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Al.

Kinetics Of Protein Synthesis Bv Polvribosomes

Recently geaciderable evidence has been presented [j,é}
that cytoplasmic protein synthesis is mediated by a group of
ribosomes linked together by a strand of messenger RNA. Such
aggregates are referred to as polyribosomes and may consist
typically of 5-10 ribosomes per messenger (M),RNA strand. The pres-
ent report investigates the kinetics of polyribosome mediated
protein synthesis., A fairly general but still tractable deter-
ministic linear model is presented which allows for messenger
RENA sources of arbitrary functional form and also takes into
account any deterioration of the messenger RNA whicﬁ mav occur

during the course of protein synthesis. The ribosome (R) concentra-

tion will be considered constant,
| 1. FORLEULATION

The physical model of the polyrihosome mechanism is shown

in figure 1. A messenger RNA strand possibly several thousand

A° units in length is shown occupied by ribosomes each of about
200 A° in diameter. Amino acid residues in the form of
aminoacyl-S-RNA compounds (AS) are delivered to the growing
peptide chain. The sequencing of the amino acids in the peptide
is determined by Watson-Crick baée pairing between the trinucleo-
‘tides of AS and those of the messenger RNA. Investigations, [?,E]
of AS indicate that it retains a double helical configuration in
solution with a hend near the middle. At the bend a mininum of
three nucleotides must be present [}ja It is assumed that nucleo-

tides pair with the messenger RNA,; as shown in figure 1. An
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A2,

enzyme mediated reaction then transfers the amino acvl group
from AS to the growing peptide. As the ribosome travels from
left to right it "reads" the infofmation on the messenger RNA
strand while building up the polypeptide. It is evident that
some sort of mechanism must be availahle to start the ribo-
some at the appropriate end of M and to prevent the reverse
motion of the ribosome.

After the first ribosome has proceeded a certain distance
along M corresponding to the addition of p amino acid
residues, a second ribosome may now hecome attached to the mes-
senger RNA. This process will continue until the full complement
of ribosomes per messenger RNA is realized. When the synthesis
of each peptide chain is complete the polypeptide and ribosome
are liberated at the right hand end of the messenger RNA. The
remaining bound ribosomes continue to move along the messenger
RNA and eventuallv another ribosome hecomes attached to the left
end of the messenger RNA and the cyclic processes repeated until
a vital constituent such as AS is depleted. It is well known
Eé];that messenger RNA may be short lived while the soluble
RNA(S) shows no appreciable turn-bver during protein synthesis.
The stability of the messenger ENA is, however, enhanced when
it is complexed with ribosomes ﬂ?]g The biochemical significance
of this lability is evident since if the requirement for a
messenger is ended then the production of new messenger RNA

will cease and that already existing will be destroyed within a

few minutes.



In the following we consider a model in which both the
ribosome and AS concentrations are kept essentially constant
during the synthesis. The case where the ribosomes and AS are
variables results in a set of nonlinear differential equations
which iﬁ general cannot be solved. However, M is considered
to be added at a rate, g(t), while it deteriorates at a rate
characterized by the rate constant kq for the free M and at a
rate characterized by k, for the bound M.

The relevant reactions will now be considered., Synthesis
is initiated by the binding of a rihosome (R) to a strand of
free messenger RNA. According to Levinthal et. al. [8] this
association may require the participation of AS so that the

initial reaction will be represented as

(1)
Ko

M+R+AS > MRAS o

Binding of ribosomes requires magnesium ions and the complex

is dissociated at low magnesium ion concentrations [?J, Growth
of the peptide requires that the appropriate aminoacyl-S-~RNA

be adsorbed onto the MR complex at a position adjacent to the
growing peptide site and that amino acid residue (A) then be
added to the peptide by means of a nonspecific amino acid
transferase. It is known that the amino acid is linked through

the carboxyl group to the soluble ENA (S) and that the forma-

A3.
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tion of the peptide bond is achieved by the transfer of the
entire peptide chain to the amino group of AS E?jo Gilbert
and others [2] have recently provided evidence that there is
only one strong binding site for SA per ritosome so that pre-
sumably it is this site at which peptide bond formation occurs
and which moves along with the ribosome. In view of tle se
findings the growth step may be represented by binding at the

active site followed by a transfer reaction:

(2) kq

MR AS + AS T=— MR AS.AS
k_q

(3) k
I‘/J:R ASOAS ——‘_""‘; MRAzS + S ®

In equation (2) the AS to the right of the dot represents the
bound species. The above sequence of reactions is repeated
during growth of the peptide so that in general we have

(L)

MR Aj_q 8 + 4S = MR A, 4 S.AS

(5)
MR A g S.AS—FNR Ay S + §

When the first ribosome has translated a distance d along
M corresponding to say p amino acids in the peptide chain,

another ribosome will be added and thereby initiate a second




growing peptide chain. This process will be repeated with a
third ribosome and so on. Observations [ﬁl indicate that the
ribosomes are separated from each other by a gap of 100 — 5OAO
so that d and p may be estimated. Allowing 3.54° for a nucleo-
tide b ase in the messenger RNA then for a triplet coding scheme
each amino acid residue corresponds to a distance of ahout 104°
along the messenger RNA. Assuming an average gap of 100A° and
a ribosome with a diameter of about ZOOAOQ then on the average
d~~3004° and p ~ 30 amino acid residues.

The reactions subsequent to (5) may now be expressed by

the relationship

(6)

MR Ap S + AS + R —>M(RAS) (RApS) s

Iteration of reactions (1) - (6) gives rise in general to
polyribosome which may be represented by

(7)
M(R A

which indicates a polyribosome made up of q ribosomes in a state
with a growing peptide chain of 11 amino acid residues on the

last added ribosome, i, amino acid residues on the adjacent

2
ribosome, etc. The case i, = o corresponds to the absence of

a ribosome located at the kth region of the messenger RNA.

A5,
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A convenient notation is suggested by (7) since the
state of the polyribosome is defined by the ordered set of

)

subscripts which may be displayed as a vector (i1»'i2, i3 maeiq
As a slight extension of this notation we may designate an AS

adsorbed to the binding site of a ribosome (i.e.,{(iq,i,...3,).AS)

q
by means of the notation (i1,i200aiq/1).

It is evident that if we assume random growth of the pep-
tides a very large number of intermediary states can occur. In
order to simplify the algebraic manipulations arising in the
analysis without however changing the essential character of
the problem we shall assume that addition of the amino acid
residues occurs in sequence starting with the ribosome farthest
to the right. Under this sequential addition assumption a

typical sequence of polyribosome states would be

)"’mjﬁ(i']goooiq_»lsiq/q)w?)’ (i‘];nouiq_-];i +1)—-'§

(i‘]goociq_tlji q

q

i | +1,31 + e
(8) © 0o (l']gocclq—_j 1qu 1) .7

oo o (i"]+1gaoai +19iq+1)

q-1

Thus with the present model we assume in effect that the mes-
senger RNA is divided into gq regions. As the ribosome asso-

ciated with any particular region of M moves along the
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region p amino acid residues are added to the growing peptide
chain so that p g peptide residues are added in all. Hven-

tually a ribosome and its associated protein will arrive at

the end of the messenger RNA strand where they will be

released. While the details of the release remain to bhe
elucidated, it is evident that after the last amino acid has

been added the bond between the protein and AS must be severed.
The free protein AN is now free to assume its final tertiary
structure, Py. It is evident from the work on the recconstitution
of denatured proteins that to a large extent the tertiary structure
follows spontaneously from the amino acid sequence. In some cases
it is known that the physiologically active form of the protein
requires the association of several subunits. For the present

purposes however the terminal reactions will he represented by

ke
<i1,i20w(,pq\) 7(113120“)0)+AN+S ;

(10) kp
Ay —> Py .

We shall also introduce a compact notation in order to express

the various reactions. Thus the reactions

k
R + AS + (0,3,0) —> (1,3,0)

will be written as
k,R,AS
(03330) "'““"’"? (133>O) b

and similarly for other reactions.



2. THE MATHEMATICAL MODEL IN THE SPECIAL CASE p =2, g = 3

In this section, we set up the mathematical model for the poly-
ribosome process and solve it under certain conditions. In general,
we can handle the case in which there are g ribosomes each of which .
occuples a space on the messenger RNA corresponding to the designa-
tion of p amino acids. However, this general case, while uncompli-
cated in principle, leads to some tedious algebra of little interest
in itself, and accordingly we relegate it‘to an appendix. Instead,
we consider here the special case of a peptide with six amino acid
residues and for which p = 2, g = 3 which, although simplified, suf-
fices to exhibit all the characteristics of our model from the mathe-
matical point of view and is sufficiently simple to allow for a de-
tailed treatment. At the end of the section, we supply the corre-

sponding results for the general case.

(a) The Reaction Equations

The reaction eqguations are as follows:
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() k,,R,AS k; ,AS K k, ,AS
- (0,0,0 s (1,0,0) m 1,0 o/l £, (2,0,0) —_—
by lk k_, . bk
m d d d
ko,R, AS k. ,AS
Kq teg Yoy kK, a
k,,AS k, ,AS
(1,4,0) =— (1,k,0/1) = (2,4,0) === (2,kh,0/1) =
ky,AS k,,AS
1
(2,0,5) == (2,0,5/1 0,3,5) (1,3,5) o>
by Ko ky iy kg S
k, ,AS k. ,AS
1,3,5/1) — (1,3,6) <__———"'.._...__....“‘" (1,3, 6/1 (l L,6) L
kg J'kd k_, kg bky o K
k.
1,4,6/1 (2,4,6) = (2,4,0) + A ;
- Jrkd d |




In the terminology of control theory, this set of equations is
open=loop until the compound (2,4,0) is reached at which point there

is a feedback of (2,4,0) from the last of the chain reactions to

close the loop.

(b) The System of Differential Equations

Let (i1, i, is)’ (11, i, is/l)’ A6’ P6 now also denote the con-

centration of each of these species as a function of time, while r
and u denote the corresponding concentrations of R and AS respective-
ly. When kinetic analysis is applied to the system of reaction equa-
tions, we get the following system of ordinary differential equations
connecting these concentrations.

géo,o,o) = g(t) = (koru + km) (0,0,0)

) (L,0,0) +k _ (1,0,0/1)

%%i49¢91 = k_ru (0,0,0) = (k]u + k

d -1

gél,o,o[l! = ku (1,0,0) = (k_, +k+ kd}ﬁ(l,0,0/l)

T =k (1,0,0/1) - (k]u + kd) (2,0,0) + k_, (2,0,0/1)

dl2,0,0/1) _ ku (2,0,0) = (k , +k + kd) (2,0,0/1)

dt 1 -1

thO,LO) = k (Z,0,0/l) - (k(‘)ru + kd) (0,3,0)

T =k _ru (0,3,0) =~ (kiu + kd) (1,3,0) + k_, (1,3,0/1)
dil,3.0/0 = x u (1,3,0) - (k . +k + k.) (1,3,0/1)
dt 1 1 -1 d 13



L.
‘ .
g’él Q = k (1,3,0/1) - (kiu + kd) (1)490) + k_,1 (l’h”o/l)
(dj:élgzl'ao/l) = klu (l,l{,,o) - (k..l + k + kd) (l,lp,O/l)

dl2aki0) = x (1,4,0/1) - (kju + k) (2,4,0) +k

dl (2,4,0/1) +kp (2,4,6)

-1

gé?:kaq/l) = kyu (2,4,0) = (k_, +k *+ k) (2,4,0/1)

iéz,o,g) =k (2,4,0/1) = (kyu + k) (2,0,5) + k_, (2,0,5/1)

dé@,o,B/l) = k,u (2,0,5) = (k_, +k+ k.) (2,0,5/1)

géo 2l =y (2,0,5/1) = (koru + kd) (0,3,5)
gélzz,él = k. ru (0,3,5) = (kyu+ ky) (1,3,5) + k| (1,3,5/1)

! 31(:,1,3’5/1) = klu (1,3,5) = k . k + kd) (1,3,5/1)




Here the notation (ﬁ){f" indicates that the preceding two

equations are iterated for the next two pairs of species (1, 3, 6),

(1, 3, 6/1) and (1, 4, 6), (1, &4, 6/1).

(c) The Transform Solution

As already indicated,the system of differential equations devel-
oped in the preceding paragraph is non=-linear if r and u vary
with time, and no exact solution for them is apparent. We shall lin-
earize them by making the assumption that r and u are each con-
stant. Physically, this will be justified if the reservoir of free
ribosome and aminoacid is large compared to the concentration of the
other species so that the depletion of these substances during the re-

action process is negligible.

When r and w are constant, we have a non-homogeneous system
of linear differential equation with constant coefficients. These
will be handled by the Laplace transform technique under the assump-
tion that, initially, all species have zero concentration except free

messenger RNA, (o0,0,0). Let its initial value be m We use s

o o

i),

2%3
by G(s), [il’iz’i3]’ [i],iz,i3/l], Ké and'?6

for the transform variable and denote the transforms of g(t),(i],i
(i],iz,is/l), Ags and P,
respectively. Then, after some simplification, the first few equa-

tions in the transformed set read as follows:



(s + koru + ky) [o,0,0] = G(s) + mg

[ (s + ku+ ky) [1,0,0] = k_, [1,0,0/1] = k,ru [o0,0,0]
Azq

- ku ll,0,0] + (s + k__ + k)

» q) [1,0,0/11 =0 -

(s + k,u + ky) [2,0,0] - k_, [2,0,0/1] = k [1,0,0/1]

- k.u [R,0,0] + (s + k , *k+ kd) [2,0,0/1] =0 = n

C: (s + k ru + kd) Lo0,3,0] = k [2,0,0/1]

The pairs of equations A and B and the equation C occur again but
with different species; and we can abreviate the remainder of the set

of equatlons in easily understandable form as:

44 12,3,01, [1,3,0/17, [0,3,01)
B{[l’z'l',o], [131-1—,0/1:], [1,3,0/.].]‘}
(s + k u+ky) [2,4,0] = k [1,h,0/2] + k_, [2,k,0/1] + ke [2,4,6]

(s + k_ +k + k) [Z’A’Q/ll»= k.u [2,4,0]

B: K[Z 0,51, [2,0,5/1], [2,4,q/113;
"{‘[03 51, [205/13_}
A’[1351 [1,3,5/11¢ [035]»—
B-fi‘fl 3,61, [1,3,6/11, [1,3,541%

B4 [1,4,61, [1,4,6/11, [1,3,6/17}
(s + ke + ky) [2,4,6] = k [1,4,6/1]

(S + kp) 16 kf [2’4’6]

e e

SP=kpA6 ]



We shall now set up simple recursion relationships between trans-
forms of adjacent species, This will enable us to determine [l,h,q/l]
in terms of [o0,0,0] and [2,4,0/1] in terms of [2,4,6]. Then equations
(11) will determine [2,4,6] in terms of [o,0,0]. Lhis result, used in
the next to the last equation above will yield Té;andrdxnif% is given by

the last equation.

Equation pairs A and B are of the form

(s+k1u+k :«':_,k_IY=az

4

-k]u X + (s + k_3 +k+k )Y =0 3

4
where X, Y and Z are concentrations of certain consecutive species and

a = koru or k respectively in cases A or B. Solving this pair of equa-
tions for X and Y in terms of Z, we find

gy = an(s) -
(12)

akﬂl Z
£(s)

5]
|

H

where we have used the sbreviations

f(s) (s + k_, + k o+ k) (s + kou+ kd) - kk_uo

It

n(s) (s + k_, * k +k.).

d
The single equations like G are, of course, immediately convertible to

A simple recursion relation of this kind.

HEBRARY 4
4 . YOHR
grsve GRIVERSITY OF NEW
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8.

We start by writing down the recursion relation for [1,4,0/1] and
in succession the recursion relations for the species appearing in the
right members of these relations using equations (12). With the nota-

tion m(s) = s + k ru + kd, we get

il

[1,4,0/1] = k k,u [1,3,0/1] / £(s)

[1,3,0/1] kok]ruz [0,3,0] / £(s)

[0,3,0] = k [2,0,0/1] / m(s)

[2,0,0/1] = k k,u [1,0,0/21 / £(s)

]

[1,0,0/1] kok1ru2 lo,0,0] / f(s)
[o,0,0] = (G{s) + mo) / (s + koru + km)

Eliminating intermediate species from these equations we obtain

(13) [1,4,0/1] = ki Kk kT r® ulG(s) + mo]
(s + k, ru ¥ k) m(s) [f(s)]?¥

Similarly, writing down the recursion relation for [2,4,6] and

'Working backwards we get the following seqguence of equations

[2,4,6] = k[1,4,6/1]

(S+kf+kd)
[1,4,6/1] = k k u [1,3,6/1] / £(s)
[1,3,6/1] = k k,u [1,3,5/1] / £(s)
(1,3,5/1] = koklruz [0,3,5] / £(s)

[0,3,5] = k[2,0,5/1] / u(s)

[2,0,5/1] = k k]u[Z,a,o/l] / f(s) .




Eliminating, we find

(14) [2,4,6] = kgk'k, © u® [2,4,0/1]
(s+kptky) m(s) [£(s)T?

In the pair of equations (11), use the second equation to elimin-
ate [2,4,0] in the first, and then replacing [1,4,0/1] by its value
from eq. (13) and [2,4,0/1] from its value in eg. (1L), solve for
[2,4,6]. The result is

31,.31,.7,,.9,,12 v
?,l)»,éj = T kok k]u [G(S) + mO]

(s+k_rutiy) m(s) n(s) [£(s)1"

where

£
his) = (s+kf+kd) m(s) [f(s)] = r kfkokikjué .

-~

Finally, from the last two transform equations of the original

set, we have

&
(15) ~

B oot
AL

[}
4 6

ker®i’k e T u'? [G(s) + my]
(s + k) (s * kyru + k) m(s) n(s) [£(s)]"

i

In the appendix, we carry out this same line of reasoning for
the general case of q vribosomes. lere pg = N, the total number of

amincacids in the protein chain. The result is

(g + 1)N
kf (koru)q (k k]u) 7= =3 LG(s) + mO]
(=18, '

KN i o q=-2 -
mﬂ%)(yk&wmm)Ms)hﬂsH [£(s)] z

PN=kp AQ/S ’

where
his) = (s+kd+k

Nel q=1 N

el (s*k rutky) [£(s)] - rk ke (kk ) u .



10.

(d) The Time Domain Solution

Equation (15) must be invérted to obtain the solution for the
protein concentration in the time domain. Before proceeding to carry
out this inversion, we note that the feedback system for which eq.

(L5 ; is the system function, is semi-stable in the sehse‘that the zeros
of the denominator of ?6’ aside from s = o, are all inthe left half-
plahe. This follows first for both zeros of f(s) (which are in fact
negative real), since f(s) is of the form f(s) = 8% + (a+b)s + ab-K

it - i

“%ﬁﬁﬁla, b, K all > o, where f(o) = ab-K may easily be shsgi‘to be

B R B

positive for kd > o. Next, by applying the Nyquist criterion, a sin~

ilar conclusion is obtained for h(s). For, writing

= [« 5 c
hls) = (sthgrky) (s¥kgrutiy) [£(e)17 (1 - s )
1
where h_(s) = (s+k.+k,) (s+k _ru+k,) [f(s)]5 and ¢ = rk.k k 5u6 we
1 £ 7d o) d o™ ’
easily calculate that c/h{o) = 1 when kd = 0 and therefore
¢/h(o) <1 when k,; > o. Since the zeros of h (s) are all negative

real,lq/hl(iw)) is a monotonic decreasing function for o < w < oo,
which approaches zero as w— @ . Thus the point + 1 can never be en-

circled by the map of c/h](s) along the Nygquist contour.

We now return to the consideration of the inverse of eq. (15).
The situation we shall consider here is the case where the initial
concentration of messenger RNA is zerq i.e. m, = 0. We shall discuss
the synthesis of protein associated with a buildup in messenger RNA
concentration. An example of the present model is provided by enzyme
induction where initially the messenger RNA associated with the in-

duced enzyme is absent and subsequent buildup in the messenger oc-

curs with the addition of inducer.




11.

If m, = o then, as is well known, the general time-domain solu-
.tion for P6(t) may be written out in the form of a convolution inte-

gral in terms of the impulse response, i.e. the solution when G(s)=1
or glt) = 6(t) where 8(t) is the Dirac delta function. If Po(t) is

the impulse response we have, in general,

(16) P (t) = (gtP

6 (T eglt ut’)d‘t‘EJ;tPo(tml’)g('r)d'v | .

o

The form for Po(t) may be determined easily by inverting eq. (15),
taking G(s) = 1, m, = o. Let - fy and - °, be the zeros of f(s), and

-y - dé,,ao, -7, the zeros of h{é}, and suppos@, for simplicity,

that these are all distinct and different from the femaining three
zeros of the denominator of ?6’ which we also assumé to be dﬁétinbt.

Then we may write

-kt =k rutk )t - +k
(17) P (t)=A +A e D +A e g m! +4 e (korutkg)t
o o 1 © 3
-t = t 3 12 -r.t
+e 173 B.t? o+ (2 5 c.tt+3 De 1
1=0 i=o L i=1 1 R

Here the coefficients Ai, Bi’ Ci’ Di’ may be calculated by éxf
panding ?6 with G(s)= 1, m, = 0, into partial fractions and inverting
termwise, (or alternatively by means of residues). As the reaction
constants are not yet known numerically, this procedure will yield
literal expressions for the coefficients. We do not carry out this
development explicitly except for AO which represents the steady-state

term of the impulse response. Since Ay, 1s the residue of ?O(s) at

s = o, we find from eq. (15) that

18‘} . - kfr3ko3k‘7k1‘7u72
o (koru+km) (koru+kd)[f(o)]4h(o)




12,
where

(19)

H
o)
i

(k 7+k+kd) (k1u+kd) - kzk-1u ,

ny
O
I

= (kptky) (k rutky) [£(0)17 =rk hgk Sxfus.

Equation (16) is now specialized for two cases which are con-
sidered to be of prime interest for the theory: glt) a step function,

and g(t) a ramp pulse.

Case (i) glt) = au(t) where ul(t) is the unit step function. Here

eq. (16) gives

) Ay =kt A, -k rutk,)t
2Q) Pé(t)/a=AOt+E--ﬁle pr_2 - ‘"o n)
k kolu_km

A -(k rutia)t - 5 3 1 - “,t 3 v i
- 3 © al +e “ S Bt +e (2°F C.t

koru+kd i=o 1 i=g 1

D -

i éz i Iit

t ~
Here the A; and Di are as in eq. (17). The Bi mayv be found

from the Bi by means of the recursion formulas

- ﬁ]B; + (i+1)B! . =B, (i =0, 1, 2) .




13.

Similar formulas relate C' and C., with (02 replacing /o7 .
i i

Finally, E may be expressed in terms of the coefficients of eq. (17

or may be found directly by means of the relation

3 1,.7,9.3..12
1) . %* kfkpkc k k/riu
*|(otk ) (s+k rwk ) mls)h(e)[£(s)17 [ s = o .

While the steady state behavior of this solution is evident from eq.
(20), any discussion of the tra;%ient behavior will require a more com-
plete and accurate Specificatioﬁ‘of the constants than is presently
available., It is conjectured that all except the first few exponen-
tial terms will be negligible thus leading to an essentially monotonic

increasing behavior of the output. For very small values of time, the

initial value theorem leads to the representation

pé(t)/a = knkpkgqu;rsumtz4 + higher powers of t .
1 -
Case ii
glt) =at o<t <X, a>o0 ,
=0, t >& :

In this case, eqg. (L6 ) becomes

Il

t
P,(t) =at vP (t-7)dv, o<t <,
6 0 0 '

» :
aJ 7 rp (¢t -7)dv, t > &,
o)

Let po(t) = {f P (T)d¥ so that po(t) is given explicitly by eq. (2C).

o

Then, using integration by parts, we have for o < t < o5,
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Similarly, for t > &,

t
P (t)/a =J7 (6 -7) P (¥)av=-xp (v -4)+/ (t)ar .

& t-of t-« Po
The integrals in the right members of these equations may be evalu~

ated using eq.(20), aud thus we arrive at the representations

T
ES

2 A -kt A -(k,rutk, )t
Pé(t)/a=A %“ + Et + F + ~l-~3 R = © ko m
(kp) (koru + km)
A k rutk .\t _ 3 3 i - 3 3
+ 3 e ! 4) AL Bt +e ¥ 3 it
2 i=o i=o
(koru + kd)
D ¥
12 - J.% . .
+ 2 - 5 © + , o<t %)y
i=1 (b’l)
Aoy A g
*k -k a, X -t
P (t)/as —2m + T [e” Plxy —1)+1]e P+ = [e @B -1)+1]e !
6 2 (k) 2 1
IS 1
A g - '/32t -At 3 1 -t 3 e i
+ = [e "2(&B-1)+1]e te 1% Bt +e 23 C; t
B2 2 - 4=p T i=o
2
]2 D. O(b"- -b'-'t
+3 2o le Tlxrgel) +1le O, 52X,
i=1 (%)
Here we have written A, =k ru +k , B =k ru + k.. The new
1 © m 2 0 d
o 11 1 e 11
coefficients F, Bi ) Ci , B , G can be expressed in terms of

the previous ones but we do not carry this out here.
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In closing this discussion of cases (i) and (ii) we remark that
for the case of g ribosomes considered in the appendix, the form of
the steady state solution is the same as that obtained above. How-
ever, the constants AO and B which figure in the solutions are now de-

fined as follows:

q (g+l)N 3

k (k ru) (k k u) 2

4 = f o ‘ y
o q=2 (q=1 )W -
(k rutle,) (k rutky)  [£(o)] # h(o)
where f(o) 1s given by eqg. (19) and
Nl N-1 N
h{o) = (ky *+ kp) (k ru + k) [£(o)] = vk ko(k k) U ;
- q (q*1)N _ ]
P
k k k k
o od | p(koru) ( 111)
ds (g-2) ﬁg:ﬁ_)_l\_ 2 )
(s+koru+km) (s+koru+kd) Lf(s)] = h(s[J s =0
where
N-l N=l I

his) = (s+kd+kf) (s+koru+kd) [£(s)] mrkokf(k kl) u .




3. SUMMARY AND DISCUSSION

A detailed model of protein synthesis by polyribosomes has
been developed and the resulting equations solved on the assumption
that the kinetics of the system depends linearly on messenger RNA
concentration. Specifically, the assumption is made that such com-

ponents as the amino acid-adapter RNA and ribosome concentrates are

constant. However, the messenger RNA input is taken to be time
dependent and the analysis is given for both step and ramp inputs.
It is interesting to compare the ahove results with the

avallable experimental data. Pardee and Prestige have made some

B e ———

very careful studies of the kinetics of enzyme induction in

E. coli [10]. These workers have shown that with each induced enzyme
investigated a lag of about 3 minutes occurred, at BYOC between the
addition of inducer and the appearance of the enzyme., It was also
shown that the lag is not associated with penetration of the inducer
but rather with the synthesis of messenger RNA. It is significant
that once started the initial buildup in enzyme concentration con-
sists of a nonlinear portion followed by a linear increase in
concentration vs. time, the general form of the engyme buildup is
shown in figure 2. In terms of the present analysis the nonlinear
phase corresponds to case (ii) above when the concentration of
messenger KNA is increasing over the interval [ £t 2 , where (g
is the time of the induction period. The solution in this case is

given by (22 ). If the transient terms are such that the



exponentials damp out within a minute or so at some time following
the induction period then subsequent steady state increase will be

a quadratic polynomial of the form

A 2
P (t) = éf}____t +Eat+Fa Eﬁ £ L X,

When the meséenger RENA concentration reaches the steady value
due to the balance between synthesis and degradation then the solu-

tion corresponding to case (i) above applies and we have a linear

dependency given by

Pe (t) =Ajat+Ea y + 5 X,
Unfortunately, it is evident from { 18 ) and { 21 ) that no simple
relationship is apparent between A and E and the basic kinetic
constants. However, it is interesting to note that other things
being equal the slope of the linear portion is proportional to the
rate of messenger RNA production:

dPé(t) _

== Aoa ’

dt

It is interesting to note that experimental studies [10] indicate a
dependency of the role of enzyme synthesis on inducer concentration
~and hence presumably on the rate of messenger RNA synthesis. The

reported dependency on inducer was, however, not linear. The exact

significance of the latter is not clear since the relationship between

“dinducer and RNA synthesis is not established.
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Appendix
In this section, we consider the general case of q ribosomes,
each having a "coverage" of p amino acids on the messenger RNA. Use
will be made of the notions and notations developed in Section
for the special case p = 2, q = 3. Our species are now designated by

q vectors, (i

> i2 ceoy iq) where each ik may have the value zero,

and otherwise fn - 1) p + 1 <i_ <

n o l’lp 3 (n = l, 2, s 0 ey q)- The com=-

plex formed after absorption of an AS molecule will be denoted by
(iT, ia coeyg iq/l). The proteins in initial and native form are rep-
resented by Ay and Py respectively. All other notation is the same

as given above.

(a) The Reaction Lguations

As already pointed out in 5ection.2 , there are essentilally
three basic reactions involved in the process. Two of them, the ab-
sorption and the polymerization of an amino acid molecule by each
ribosome in turn, are repeated over and over until there is space
available on the messenger RUIA for the addition of a new ribosome;
the latter process constitutes the third basic reaction. In the fol-
ldwing abbreviated set of reactions, the missing equations can be sup-

plied by following along with this basic sequence of operations.

We have



k SR AS k , AS
g-(—;t—l" (050’00010) "'"'"""—""-" (l O,'Lal;o,O) e e (l O,\L-oo,O/l
k

$ T
K d ¥ d
k k, 48 k ko, B, AS
.(2’0, 01;'30)_: e o 8 == :p O,ic"jo ‘T'_._:...l (};)909:1120,0/1) —p (O,p+l,o¢,l.{,.,o)_9_f...’.__’
d d d
k,, 48 . y
(1,p*1,0,.40,0 > (1,p%1,0,000,0/1)7 (1,p+2,0,00,0) == ... =
Lkd K ) vk + K
- d d
k. ,AS
12 “ k k,,AS
(p,2p, O’iw'é,O)fmA (p,z,p,o,“.lzdo,o/l) —— (p,o,2p+l,o,il.{;l,o) .....L’.._..\
Euz
k¥ JR,AS
(p,o,2p+l,o,f.°o/lj k, (o,p+l,2p+l,o,f,a,o) L
k
d
k.
(1,pt1,2p+ 1,0, 000,0) = e+ (p,zpyfﬁo,qp) *£+'AN +(p,20,3P, .+, (q=1)p,0) ;
d
kp
by —> 5

(b) The System of Differential Lquations

Setting up the reaction kinetics corresponding to the reaction
equations, and using a notation corresponding to that of Lection

we arrive at the following system of differential equations:



d{0,0,000,0) =

dt

Al1,0,060.,0) =

= g(t) = (koru + km) (0,0,004,0)

dt

= k,ru (0,0,000,0) - (klu + ky) (l,o,o.a,o)+k~

(1,0,.40,0/1)

1

a(1,0y0.0,0/1)

dt

d(2,0,e00,0) _

= k]u(l,o,,o.,o) - (k~1 + k + k 1,05000,0/1)

O

dt

-] o o -

AlD,05000,0) —

- k (1,0’000,0/1) b (k?u -+ kd) (2,O’oac,o)+k~1(2,O’ooo,0/l)

e ° L] - . * L] e ° ° ® ° o o 3 . ® o L] L L] ® ° @ - o L L L] b °

dt

d(0,0+1,0,0..,0)

kip = l,o,o,.,o/l)u(k1u+kd) (p,o,oao,o)+k_1(p,o,o.o,q/l)

It

dt

d(1l,p+1,0,0..,0)

k (p,o,a.m,q/l)-(koru+kd) (0,p * 1,000,0)

]

dt

koru(o,p+l,o,,.o,o)—(k]u+kd) (1,p*1,0,000,0)

*k_, (1,p+1,0,4.0,0)

dt

d(1,p+1,0,0..,0/1)

d(09p+lL 2D+l,0,..o,0) — k

= k]U(l,p+l,O, ¢ c o ,O)“'(k_ +k+kd) (l,p+l’0’ o e o,O/l)

1

dt

d(1,p+1,2p+1,0, 000,0)

(p,0,2p+1,0,0..,0/1) = (koru+kd)

(0,p*1,2p*+1,0,4500,0)

dt

= koru(o,p+l,2p+l,o,poe,o/;) - (k1u+kd)

-~

(1,p*1,2p*1l,0,0.0,0) *+ k_](l,p+l,2p+l,o,ono,q/l)
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( d(D,ET)jo- o9 (Q"l)pso)

T = k(p-1,2p,0e0,(q=1)p,0/1)+ke(p,2p,..,qp)
(23 -(k1u+kd) (pPs2p,ees,lg=1) p,0/1)
k gép’ZD’°°"(q”l) p,0/1) kju(P,Zp,cao,(qml) p;0)={k __ +ktk,)
-1
[p,z;p,covg(q“’l) p,O/l]
d(p,;;p,. °aqp) = k( =l .2 /l) - (k +k ) ( o )
Ot P=Ll34Dy 00 3qRY gt ke D34Pye00,5QP 3

"(‘i‘E"" = kf (:p,gp,ooo,qp) o= kp AN "

""‘—"—dt = kp A.N °

(c) The Transform Solution

We employ the notation of Section 2  for Laplace transforms. As
in that section, we assume r and u to be constant and all initial
conditions to be zero except that for the free messenger RNA which is

taken to be My .

Taking the Laplace transform in each of the differential eqﬁa~,
tions of the system above and collecting like terms, we find that the
set of transform equations may be characterized as follows. Aside
from the first equation, the eguations corresponding to (23), and the
last three equations, the system is made up by repetition of certain
pairs of equations and certain single equations. The single equa-~
tions are of the form

(s+koru+k

d) [o,pt1,2p+1, oe,mp*l,0,000,0]=k[p,0,2p+1,000,mp*l,0,.40,0/1] ,




wherem = 1,2,...,9-1, and for m = 1 the specles appearing in the
right member of this equation is to be interpreted as [p,0,0,0..,0/1].
Thus there are altogether q-i of these single equations. The pairs
of equations are of two types, both of which may be encompassed in
the single form |

(s+k1u+k X ok Y =232

d) 1

- k]u X+ (s+k _+k+k,)Y=o0

-1 d)

Here a = k_ru when X=1[1, p+ 1, 2p * 1,eco,ap *+ 1, 0,000,0]
Y=[1, p+1, 2p + 1,e0e,p *+ 1, 0,000,0/1]1 , Z = [0, p + 1,2p+1,...,

mp + 1,0,060,01,
where m = o, 1,...,9-1 .

And a = k for all cases other than those specified up to this point.

When a = k, then X = [i], i2,.°¢,iq],Y = [il, i

2,n,,iq/l] and Z is
the species immediately preceding X in the process. If we dénote'by
A and B the two pairs of‘equations when a = koru and a = k respect-
ively, and by C the single eguation, then it may be verified that
the system of transform equations can be written out symbolically in
the following fashion:

(s + kru + ky) lo,0,00050] = G{s) + m  ,

}X, B’ Baoo’ 3 C, A’ B, B,ooo, b C, I‘n\.’ B’ B,o-a,o-o,
————’ R S

p-1 times - 2p-l times 3p~1 times
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(
(S+k]U+kd) [p:2p’5'°1CQ”l)p’O] = ktp“lﬁgpaBPJO’°9(Q‘l)p7o/l]

+k~1[p,2p,a‘o,(q~l)p,0/l]

+kplp,2p,00.,9p]

és+k Fetkg) [py2p,a.e,(9-1)p,0/1] = k ulp,2p,..0,(q-1)p,0] ,

B,...,

(S + kd + kf) I:p,z‘p,eo-,qp] = k[p”lazp;oe'sqp/l] 3

(s + kp) KN = kf [py2p,000,qp] ,

The single equations in this set can immediately be interpreted
as simple recursilon relations between transforms of consecutive spe-
cies. HRecursion relations of similar simple form are obtained by solv-

o

ing the equation pairs A and B for X and Y in terms of Z. We find

o2k, vk gy ogku
f(s) fls)
where f(s), as in Section 2 , is given by
f(s) = (s + k o+ ko ky) (s + kou ¥ kg) = kk_u.

It will turn out that in our subsequent development we require only the

second of these relations, i.e. the one between Y and Z.

We now sketch the remainder of the argument leaving the verifica-

tion of details to the reader. It is evident from the set of trans-
form equations that a knowledge of [p, 2p,...,qp] will determine Ay

and then Py . Now [p, 2p,...,qp] occurs in the feedback equation,




5)

7)

2h.

which is the first of the equation pair (R4,. We can use the second

equation in (24) to eliminate [p, 2p,...,(q=1)p,0] from the feedback

equation and this yields

{{lﬁl [52Dy -2, (q-1)p,0/11=k[p-1,2p,3p, .., (g-1)p,0/1]
* kelp,2p,..0,qp]
But [p,2p,...,qp] also appears in the equation which is second from
the last in the system of equations, where the right member involves
{p=1,2p,...,qp/1]. By using our recursion relations, we can succes—
sively eliminate [p-1,2p,...,qp/1], [p=1,2p=1,3p,s..,qp/1] etc. un-
til we work our way down to [p,2p,...,(g=1)p,0/1],

The result is

-1 -2 =1y |
[p,2P,ee0,qpl= k kAP7 7k, AP py P LP92P’°°"’(Q'1)P’°/,}E
(s + kg + kp) s *+ kru + ky) [£(s)]%P72

This formula can be used to eliminate [p,2p,...(g-1)p,0/1] in

equation (25).

We also require [p-1, 2p, 3p,e..,(q=1/),0/1] in eq. (25) and
this can be obtained once again by using the recursion relations
starting from [p-1, 2p, 3p,...,(g=l)p,0/1]. Useful in this process

is the relation (used for i = p, n = g=2 to start)

) (0 1)3=n420) 410 nptL,0/L]

[f‘( s)] (n+l)i-n+2

[i-1,p+i,2p*i,...,np+i,0...0/1]=(kk u

which is easily proved by induction. The transform [l,;+l,°.°,np+l,ql]

can be expressed in terms of [o,p+l,2p+l,...,np+l,0] by using
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Y = ak]uZ/f(s) with a = k ru. Next, the single equation C expresses
o

Lo,p*1,2p+1,...,np*1l,0] in terms of [p,0,2p+l,...np+l,0,...,0/1] and

we can then use formula (27) to continue the elimination. The end

result is

q-1 gqlg-1)p alg-1)p _, g-1 qlg-1)p
[p-1,2p,...{g-1)p; 0,"1] ko K -3k1 § row 2 T4 la(s)m.]
o ool Lo = e - et e st i o i o e .
L 3 <P, G D: ¢ q__z Q}j‘_l_ﬁlE s
(s+krutk, ) (s+koru+kd) (f(s)] %

Finally, we use (26} and (28) in (25) and solve for [p,2p,...,qpl toO

obtain

q (q+1)N
[p)2p1°"aqu = kOru) kk1u) »— =3 [G(s) + mO]

q-—2 T_Cl"l)N 2 )
(s + k ru + k) his) (s + k ru + k,)  [f(s)]7 7z~

0 o o d

where
_ N-1 o Nel N

his) = (stkgtke) (stkyrutky) [£(s)] - vk kelkk ) u .

-~

It follows immediately that

KN = kf [p’2p30'°:qp]

(s + kp) ;

s kfkp[p,Zp,,.,,qp]

s(s + kp)

o

3

with [p,2p,...,qp] as in (29).
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