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fiepresentation Theorems fo r  Posit ive Rational Functions r 
( 1 :  

by 
Irving k r s t  i 

I 1  

Let f (s) be a pos i t ive ,  r a t i ona l  function,so t h a t  f ( s )  is 8n-i~ end 

R~ f ( ~ )  2 O 9  f o r  R e  ( s )  > 0. Then the famil iar  transformation 

wwnich y ie lds  a r a t i o n a l ,  wrimodular bounded function ~ ( s ) ,  (i.e. F(a) -- 
ly- t ic  and I F( S)  I 5 1, for  Re ( s )  > 0) Y '  imnediately pr ovldea a unique 

" " 
, 2 I 

r e p r e s e n t a t i o n  fo r  f ( s )  - For, l e t  us write ~ ( s )  i n  the' form 

-c.:'5re P and Q a r e  r e l a t i v e l y  prime, complex, monic polynomials and k i a  a 
0 

( mrn~ lex )  constant. Then from (1) and (2) 

E w e  P,Q and k, a r e  sub jec t  t o  conditions which characterize ~ ( s )  in (2) 

ass a unimodular bounded function,  One s e t  of such conditions follows read- 
i d  1 

' I  I , '  I 

*om the  a n w i c i t y  o f  ~ ( s )  i n  Is1 - < 1 and t h e  Mtlxinrcrm Modulus Theor em, 

PI), and may be  s t a t e d  a s  f ollowa r ~ ( s )  must be s t r i c t l y  Rurwitza ~ 5 t h  

b g  Q 2 deg P, and 0 < .- Ikol 5 % where 

1 Max P(B) , U) real. I I ( h i  
-= 1 . (  

% S=la Q ( S )  
; i  I 

I i  , 
Conversely,  it i s  c l e a r  t h a t  if these conditions are sa t is f ied ,  then f ( s )  I ! "  
g i v e n  by ( 3 )  i s  a pos i t ive  function. ; , I  

: 1 1  

1% i s  the  purpose of t h i s  note t o  replace the foregoing rather un- I I 

w i e l d y  condition on ko i n  t h e  representation (3 ) ,  by e i t he r  of two d t e rna -  , 

FOT non-constant F ( ~ ) ,  ac tua l ly  j ~ ( s )  / < 1, f o r  ~ e ( s )  > 0, 5g the M a x i m u m  
Modulus Theorem; and for r a t i ona l  ~ ( s ) ,  it follows eas i ly  t ha t  F(S) i s  andy- 

I tic also on ~ e ( s )  = 0, and IF(s) 1 < 1 there. ... 
Z 

I n  order t o  avoid bothepso,me exeeptiond cases i n  the  sequel, it is  Conveni- 
en% here t o  define a (complex) polynomial as  Hun6tz o r  strictly HUrwitz re- 
spectively,  according as it has no zeros i n  ~ e ( s )  > 0 or  i n  ~ e ( s )  2 0 respect- $ 

i v e l y ,  Note t h a t  a non-zero con,ctmt then bel.onge t a  'both of these ~a t e5o r i e s .  



tive conditions which appear t o  be more tractable. The f i r s t  of these i n -  
( 

valves the root 1 9 ~ ~ s  of a cerb3.n polynomial, while the second is the rep- 

res-entati~nal form of a tJieorem on Posltlve functions due t o  Talbot [2]. We 

than a p ~ l y  our r e su l t s  gst -z L-cernat t  p r ~ o f  ill anotner theorex given in [ Z ] .  

we f i r s t  prove 

Theorem 1. (a) Every non-constant, positive, ra t ional  Punction f ( s )  has a 

unique representation of the form (3)  where 

( i )  P and Q are relat ively prime, monic polynomials with 

deg P 5 deg Q, deg Q > 0, and ko # 0;  

(ii) Q i s  s t r i c t l y  Rurwitz; 

( i i i )  for every k such that 0 < 1 k 1 k , the polynomial 

Q - kP i s  Hurwitz. 

(b) Conversely, i f  conditions ( i )  - ( i i i )  hold, then f ( s )  given 

by ( 3 )  is a posit ive function. 

Corolla,ry. A posi t ive rea l ,  ra t ional  function has a unique representation 

of the form (3) where conditions ( i )  - ( i i i )  of Theorem 1 hold and i n  addi- 

tion: (iv) P and Q a re  r e a l  polynomials and ko is a rea l  constant. Con- 

verse ly ,  if condition ( i )  - ( iv)  hold then f ( e )  given by (3) is positive 

real. 

-.of: (a) In the l i g h t  of o w  preceding discussion, we must establish ( i i i )  - 
o m *  

Suppose f (s) is positive,  so tha t  the correspondjng ~ ( s )  given by (1) 

a n d  represented as in (2)  is unitnodular bounded. Then IF(s) 1 = 1 is possibie 

only for such s for which ~ e ( s )  - < 0. Thus, the equation ~ ( s )  ' eoie, for W 
i e  

real Q , has no roots  i n  ~e ( s )  2 0. This *lies t h a t  Q - koe P is =wits 

S ince  also K F ( s ) / ~ ~ ~ s  m l m ~ d ~ ~ a r  bounded for 0 4 u 5 lkol, the 8- con- 

clusion holds for  Q - miep. Setting k = He ie, we ham ( i i i )  

(b) Suppose now t h a t  conditions (i) - ( i i i )  hold* Then it foum 

wj-9 roots in - 8 
5 0 fo& 

f Ton ( i i i )  t h a t  the eauation d' 



real  e and f o r  a l l  pt such t h a t  0 < n <_ Ik,l, We will show that this state- 

ment inrplies t h a t  1 k, 1 < - % where % i s  given by ( b ) .  Thus koP/Q i a  uni- 

m0dul.a.~ bounded, and f (s) given by (3) i s  positive.  Our proof that ik,l < 
L 

w i N .  be indirect,  

Suppose, therefore, t h a t  1 kol > %. We w i l l  show that this assumption 

I leads t o  a contradiction. 

Consider the mimodular bounded function F*(s) = 914. Let s - iu0 

be a poin t  at which I P / ( ~ ]  achieves its maximum on s = i w ,  w r e d .  From ( b ) ,  

1 P ) / Q ( ~ )  1 = 1/uX so that F * ( ~ w ~ )  - eiw, q real.  We next expand F*(s) 

in the mighbor5ood of 3 = iw, t o  get " 
~ * ( s )  = eim+a(s-iw0) + ... . 

I It fo l lo i rs  from ;he unir.oddar character of F*(s) that 

~hich ~ l s s  i n p l l e s  t h a t  cu f 3. (SO as not t o  interrupt the argument a t  

th is  poir;t, we defer the proof of (6) until iater.)  

W i t e  u f o r  F*(B). Then the inverae of the aeries in (5) begins a6 

II u is close enough co eio, the two terms mitten here w i l l  be the domi:.i;G 

; e m  of the series, Hence fo r  such u 

sgn Re [s(u>] = 8gn Re T U - ~ ~ ~ ~  @ LTJ 
In p a t i c d a r  1st u = uo = %eiq/% where x, is sufficiently close to  

I by (6) * 
Thot is to say, the equstion F'*(a) no o r  ~ P / Q  eiy has a root in 

a If iw is the point  a t  infinity, t h i s  expansion, of course, would be i n  
terms o? powers of l/s, but  the  rr. ,~aindes of the argument goes through Un- 

I changed, 



the b t e r i o r  of the r i g h t  M f - ~ l a e *  This ; ' e sd t  contradicts the i talicized 

stat-t  aboveo 

T~~ : ~ ~ c ; e n t  for  the moof of (b) i e  cow oonplete. Tha proof of the 

c a p ~ l l s y  to Theorem I is straighkforward and w i l l  be l e f t  t o  the reader. 

T h e e  remains t h e  proof of (61, Denote by P ( s )  the positive function 

copr esponding $0 %(s) v-ia eq. (1) If ei" f 1, then f*(iro,) = (1 + eiq)/ 

(1 - = iyo, say, whero y is r edl and finitt. We have the power series 
0 

e x p a i o n  

p ( s )  = iyo + p(s-iw0) * r *. .. 
1% 5 s  known tha t  here 8 > 0.' 

The constant i n  ( 5 )  is now determined in terns of P and yo by aubati- 

t u t b g  the ser ies  for f*(a) i n  (1). We f i n d  

from which (6) follows immediately. 

I f  e i  a 1, then f*(s) has a pole at s = it",. The argument i s  again 

the same but uses the Laurent expansion of £*(s) a t  s = iwo. We leave the 

Z e t a u s  t o  the reader. 

?emarks t 1, In the  representation (3) for f ( s )  given by Theorem l (a )  ,it 

z d - h w s  in the usual way t h a t  the numerator and denominator of the fraction 

I 2 In Theorem 1 (b) , i t  is easily seen that  the requirement i n  

I c o n d i t i o n  ( i )  t ha t  P and Q be relat ively prime can be omitted. However, 

since Q must be s t r i c t l y  ~ d t z ;  by (ii), any common factor of P and Q 

a l s o  be strictly Hurwitz. 

4 
This result is  usually proved for positive rea l  functions i n  the case 

Yo = 0 -  1% holds a s  well in the present situation. 



3- 8ince 1 k~ ?(iwo)/~(iwo) 1 = 1 xoYZd lead t o  the  contradiction 

I Q p(iil$) /8(iwo) > 1 when / ko 1 < , it follows i n  Theorem l ( a )  that ,  

actually, Q -kP i s  s t r i c t l y  k m i t z  f o r  0 < ]k [  < /kol except when lkol = %, - 
in ~ i c >  case there i s  E% ~ P L S G  3 ~ . i :  ZSFC 5:: J.e(s; 0 bossisl ;r  a t  w )  whec 

I k = I ko 1 . Thus % may be described, al ternatively,  as the f i r s t  value o f  

I k f o r  which Q -kP has a zero, s = i w o ,  Wo rea l ,  (0 < lwol  <_ a), as IkI i n -  - 
cmases  moa3tonically f rom zero. 

ie I n  Theorem 1, condit ion ( i i i )  involves the  root locus of Q - WE P 

as K var ies  from 0 t o  1 kol. The question a r i ses  as t o  the conclusion which 

can b e  drawn when, i n  addi t ion t o  c:rnditions (i) and ( i i ) ,  it is as-cumed 

only t ha t  Q - k0eiep i s  Hurwitz f o r  all r ea l  8. Then, as i n  the praof of 

Theorem l ( b ) ,  w e  have /F(s) 1 f 1 fo r  ~ ( s )  > 0, where ~ ( s )  = ko P/Q By a 

theorem of Talbot (121, p. 608), it follows t ha t  f f ( s )  i s  positive, where 

fgsq co~responda t o  ~ ( s )  by (1) and i s  represented as i n  ( 3 ) .  Therefore, i n  

I order t o  a r r i ve  a t  a represen.tation, theorem here, we must determine add-  

I t i o n a l  conditions which se rve  t o  dist inguish whether f o r  - I i s  positive. 

I We do t h i s  by expanding f(s) i n  (3) a t  s = coy  and noting t ha t  if f(s) is  

l a ?os i t ive  func t ion  i n  t he  neighborhood of oo, then t h i s  will imply t h a t  

I f {a) ms t; be pos i t ive ,  

I m 
Let ~ ( s )  = sn + asn"+ .., , p(s)  = + bSm-'+ ... . We distinguish 

t t h r e e  cases. 

I Case  (a). m < n. 
I 

'Then f ( s )  = 1 + ... . It follows t h a t  f ( s )  must be positive, so tha t  

- 3  f u r t he r  condition i s  required hem* 



Case (b). rn = "3 ko f I* 

We have f ( s )  . co + c l / s  + . . . , where 

A s  is known, f (8)  w i l l  be a pos i t ive  function i n  the neighborhood of a, if 

R ~ ( = , )  > 0, o r  if Re(co) = 0 and cl > 0. These conditions correspond ms- 

p a c t i v e i y  t o  lk,j < 1, o r  1 kol - 1 and a - b > 0. (The l a t t e r  inequali ty 

f o l l o w s  since c, = 2(a-b) /ll-eit /' when ko = ei*), 

Case (c) . m - n, ko = 1. 

Then f ( s )  has a pole a t  s = a, and w i l l  be a posit ive function i n  

the neighborhood of co when f ( s )  = c , ~  s + . . . , where c , ~  = 2/(a-b) > 0, 

We thus a r r i v e  a t  s u f f i c i e n t  conditions f o r  f ( s )  i n  (3) t o  be posi- 

tive. It i s  c l e a r  t h a t  these  conditions are also necessary. 

Swmarizing, we have es tabl ished the following theorem: 

m e o r e m  2. (a) Every non-constant, posit ive ra t iona l  function has a unique 

representation. of the  form (3) where 

(i) P and Q a r e  re la t ive ly  prime, mode p o l y n d a l s  with 

deg P <_ deg Q, deg Q > 0, and ko # 0; 

( i i )  Q i s  s t r i c t l y  Hurwitz; 

i 0 
( i i i )  f o r  every r e d .  8, Q - koe P i s  Hurwitz; 

( i v )  f o r  deg P = deg Q, e i t he r  (k,] < 1, o r  lko( = 1 and 

a - b > 0, where ~ ( s )  = sn + as 
n-s. + . .. , ~ ( s )  = a" + bsn-l+ ... . 

(b) Conversely, i f  conditions ( i )  - (iv) hold, then f( S) given by 

(3) is  posi t ive .  

Remarks: A s  t h e  cme of meoren 1, when ko, P 8nd Q a m  r e d ,  get a 

r ep r e sen t a t i on  theorem f o r  a posi t ive  r e d ,  rat ion& ~ c t i o n .  us09 m a r k s  

1 and 2 f ol lovlng Theora 1 apply here as well. Finally, in both Theorems l (b)  

and 2(b), it can be shorn that condition ( i i )  is superfiuous, as it follows 

the remaining condit ions i n  each theorem. 



a [2], Talbot has proved, among other resul ts ,  the following theorem. 

~h~~~~ 2. Lat the posit ive,  ra t ional  function f (s) be written i n  the form 

f ( s )  - N(s)/D(~;  h e  K D are 1~2ativeiy p r h e  p o l p o m l d ~  

and deg D >  0. Then also N'/D' i s  a positive f u n ~ t i o n . ~  

ge w o d d  l ike  t u  indicate  another proof of t h i s  theorem based upon Theorems 

1 ad 2, i n  which the desired resu l t  i s  evident almost by inspection. We 

assu;,qe as h o r n  the follo'rlj.ng theorem: The derivative of a non-constant, 

-. k'3rs-r;,tz or s t r i c t l y  Hurwitz polynomial re$pectively, i s  Hurwitz or s t r ic t ly  

Hw-ditz respectively ( ~ f .  [2]). This r e su l t  follows a s  a special ca,se of 

-;l-,e k c a s  theorem [3], which s ta tes  tha t  the zeros of the derivative of a 

~olynor&al., p(s ) ,  a r e  contained i n  the convex hull of the zeros of p(s). 

Proof of Theorem 3: Apply Theorem l f a )  t o  represent f (s) i n  the form (3) where 

condi t ions  ( i )  - ( i i i )  hold. Let R and S denote the numerator and denominator 

respec t ive ly ,  of the fract ion i n  (3) .  From f ( s )  = N/D = R/S and Remark 1, it 

fo l lows that  N = nR  , D = aS where a i s  a constant . Thus N'/D' - R' /S ' . 
Let ~ ( s )  = sn + asn" + ..., P(s) = sm + b 8 - l  + s.. . We have m n 

:1). Suppose n r 2. Then differentiating i n  ( 3 ) )  we get 

~ c i l a r e  we have s e t  Q = ~ l / n ,  PI= p ?ray kl = mko/n. The right member of (7) i e  

again of the same f o m  as the  right member of (3). It r d n s  to  verifY 

that kl, Ply and 0 sa t i s fy  conditions ( i )  - ( i i i )  of 'l'heorw l ( b )  

It is clear t h a t  condition ( i )  holds i n  the form as modified W Remark 

af te r  Theorem 1, except for  the case PI 0 when the theorem f0I . l .o~~ 

t r ieal ly .  Con&,tion (ii) f o ~ m s  since 0 i s  the derivative of t h e  nand 

5 
Here the primes denote differentiation with respect to  s. 



I 
I oonstant, s t r i c t ly  Hurwita polynomial Q/n Finally, as lkl 1 k ,  the 

polynomial & - kP, which i s  the derivative of the Hurwitz polynomidl a t  
, ' :  

;Q - @)/n, will be Hurwitz lor O < ] kj 2 kl i , excsps,gossibiy,if cj - kp I " 
5s a constant. In the latter case, we must have k = 1, m = n, and a = b 

I 
C . !  
4 .  

I I 
y :  

{siizce n 2 2). The last two conditions, by (iv) of Theorem 2(a) applied 1 f !  
t o  R/S, i q i y  that  1 k,l < 1, which i s  incompatible with k = 1. It follova 

',ha% R'/s' i s  a positive function f o r  n 2 2, 

hllsn n = 1, the result  holds t r ivial ly,  since f(s) i s  then of the form 

c(s+a)/(s+-s) or c/(s+b) where ~ e ( c )  2 0. 
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(I) For non-constant ~ ( s ) ,  actually I F(s) 1 < 1 for ~ e ( s )  > 0, by the -mum 

Modulus Theorem; and fo r  rat ional  ~ ( s ) ,  it follows easily that ~ ( s )  is  

analytic a l so  on ~ e ( s )  = 0, and I F ( s ) ~  I= 1 there. 

(2) In order t o  avoid bothersome exceptional cases in  the sequel, it i s  con- 

I venient here t o  define a (complex) polynomial as Hurwita or s t r ic t ly  

Hurwitz respectively, according a s  it has no zeros i n  ~ e ( s )  > 0 or in 

Re(s) 2 0 res2ectively. Note t h a t  a non-zero constant then belongs to 

both of these categories. 

( 3 )  If i w o  i s  the point  a t  inf ini ty ,  t h i s  expansion, of course, would be 

i n  terms of powers of l/s, but tlre remainder of the argument goes 
i I 1  

through unchanged. 

(4) This md.t is  usuaily groved for  positive rea l  functions in  the case 
I 

r I  

Yo " 0. It holds as well in the present situation. 

; 5)  Ewe the primes denote differentiation ~5th respect t o  SO 
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