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Representaticn Theorems for Fositive Rational Functions
by
Irving Gerst
Let f(s) be a positive, rational function,so that f(s) is analytic and

Re f(s) z 0, for Re (s) > 0. Then the familiar transformation

R(s) = {5 (2)

which yields a rational, unimoduler bounded function F(s), (i.e. F(s) ana-
lytic and |[F(s)| < 1, for Re (s) >0),> immediately provides a unique

representation for £(s). For, let us write F(s) in the form

F(s) = ko B} (2)

wWrere P and Q are relatively prime, complex, monic polynomials and ko is a

(womplex) constant. Then from (1) and (2)

Q(s) + koP(s)
f(s) = qlsy = kop(sy . (3)

Here P,Q and k, are subject to conditions which characterize F(s) in (2)
as a unimodular bounded function. One set of such conditions follows readily
From the analyticity of F(s) in |s| < 1 and the Maximum Modulus Theorem,
(ef. [1]), and may be stated as follows: Q(s) must be strictly Rurwitz® with

deg Q >deg P, and 0 < k| < .~ where

1 _Max |[P(s)| s wreal. (L)
—==s=1p
Han Q(s)

Conversely, it is clear that if these conditions are satisfied, then f(s)
given by (3) is a positive function.
It is the purpose of this note to replace the foregoing rather un-

wieldy condition on k, in the representation (3), by either of two alterna-

* For non-constant F(s), actually |F(s)| < 1, for Re(s) > 0, by the Maximum
Modulus Theorem; and for rational F(s), it follows easily that F(s) is analy-
tic also on Re(s) = 0, and |F(s)| < 1 there.

In order to avoid bothersome exceptional cases in the squel, it is conveni-
ent here to define a (complex) polynomial as Hurwitz or sprlotly Hurwitz re-
Spectively, according as it has no zeros in Re(s) > 0 or in Re(s) >0 respec;t—
ively. Note that a non-zero constant then belongs to both of these categories.
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tiwe conditions which appear to be more tractable. The first of these in-
volves the root l‘bcus of a certain polynomial, while the second is the rep-
res“éntational form of a theorem on positive functions due to Talbot {2]. We
then zpply our results to get &n alvernave proof of another theorem given in [2].

We first prove

Theoren 1. (a) Every non-constant, positive, rational function f(8) has a
mique representation of the form (3) where
(1) P and Q are relatively prime, monic polynomials with
deg P < deg Q, deg Q> 0, and kQ;é 0;
(i1) Q is strictly Burwitsz; |
(1ii) for every k such that' 0 < |k| < |k,|, the polynomial
Q - kP is Hurwitz.
(b) Conversely, if conditions (i) - (iii) hold, then f£(s) given
by (3) is a positive function.
Corollary. A positive real, rational function has a unigue representation
of the form (3) where conditions (i) - (41ii) of Theorem 1 hold and in addi-
tion: (iv) P and Q are real polynomials and k, is a real constant. Con-
ver:ely, if condition (i) - (iv) hold then f(s) given by (3) is positive
real.
Pr :oft (a) In the light of our preceding discussion, we must establish (iii)
only.

Suppose f(s) is positive, so that the corresponding F(s) given by (1)
and represented as in (2) is unimodular bounded. Then |F(s)| = 1 is possibie
only for such s for which Re(s) < O. Thus, the equation F(s) = e™*8, for any
real 9, has no roots in Re(s) > O. This implies that Q - koeieP is Rrrwitz.
Since also wF(s)/k, is unimodular bounded for 0 < < |ko|, the same con-
clusion holds for Q - weifp. Setting k = %eie, we have (iii).

(b) Suppose mow that conditions (i) - (iii) hold. Then it follows

from (iii) that the equation xP/Q = 510 pas its roots in Re(s) < 0O for all
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real 9 and for all u such that O < x < |k,|. We will show that this state-

ment implies that |k | < wy where » 1is given by (L). Thus .koP/Q is uni-

modular bounded, and f{g) gziven by (3) is positive. Our proof that ]k01 < ,«w

will be indirect.
Suppose, therefore, that |k, | > » . We will show that this assumption
leads to a contradiction.
Consider the unimodular bounded function F'(s) = #P/Qe Lot s = 1w,
be a point at which |P/()| achieves its maximum on s = iw, w real. From (L),
P{i0,) /G(1w,) | = 1/ny SO that F*(iwo) - eiq), ® real. We next expand F*(s)
in the neighborhood of 5 = iw, to get ¢
Fi(s) = e3¢ + a(s-iw ) + <0 & (5)
It follows from the unimodular character of F*(s) that
wel® < ¢ s (6)
which also implies that o # 0. (So as not to interrupt the argument at
this point, we defer the proof of (6) until later.)
Write u for F*(s). Then the inverse of the series in (5) begins as
follows:
i«:p)

1
.:(‘ll,\l = iﬁ)o + a;'(UwS t oees

IZ u is close enough to el(p_, the two terms written here will be the domii it

cerms of the series. Hence for such u

Lep-
sgn Re [s(w)] = sgn Re[u e _} ‘

In particular let u = u, = #e (p/ﬂi where #; is sufficlently close to
. Then

ico
sgn Re [s(u )] = sgn Re [‘“-*—-(M-)'] = 4]
by (6).

That is to say, the equation F(s) = u, or wP/Q = % has a root in
8 1r iw, is the point at infinity, this expansion, of course, would be in

terms of powers of 1/s, but the rcaainder of the argument goes through un-
changed.



the <dnterior of the right half-plane. This result contradicts the italicized
statement above.

The crgument for the oroof of (b) is nov complete. The proof of the
corollary to Theorem 1 is straightforward and will be left to the reader.

There remains the proof of (6). Denote by £ (s) the positive function
torx esponding to F(s) via eq. (1). If 1@ # 1. then f*(iwa) = (1 + ei“)/
(1 — olo) = iy,» say, where y is real and finite. We have the power series
exXpansion

£(s) = iy, + Bls-imy) + eoe .
It is known that here g >0.°
The constant ¢ in (5) is now determined in terms of £ and ¥, by substi-
tuting the series for f*(s) in (1). We find
i
o = - %%3—;
0
from which (6) follows immediately.

If % = 1, then £¥(s) has a pole at s = iw . The argument is again
the same but uses the Laurent expansion of f*(s) at s = iw, . We leave the
details to the reader.
Remarks: 1. In the representation (3) for f(s) given by Theorem 1(a),it

follows in the usual way that the numerator and denominator of the fraction
in (3) are relatively prime polynomials.

2. In Theorem 1 (b), it is easily seen that the requirement in
condition (i) that P and Q be relatively prime can be omitted. However,
since Q must be strictly Hurwitz by (ii), any common factor of P and Q

~usS?t also be strictly Hurwitz.

* This result is usually proved for positive real functions in the case

Yo = 0. It holds as well in the present situation.




. 4 - Nyt Nt
3. ©Since [kg Fliw,) /kl&lwo)] = 1 would lead to the contradiction
| 2y P(10)/Q0w,) | > 1 when [kg| < 3, 1t follows in Theorem 1(a) that,
actually, Q -kP 1s strictly Hurwltz for 0 < |k| < |k,| except when [k | = x,,

in which case there is &% least one verc on Re(s) = O (vossibly at o) when

iki = lkoi- Thus ®y may be described, alternatively, as the first value of
{kt for which Q -KP has a zero, s = iwg, w, real, (o< I‘”oi < ®), as |k| in-

creases monotonically from zero.

In Theorem 1, condition (iii) involves the root locus of Q - neleP

as n varies from O to !ko . The question arises as to the conclusion which
can be drawn when, in addition to conditions (i) and (ii), it is ascumed
only that Q - ke ®P is Hurwitz for all real 6. Then, as in the proof of
Theoren 1(b), we have |F(s)| # 1 for R(s) > O, where F(s) = k, B/Q. By &
theorem of Talbot ([2], p. 608), it follows that +f(s) is positive, whers
f{s) corresponds to F(s) by (1) and is represented as in (3). Therefore, in
order to arrive at a representation theorem here, we must determine addi-
tional conditions which serve to distinguish whether f or - I is positive.
We do this by expanding f(s) in (3) at s = @, and noting that if f(s) is
a positive function in the neighborhood of w, then this will imply that
f‘s) must be positive.

Let Q(s) = &% 4 as®4 ... , P(s) = & + bty ... o We distinguish
three cases.
Case (a). m< n.

Then £(s) =1 + ... . Tt follows that £(s) must be positive, so that

-5 further condition is required here.




We have f(s) = c  + cy/s8 * «.. , where
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As dis known, f(s) will be a positive function in the neighborhood of @ if
Re(co) >0, or if RG(CO) = O and ¢; > 0. These conditions correspond res-
pectively to |k | <1, or [k | =1 and a - b > 0. (The latter inequality
follows since ¢y = 2(a-—b)/‘1-ei¢‘2 when k_ = ew).
Case (¢). m = n, ko = 1.
Then f(s) has a pole at s = , and will be a positive function in
the neighborhood of w when f(s) = c,s + ... , where c_, = 2/(a-b) > 0.
We thus arrive at sufficient conditions for f(s) in (3) to be posi-
tive. It is clear tnat these conditions are also necessary.
Summarizing, we have established the following theorem:
Theoren 2. (a) Every non-constant, positive rational function has a unique
representation of the form (3) where
(1) P and Q are relatively prime, monic polynomials with
deg P < deg Q, deg Q > O, andko;éo;
(i1i) Q is strictly Hurwitz;

i

8
(1ii) for every real 8, Q - k,e" P is Hurwitz;

(iv) for deg P = deg Q, either ,ko| < 1y or lkol =1 and
n-1,

ses

a-b>0, where Q(s) = g% + ag®t+ ,,. , P(8) = 8" + bs
(b) Conversely, if conditions(i) - (iv) hold, then f(s) given by
(3) is positive.
Remarks: As in the case of Theorem 1, when k , P and Q are real, we get a
representation theorem for a positive real, rational function. Also, Remarks

1 and 2 following Theorem 1 apply here as well. Finally, in both Theorems 1(b)
and 2(b), it can be shown that condition (ii) is superfluous, as it follows

from the remaining conditions in each theorem.
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Tn [2], Talbot has proved, among other results s the following theorem.

Theoren 3. Let the positive, rational function f(s) be written in the form

#(s) = N(s)/D(s, vhere N and D are relatively prime polynomials

and deg D> O. Then also N'/D’ is a. positive function.®
We would like to indicate another proof of this theorem based upon Theorems
1 and 2, in which the desired result is evident almost by inspection. We
assume as known the following theorem: The derivative of a non-constant,
Hurwritz or strictly Hurwitz polynomial respectively, is Hurwitz or strictly
Hurwitz respectively (Cf. [2]). This result follows as a special case of
~ae Lucas theorem [ 3], which states that the zeros of the derivative of a
polynomial, p(s), are contained in the convex hull of the zeros of p(s).

Proof of Theorem 3: Apply Theorem 1(a) to represent f(s) in the form (3) where

conditions (1) - (1ii) hold. Let R and S denote the numerator and denominator
respectively, of the fraction in (3). From £(s) = N/D = R/S and Remark 1, it
follows that N = @R, D = &S where o is a constant. Thus N'/D’ = R'/s’.

Let Q(s) = s® + as®™ &+ ..., P(s) = s™+ bs™ 4+ ... .Wehavem=<n

~

by i). Suppose n = 2. Then differentiating in (3), we get

RM Q@ +kbP (7
?

where we have set @ =Q'/n, Py=P7/m, k = mk,/n. The right member of (7) is
again of the same form as the right member of (3). It remains to verify
that k , P, , and Q satisfy conditions (1) - (iii) of Theorem 1(p).

Tt is clear that condition (1) holds in the form as modified by Remark

i

2, after Theorem 1, except for the case By =0 when the theorem follows

trivially. Gondition (ii) follows since Q 1is the derivative of the non-

Here the primes denote differentiation with respect to s.




constant, strictly Hurwitz polynomial Q/n. Finally, as |k | < |ko|, the
polynomial @ - kP, which is the derivative of the Hurwitz polynomial
{Q - ¥P)/n, will be Hurwitz For 0 < |k| = |k |, exceps,possibly,if § - kP
is a constant. In the latber case, we must have k = 1, m=n, anda = b
(since n = 2). The last two conditions, by (iv) of Theorem 2(a) applied-
to R/S, imply that |k,| < 1, which is incompatible with k = 1. It follows
that R’/8’ is a positive function for nz 2.

When 1 = 1 , the result holds trivially, since f(s) is then of the form

c{s*a)/(s+b) or c/(s+b) where Re(c) = 0.
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Footnotes
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(1)

(2)

(3)

QL)

<5)

For non-constant F(s), actually |F(s)| < 1 for Re(s) > 0, by the Maximm
Modulus Theorem; and for rational F(s), it follows easily that F(s) is
analytic also on Re(s) = 0, and |[F(s)| < 1 there.

In order to avoid botherscme exceptional cases in the sequel, it is con-
venient here to define a (complex) polynomial as Hurwitz or strictly
Hurwitz respectively, according as it has no zeros in Re(s) > 0 or in
Re(s) 2 0 respectively. Note that a non-zero constant then belongs to
both of these categories.

If iwy is the point at infinity, this expansion, of course, would be

in terms of powers of 1/s, but the remainder of the argument goes
through unchanged.

This result is usually proved for positive real functions in the case
Yo = 0. It holds as well in the present situation.

Here the primes denote differentiation with respect to s.
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