1 - P)Si

Co

where ~ is generally small.
Als'o assume that the function fK is roughly

quadratic in the region where the one dimensional minimization is performed,

so that F = ~ 2f

4X.clx.
l J

is approximately a constant matrix.

We know that 'If (~.) is orthogonal to the direction S. but in generalK l+l . l

"f(x. 1) is not itself orthogonal. This means that the new direction
l +

Si + 1 = -Hi + 1 ~fK(xi + 1) will not be conjugate to the previous direction

and this may lessen the effectiveness of the Davidon Fletcher Powell Algorithm.

9.

The Davidon Fletcher Powell Algorithm is such that conjugate directions

are generated, ~hat is for a quadratic

(2-18) P TFP = 0
i k for O.'fi<k

as shown in [3J. We wish to estimate the true but unknown value of the

gradient of fK at ~i + l' \7 fK(~i+ 1)' using VfK(xi + 1). By use of

Taylor's theorem one can derive the following correction formula,

.(2-19) V f (~.
1
)

K 1.+
= T

I - DSlfK(Xi + l)Si
)

VfK(Xi + 1

)TS'
b.VfK(xi + 1 i

where

(2- 20))
IS\}f (xi + 1K

=
\'lfK(Xi + 1) - 't"fK(Xi)

is the difference in gradients. This -corrected gradient will then be nearly

orthogonal to the direction S. and will help preserve the convergence properties1.

of the algorithm should the one dimensional search produce a value of~. not1.

exactly at the minimum. This gradient correction scheme is due to Kelley and

Myers [8J.

Our discussion of the Davidon Fletcher Powell Algorithm and its

variations and refinements is now nearly complete. We mention in passing that'

Fletcher in [4J shows that the one dimensional search to determine 0<. may not
1. .

have to be done at each iterate. This sacrifices the quadratic convergence

of the algorithm but may cause a sizable reduction in total function evalu-

ations. He shows thattheC<. chosen without one dimensionai search must
1.

10.

satisfy simultaneously

Assuming that we have performed a minimization of fK for fixed

K via the Davidon Fletcher Powell Algorithm we wish now to update the

"penalty constant matrix K. The penalty constants are enlarged according

to the relationship

(2-23) (k.)
J new

=
(kj)Old 'gj I

E.
J

if Ig. t.,.. e., where {.. is a predetermined tolerance based on how much theJ J " J

user will accept constraint violations. This updating relationship i8 given

in Johnson [9] and discussed in Chapter 3 of Beltrami [1].

After increasing the penalty constants we wish to again minimize fK

using the Davidon Fletcher Powell Algorithm. To do this we will have to up-

date the H matrix for the change in the penalty constants. The updating of

H may be done by

(2-24) H1: = H-H\7g.
J (

Ak.

)
"

1 +A ~ . V'g .TH V g .
J .] J

vg.THJ

wnere H1: is the new H matrix and Vg. is the gradient of the jth constraint.J

Equation (2-24) is derived in Kelley et al [10]. The matrix form of "(2-24) is

(2-21)

1 --)I(M T

) j't

Vfi '

where 0</,-<' 1 and

(2-22)
T

S. y. > O.
1].

11.

(2-25) H~" = H - HG [GTHG + (~K)-l rlGTH

where it is assumed that each k. is increased so that (~K)-l exists.J

After sufficient minimizations by the DFP Algorithm and updating

of the penalty constants we may now use the converged H matrix in a Newton

type acceleration phase. Following Kelley ct al [10] or Johnson in [9J,

we proceed as follows. The first order necessary conditions for the con-

strained minimum problem is given by the system of equations

<\If +GJ'o.. = a
(2-26)

g = a

where ~ is an m vector of multipliers and g is the m vector of constraint

equations g..J

(2-26) gives

Application of Newton's method to the system of equations

(2-27) (f + i\ Tg)xx '\lg /1x Vf + G~

=

VgT a ~'A g

T .

where (f +i-. Tg)xx is the matrix of second partial derivatives of f+ .?\g.

This matrix may be approximated by

(2-28) H-1 - \! gK VgT

where we have made use of the converged H of the DFP Algorithm. In terms

of known quantities, the expression for ~x obtained from (2-27) is

12.

(2-29) Ax = - [H- HV'g(\7gTHVg)-l"\7gTH]V'f

-H ~ g(V gTHV g) -lg

Equation (2-29) is used in an i-terative manner starting with the last

solution obtained from the DFP Algorithm along with the converged H

matrix from that algorithm. The convergence rate of the iteration

described by (2-29) should be nearly as rapid as. Newton's method pro-

viding that the quantities kjgj furnish good approximations to the

multipliers A . .
J

Should all the constraints be satisfied after use of the DFP

Algorithm, then the simple Newton's method

(2-30) xi + 1
=

xi - HVfK(xi)

is used starting with the solution obtained from theDFP minimization phase.

Iteration in each phase is stopped by the standard techniques

employed in numerical analysis. Whenever two subsequent function values

differ by less than some predetermined tolerance than the iterations are

. terminated.
In addition a test to determine if the gradien~ of fK is

sufficiently small is also used in the DFP phase. In all cases it is felt

that at least riiterates, where n is the number of independent variables in

the problem, is required for each minimization phase.

13.

N~lliRICAL RESULTS -

AB an example of the numerical results obtainedby using

the algorithm we consider a problem due to Ivan L. Johnson of NASA,

Houston, Texas. The objective function f is given as

(3 - 1) l' =
xl x2x3 x4

subject to the constraints

(3 - 2)

gl = xi + x2 - 1 = 0
2 .

g2 = xl x4 - x3 = 0
2

g3 = x4 - x2 = 0

The constrained minimum of f lies at

(3 - 3)

where f has an exact minimum of - 0.25. Using the algorithm on the

problem as ~iven in (3 - 1) and (3 - 2) with startingvalues of

xl = '0~8

(3-4)

1

xl
= 0.793700

x2
= 0.707106

x3
= 0.592731

x4
= 0.840896

x2
= 0.8

x3
= 0.8

x4
= 0.8

14.

and initial penalty const e.nts
3

of 10 we ~oillldthat the DFP phase

after 12 iterates brought the value of f to

-3
the constraints less than 10 .

- 0.250299 with all

After five applications of the

Newton Acceleration phase the value of f agreed with -0.25 to 16

places and the constraints all zero to 16 places. At this point

the value of UVfH was less than 10-7.

In order to evaluate the performance of the different

variations and options in the algorithm a formidable test problem

was needed. It was decided to rescale the NASA test problem described

above in such a 1"ay that the resulting problem was sufficiently

.difficult and also improperly scaled. This resealing or distorition

was accomplished by resealing x2 to be 10 times larger and x4 to be

10 times smaller than in the original problem. For the tests and

comparisons however, x2 was resealed to be 100 times larger and x4

was resealed to be 100 times smaller than originally. Total iterates

of the DFP Algorithm and total function evaluations were noted for

- each variation of the algorithm as soon as the II V d\ was less than

10-5 and the constraint e~uations were all less than 10-3. Each test

was started at the same initial point as in e~uation (3 - 4) and initial

3
penalty constants were 10 . All calculations were done in double precision

on an IBM 360/67 computer. The results are given in the following table;

In addition to the NASA test problem described above, a number of

other test problems were tried. In each case the results obtained com-

pared favorably to other methods of constrained minimization.

15.

Option Dis- Final value Total Total function
Used tortion of fUnction f Iterates evaluations

0
None -.250299 12 82H update

0
10x21/10 x4

-.250299 45 441H update

0
100x2,1/100x4 -.250299

123 1818H update

Bard IsH reset II
-.250299 96 1037

Tewarson's reset II
-.250299 86 914

1 II
-.250299 83 719H uPdate

, HO and HI
II

combination
-.250299 79 714

16.

- A Fortran Program For Nonlinear Programming -

This part of the report will deal exclusively with the use

of a Fortran program to implement the algorithm described in Part I.

The algorithm and hence the program were designed primarily for

nonlinear problems. Use of the program for linear problems is not

encouraged since there are a number of more efficient algorithms

available for such problems.

The program is comprised of a main program which reads

initial data from punched cards, call the subroutines, updates the

penalty constaE.ts and the H matrix, and prints some of the output.

The following is a list of the subroutines and their primary function.

Function

Newton's Refinement Phase

DFP Algorithm

Cubic polynomial fit

Computes augmented function fK

Calls FUNT, computes constraint~
1?f, and gradients of constraints

Matrix Inversion

Computes value of function f

The user must supply in subroutine FUNT the algebraic

expression for the objective function. In FUNT the variables x. are
. J.

called ALPHA (I) and the function is called FNT.

Subroutine Name

NEWT

DAVIDN

CUBIC

IMT

FFXGGX

MATIN

FUNT

17.

For example if

f = 2 2
xl + x2 + 3x3

then the user must insert in subroutineFUNT

FNT = ALPHA(1)* * 2 + ALPHA(2) * * 2

+ 3.0D + ° * ALPHA(3)

In subroutine FFXGGX the user must insert the following:

i) Between comment cards INSERT CONSTRAINT EQUATIONS; the

expression for each constraint equation, equality con-

straints first, where g. is coded as GBAR(I) and thel

variables x. as ALPHA(I).
l For example it

g.
l

=
Xl + 2x2

=
0) g2

= -X <::. 0
3-

then the user must supply

GBAR(l)

GBAR(2)

=
-ALPHA(l) + 2.0D + 0 * ALPHA(2)

-ALPHA (3)=

ii) Between comment cards INSERT GRADIENT OF F; the expression

for each component of the gradient of f where ;f is codedx.
l

as, FNTX(I). Following the previous example for

af ~f. ~f

~xl = 2xl' 'bx2 = 2x2' aX3 = 3

the user must supply

FNTX(l) = 2.0D + °* ALPHA(l)

FNTX(2) = 2.0D + °* ALPHA(2)

FNTX(3) = 3.0D + 0

iii)

18.

Between comment cards INSERT GRADIENTS OF CONSTRAINTS;

the expression for the gradient of each constraint as a

row of the m by n matrix G. Row i of G is the gradient

of constraint i and following the previous example we have

G =
[
-I .,2. O

J0 0-'
so that one must insert

In addition the user must supply the following as SYSIN

input data on punched cards with the formats as specified in

parenthesis. .

XBARS(I)

DELF

CAYY(I)

GEPS(I)

DELFBR

the initial guess or choice of the n independent variables
x., (D23.16)J.

a tolerance on the difference b~5ween two successful values
of fK' generally equal to .lxlO , (D23.16)

the starting values for the penalty constants, there are

MC = MEQ+MINEQ of these values to be supplied,(D23.16)
See note 1.

Tolerance on the value of the constraints generally all are
taken to be lO-3t (D23.16) See note 2.

a tolerance similar to DELF except that DELFBR is used in the

Newton a:I~leration phase to stop iteration, generally equal
to .1x1O ,(D23.16) .

G(l,l) = I.OD + 0

G(1,2) = 2.0D + 0

etc.

N number of variables, (15)

MEQ number of equality constraints, (15)

MINEQ number of inequality constraints, (15)

19.

KUBIC parameter which signifies which search method is to be
used for the one-dimensional minimization, (IS)

Se~ note 3.

KEYR parameter which signifies which updating formula for
the R matrix is to be used in DAVIDN subroutine.

KEYR = 0 signifies use of RO (Davidon-Fletcher-Powell),

KEYR = 1 signifies use of hI (Broyden), and KEYE = 2
signifies use of HO or H depending on the criteria

given in Part 1 of this report, (IS).

In addition to the value of the objective function and the
t

values of the independent (solution) variables j(t other useful

information is clearly identified and printed out. Of particular

interest are the values of the constraint equations and the value

of the gradient of f at each iterate. For the equality constraints

and the active inequality constraints the Lagrange and Kuhn-Tucker

multipliers are printed out. At the end, the values of the active

and inactive constraints in addition to the multipliers (which are

associated with the equality and active inequality constraints) are

printed out.

To illustrate the use of this deck on a sample problem consider

the function

f(xl,x2)
=

(Xl-2)2 + (x2-1)2

which is to be minimized subject to the constraints

gl(Xl,X2)
- 2
- x2 - xl ~ 0

() '- + 2
g2 xl,x2 - xl x2

~o

20.

The constrained minimum of f occurs at xl = 1, x2 = 1

where the value of f is eQual to 1. Both constraints are active at the

minimum and the multipliers are each 2/3. Input information for this

problem is N = 2, MEQ = 0, MINEQ = 2, XBAR(l) = O.OD+O, XBAR(2) = O.OD+O,

DELF = O.lD - 08, CAYY(l) = CAYY(2) = 16.0D+O, GEPS(l) = GEPS(2) = .OOlD+OO,

DELFBR = O.lD - 12, KUBI C = 2, KEYH = O. Partii11 output for this problem

at the last iterate is

SOLUTION VECTOR IS

O.lD+Ol O.lD+Ol

FUNCTION VALUE F = .999~990+00

GBAR(l) = GBAR (2)
= O.OD+OO

The deck is supplied with this sample problem included. The

user should run this problem to familiarize himself with the use of the

deck. For further information concerning this program contact

Mr. J.P. Indusi, Department of Applied Analysis, S.U.N.Y., Stony Brook,

New-York.

21.

Notes

1. At present no precise manner of choosing the initial values of

the penalty constants is known. Typical values range between

15 and 100. A reasonably safe try is 15 and if no convergence

is observed then one should try larger values in subsequent trials.

2. The tolerances GEPS(I) are reduced or tighten~d automatically in

the program.

3. There are 4 search options available. TRey are discussed briefly

below and in the references given in Part 1.

i) KUBIC = 0 is search by Golden Section. A fairly

sophisticated method of finding one dimensional

minimum.

ii) KUBIC = 1 is search by cubic interpolation method.

iii) KUBIC = 2 is a combination of i) and ii) above. It

is the most sophisticated of all the search options

and requires the most number of function evaluations~

For certain problems the program will switch from KUBIC =1

to KUBIC = 2 automatically.

iv) KUBIC = 3 is search by simple quadratic interpolation.

Uses fewest function evaluations but should not be used

when user suspects that the objective function is very non-

linear.

MAIN PROGRAM FLOW CHART

22.

N, MEQ, MINEQ, XBAR(I),

DELF, CAYY(I), GEPS(I),
DELFBR, KUBIC, KEYH

READ

H ~I0
Initial H matrix is the

identi ty.

F

F

Simple
Newton's

Method
Increase K,

Update H,
Reduce

Tolerances

PRINT FINAL FUNCTION VALUE,

SOLUTION VECTOR, VALUES

OF CONSTRAINTS, MULTIPLIERS, etc.

23.

- REFERENCES -

[1] Beltrami, E.J., "An Algorithmic Approach to Nonlinear Analysis
and Optimization". Academic Press, New York, 1970.

[2] Beltrami, E.J., "A Comparison of Some Recent Iterative Methods
for the NUlllerical Solution of Nonlinear Programsll. Lecture
Notes in Operations Research and Mathematical Economics, 0

Springer-Verlag, New York, 1969. Originally given at Second
International Conference on Computing Methods in Optimization
Problems, San Remo, Italy, September 9-13, 1968..

[3] Fletcher, R. and Pmrell, M.J., T1ARapidly Convergent Descent
Method for Minimizationll, Compt. J. 6,1963. pp. 163-168.

[4] Fletcher, R., T1ANew Approach to Variable Metric AlgorithmsT1,
U.K.A.E.A. Research Group, Atomic Energy Research Establishment,
Harwell, Great Britian, October, 1969.

[5] Broyden, C. G., "The Convergence of a Class of Double-r~11k
:Minimization Algorithms Parts I and 1111, Journal Institute of
Mathematics and its Applications (to be published).

[6] Johnson, I.L. and Myers, G.E., "One-Dimensional Minimization
Using Search by Crolden Section and Cubic Fit Methods", NASA
MSC Internal Note No. 67-~1-172. November 13, 1967.

[7] Bard, Y., "Comparison of Gradient Methods for the Solution of
Nonlinear Parameter Estimation Problems II. Tech. Report No. 320-
2955, IBM, New York Scientific Center, September, 1968, p. 14.

[8] Kelley, H.J. and Myers, G.E., T1Conjugate Direction Methods for
Par~l1leter Optimization". Presented at 18th Congress of Inter-
national Astronautical Federation, Belgrade, Yugoslav~a,
September 24-30, 1967.

[9] Johnson, Jr., 1.L., T1Impulsive Orbit Transfer Optimization by an
Accelerated Gradient Method". NASAMSC Internal Note No. 68-FM-88,
April 12, 1968. 0

[10] Kelley, H.J., Denham, W.F., Johnson,Jr. ,1.L. and Wheatley, P.O.,
IIAn Accelerated Gradient Method for Parameter Optimization with
Nonlinear Constraints". Journal of Astron. ScL, Vol. 13 (1966)
pp. 166-169.

