UNIVERSITY AT STONY BROOK

CEAS Technical Report 719

RS

Optimizing Computing Costs Using Divisible Load Analysis

J. Sohn, T.G. Robertazzi and S. Luryi

Oct. 30, 1995

Optimizing Computing Costs
Using Divisible Load Analysis

Jeeho Sohn
Thomas G. Robertazzi Senior Member IEEE
Serge Luryi Fellow IEEE

Dept. of Electrical Engineering,
University at Stony Brook,
Stony Brook, N.Y. 11794
Tel: (516) 632-8412/8400
Fax: (516) 632-8494

Abstract

In this paper a load sharing problem involving the optimal load allocation
of a divisible load and the optimal sequeincing of processors in a distributed
computing system consisting of N processors, with communicatioh front-ends,
interconnected through a bus oriented network is investigate&. For a divisible
load the workload is infinitely divisible so that the workload can be distributed
arbitrarily and independently computed on each processor. For the first time
in divisible load theory, the computing cost to process a given load is con-
sidered along with processing finish time. It is found that an optimal load
allocation involves assigning load to processors in increasing order of the cost
per load of each processor. Recursive numerical algorithms to find the op-

timal fractions of the workload assigned to each processor for the minimal

1

computing cost are derived. A trade-off between the optimal processing finish
time and the optimal total computing cost when a faster processor has a more
expensive computing cost is demonstrated. As an example of the use of this
type of analysis, the effect of replacing one fast but expensive processor with
a number of cheap but slow processors is also discussed.

Index Terms: Divisible Load, Load Sharing, Cost, Bus Network.

1 Introduction

The emergence of distributed computing as a viable technology and the decreasing
pricing of computer power leads to the possible emergence of computer “utilities”
in the near future. These utilities would charge customers for distributed access
to computer resources. To some extent current computer service leasing companies
embody this approach. An important question then for the utility then becomes the
management of computer resources to provide low cost service. In this spirit, this
paper provides an approach to determine the minimum cost manner in which load
should be divided among processors that a customer is being charged for access to.
Optimal and very efficient load sharing and allocation is essential for achieving
minimal processing times. There are many possible ways to classify the load sharing
problem. One of them is the classification by the type of job submitted to the system.
This leads to indivisible load theory and divisible load theory. An indivisible load (or
job) is a load that cannot be divided into more than one fragment so that the load
must be processed by one processor. There has been intensive work on indivisible
load theory by many parallel and distributed system researchers [1, 2, 3, 4, 5, 6, 7, 8;
9, 10, 11, 12, 13]. Only recently has there been interest in multiprocessor scheduling
with loads that need to be assigned to more than one processor [14, 15, 16]. A
divisible load (or job) is a load that can be arbitrarily partitioned in a linear fashion
and can be distributed to more than one processor to achieve a faster solution time.
Applications include both multiprocessor schedﬁiing and distributed systems. It is
particularly suited to the processing of very long linear data files such as occurs in
signal and image processing, experimental data processing and Kalman filtering.
The load sharing problem in divisible load theory is not trivial as one must take
into account the number of processors, the speed of each processor and communica-
tion link, the load origination point and the network architecture. One important

issue for the load sharing problem is a trade-off between the communication time

and the computation time. This prbblern is less important when the size of data
file to be transmitted is very small or the communication link speed is very fast so
that the time to transmit a typical job can be negligible. However, one must con-
sider the relationship between the communication time and the computation time
to in order achieve the best performance in the load sharing and scheduling prob-
lem when the size of data file to be transmitted is very large or the communication
link speed is very slow so that the time to transmit a typical job is not negligible.
Even though there has been a great deal of work solely on communication and solely
on computation, there has not been that much work which deals with both prob-
lems. This paper presents a theory for the optimal divisible load sharing problem
which considers both non-negligible communication time and the computation time
together.

The study of divisible load theory started from the consideration of intelligent
sensor networks by Cheng and Robertazzi [17]. An intelligent sensor is a single
processor based unit which can make measurements, compute and communicate
with other intelligent sensors. Later this intelligent sensor network application was
replaced by the application of load sharing in a multiprocessor environment. The
main problem in this research is to determine the optimal fraction of the workload
to assign to each processors. That is, when a network receives a burst of data
to process, the decision of what portion of the entire workload should be kept by
the distributing processor and what portion of the entire workload should be dis-
tributed to each processor in order to minimize the total processire time becomes
an intriguing problem. ;

In [17], recursive expressions for calculating the optimal load allocation for linear
daisy chains of processors were presented. This is based on the simplifying premise
that for an optimal allocation of load, all processors must stop processing at the same

time. Intuitively, this is because otherwise some processors would be idle while others

were still busy. Analogous solutions have been developed for tree networks [18] and
bus networks [19, 20]. Asymptotic solutions for systems with a large, or even an
infinite number of processors, and limitations in performance when adding processors
appear in [21, 28]. Closed form solutions were presented in [22] for bus and tree
architectures where processor and link speeds are homogeneous. In [23], the concept
of an equivalent processor that behaves identically to a collection of processors in
the context of a linear daisy chain of processors and a proof that, for a linear daisy
chain of processors load sharing a divisible load, the optimal solution involves all
processors stopping at the same time are introduced. An analytic proof for bus
networks that for a minimal solution time all processors must finish computing at
the same time is shown in [24, 32]. Previous proofs were heuristic.

In [25], a more sophisticated load sharing strategy is proposed for bus networks
that exploits the special structure of divisible load theory to yield a smaller solution
time when a series of jobs are submitted to the network. In [26], a deterministic
analysis is provided for the case when the processor speed and the channel speed
are time-varying due to the background jobs submitted to a distributed system. A
stochastic analysis which makes use of Markovian queueing theory is also introduced
for the case when the arrival and the departure times of the background jobs are
not known. The equivalence of first distributing load either to the left or to the
right from a point in the interior of a linear daisy chain is demonstrated in [27].
Optimal sequences of load distribution in tree networks are described in [29, 33]. A
new load distribution strategy for tree networks [30] and linear daisy chains [31] is
also discussed. In [34], a deterministic approach to finding an optimal distribution
of the load on a hypercube of processors is proposed. Simple formulae are found
to determine the distribution of the task’s load and the equivalent speed of the
whole network of processors for a two-dimensional mesh architecture in [35]. A

uniform methodology is presented in [36] to achieve minimum completion time for

a wide range of interconnection architectures, assuming that the communication
time is equal to some start-up value plus some amount proportional to the volume
of transferred data. Finally, an example of optimal load allocation in a real time
system appears in [37].

Until now there has been no research in divisible load theory on the effect of com-
puting cost. Computing cost can be an important characteristic factor of processors
that determines the pricing of the processing of a given load. The faster processor
usually has the more expensive computing cost and the slower processor has the less
expensive computing cost in practical situations. Thus, when each processor has a
different computing cost, the total computing cost for a given workload depends on
how much each processor is used and for how long. Naturally, in order to reduce the
total computing cost, the cheaper processors should be used more than the more
expensive processors. This leads an investigation of processor arrangement, or pro-
cessor sequencing, in a distributed computing system. The minimal total computing
cost can be achieved when the processors are optimally arranged. One simple and
apparent method for minimizing the total computing cost is to use only the cheap-
est processor. But if only the cheapest processor is used, the processing finish time-
will be dramatically increased. So this paper will first examine the minimal total
computing cost scheme which does not sacrifice the processing finish time, and then
discuss the case for further réducing the total computing cost with some degradation
in processing finish time.

This paper is organized as follows: Definitions, the load sharing problem for
the determination of the optimal load allocation found in earlier works and existing
load sharing theory for the minimal processing finish time as a function of the speed
of the load origination processor are presented in section 2. The optimal sequence
of processors yielding the minimal computing cost is discussed in section 3, and

recursive numerical methods for further reducing the computing cost are proposed

in section 4. Performance evaluation results appear in section 5. Finally, this paper

concludes with section 6.

2 Preliminaries

The network model to be considered here consists of N processors interconnected
through a bus type communication medium as in Fig. 1. Any one of N processors
can receive a new arriving measurement load and distribute this workload to the
other processors in order to obtain the benefits of parallel processing. Without loss of
generality, it will be assumed that the load is delivered to the first processor (P;) and
this processor becomes the load origination processor. Each processor is interfaced
with the network via a front-end communication processor for communications off-
loading. That is, the processors can communicate and compute at the same time.
The following notations will be used throughout this paper:
a, : The fraction of the entire processing load that is assigned to the nth

processor (Py,).

wy The inverse of the computing speed of P,.
Z: The inverse of the channel speed of the bus.
Tep The normalized computational load in time, i.e., the time that it takes

for P, to process (compute) the entire load when w, = 1.

Ten : The normalized communication load in time, i.e., the time that it takes
to transmit the entire set of data over the channel when Z = 1.
T,: The time for P, to complete receiving the corresponding fraction (a,) of

load from the load origination processor (P;).

T;: The finish time of the entire processing load, assuming that the load is

delivered to the origination processor at time zero.

The timing diagram for this distributed system is depicted in Fig. 2. In this

timing diagram, communication time appears above the axis and computation time
appears below the axis.

At time Ty = 0, the load origination processor (P;) keeps the first fraction of
the workload (a;) for its own computation which will take a time of T to finish,
and simultaneously transmits the second fraction of the workload (o) to P; in time
T; — T;. Note that as P, has a front-end processor for communications off-loading,
it may both compute and communicate at the same time. When the transmission of
the second fraction of the workload is finished at time T, P, starts computing the
received workload and P, begins transmission of the third fraction of the workload of
P; in time T3 — T;. This procedure continues until the last processor. For optimality,
all the processors must finish computing at the same time. Intuitively, this is because
otherwise the processing finish time could be reduced by transferring load from busy
processors to idle ones.

Based on the above description, one can construct the following N — 1 equa-
tions by equating the computation time of P, with the transmission time plus the

computation time of Pn41.
Tt —Tn=(Tap1 —T0) + (T — Tor) n=12,...,. N—-1 (1)
Here, the computation time of P, and the transmission time of P,,, are:

Ty —Th = anw,Ty n=12,...,N (2)
Tn+1—Tn = Qn+1ZTcm n=1,2,...,N-—1 (3)

Then, Eq.(1) can be rewritten using Eq.(2) and Eq.(3) as:
anw,.Tc, = an+1ZTm + a,.+1wn+1Tcp n= 1, 2, ooy N -1 (4)
These equations can be solved

an+1=kn0!n=<nk.')ax n=12...,N—-1 (5)

=1

where:

Qntl wnTc
kn = e P = ooy N —
o ZTom + woni T n=12,..., N-1 (6)

There are N —1 equations and N unknowns (a,,n = 1,2,..., N). An additional
equation is called a normalization equation which states that the sum of all the
allocation fractions should sum to one.

N
Z a, =1 (7)
n=1

By putting together Eq.(5) and Eq.(7), one can find the optimal fraction of the
workload that minimizes the total processing finish time. The closed-form expres-

sions are;

w,T,
(1) &k, = 7T +w"”+lT n=12...,N-1 (8)
cm n cp

2 a = [1+fj('ﬁlk.~)]-l (9)

n=2 \i=l

(3) A = kn-l *Qpq n= 2,3, ey N (10)

Note that this solution is a product form solution. It is interesting that this deter-
ministic model has such a solution as product form solutions are usually associated
with stochastic queueing and Petri networks.

Finally, the processing finish time T is:
Tf =a1w1Tc,, (11)

These equations also happén to model the case when a control | -ocessor, which
does no computing of its own, distributes the. load to the other processors. In this
case, the order of load distribution does not affect the finish time. However, the
network structure in this paper is different. Here the load origination processor does
compute. In this case, the processing finish time, described in the above equations,

can be further reduced by a special investigation of the relationship between the

processing finish tiﬁe and the speed of the load origination processor (w;). It can
be shown that the processing finish time can be reduced by carefully choosing the
load origination processor.

Once a set of N processor speeds, S(w) = {w;,w,,...,wn}, is given, the pro-
cessing finish time depends on the speed of the load origination processor (w;) and
is minimized {20] when w; is chosen to be the smallest (that is, the highest speed)

in the set S(w). The processing finish time is then [19, 20]:
W1 Tep(ZTom + w2 Tep)(ZTerm + w3Tey)

T
d (ZTem)? + ZTem(wn + w2 + w3)Tep + (wrwe + wows + wswl)Tc";
(12)
For general N processors case, the finish time is given by:
N
w Ty H(ZTC,,. + w,Top)

_ n=2 _
Tf - N In-1 N (13)

Y | ITwTs): I (Z2Tem + wiTs)

n=1 | =1 i=n+l

The denominator of Ty is independent of switching any w; with any other w; (z,5 =
1,2,...,N and ¢ # j). Only the numerator is dependent on switching w; with any
other wi (k = 2,3,...,N) and is minimized when w; is chosen to be the smallest
w;. a

Eq.(13) will be used in the next section. Note that, as shown in the Appendix,
the processing finish time is independent of the éequence of the processors. That
is, no matter whether the load origination processor transmits the workload to the
fastest processor first or to the slowest processor first, the processing finish time
remains the same. The processing finish time depends only on the speed of the load
origination processor and is minimized when P, is chosen to be the fastest processor
among all the processors in the distributed computing system. Note that in this

paper we do not consider delivering the load in installments to each processor as in

[30].

10

3 Minimizing the Total Computing Cost

If the computing cost for each processor is different, the total computing cost for
the entire workload varies and depends on how much of the workload is processed
in each processor. Intuitively, if the cheaper processors are more utilized than the
more expensive processors, then the total computing cost will be reduced. In order
to minimize the total computing cost, therefore, the cheaper processors should be
more utilized. This leads to a special arrangement for the sequence of the processors
(or the sequence of the load distribution).

Let us denote the set ©(; 5~y as an ordered set of N processors. The set
©(1,2,..,n) determines the sequence of load distribution. For instance, for the set
©(2,3,1), P2 is the load origination processor and P; is the processor which receives the
workload from P, first, and P, receives the workload from P; second. ’Fhe notation
¢, will be used for the computing cost of P, whose unit is “cost per second”. The
unit of the computing speed of the nth processor, w,, is “second per load” since
Wy, is defined as the inverse of the computing speed. Then, the unit ¢,w, becomes
the “cost per load” and a,c,w,T,, represents the computing “cost” of P, for the-
received workload from the load origination processor. Let us denote the notation
C'total for the total computing cost for the entire workload, and the expression for
this is:

N
Ctotal = E ancnwr}Tcp (14)

n=1

The optimal sequence of processors O 5,...n) Which minimizes Eq.(14) is described

in the following theorem.

Theorem 1 The total computing cost, Cioqi, is minimized over all load distribution
sequences iff the sequence of the load distribution is arranged to satisfy the following
condition.

awy < Qw,y < -+ < CNWN (15)

11

0

In other words, the processor with the lowest computing cost per load should be
assigned to the load origination processor (P;) and the processor with the second
lowest computing cost per load should receive the workload earlier than any other
processors, and the last portion of the load should be delivered to the most expensive
processor.

Proof: Consider first the case where there are three processors (N = 3). The

fractions of the workload are

1

= [L+k +kk]? = 5(ZTem + wiT)(ZTem + w5T.y) (16)
1

ag = kion = b—w,Tc,,(ZTcm + w3T,,) (17)

Q3 = kgag = %wqu, . wZTcp (18)

where:
D = (ZTem)? + ZTem(wy + wy + w3) T + (wrw2 + waws + wawy)T, (19)

Note that D is not changed by switching any set of processors. The total computing
cost is:

3
Ciotal = ZancnwnTcp -

n=1
T .

= Fcp[(ZTcm + WQT@)(ZTM + U)3Tép)clllh + wch,,(ZTcm + w:;Tcp)ngg
+w1Tc,, . wZTcp . C3’w,3] (20)

Now, let us first show that if ¢yw; < c;w,, then the above total computing cost,
Ctotai(©(1,2,3)), is smaller than the one when P, and P, are switched, Ciotat(©(z,1,3))-
One can start with

awy < Cwsy

12

and get the following inequality by multiplying ZT., (> 0), adding (w2T,, - ciw; +
wy Tep- c2w2), multiplying (ZTem+w3T,), adding (wi Ty we Ty c3ws), and multiplying

=2 on both sides of the above inequality.

D

[(ZTcm + w2Tcp)(ZTcm + w3Tcp)Clw1 + wchp(ZTcm + w3Tcp)C2w2
+ w1 Tep - wo Ty + c3ws)
< T2 (2T + WiT)(ZTom + w3Top)esws + W Top(ZTem + w3 Tep) 1

+ ngcp . wchp . ng3]

The left hand side of the inequality is the same as Ciota1(©(1,2,3)) and the right hand
side is Ciotar When Py and P; are switched, Ciotai(©(2,1,3))- Therefore, if cyw; < cwy,
then Crotal(©(1,2,3)) < Crotat(O(2,1,3))-

The reverse order proof is as follows: It can be shown that if Ciotat(©(1,2,3)) is
smaller than Ciotai(O(2,1,3)), then cywy < c;w;. To demonstrate this, first write
Ciotal(©(1,2,3)) and Ciorai(©(2,1,3)) while assuming that Ciotai(©(1,2,3)) is less than
Crotal(©(2,1,3))-

D .
{Ctotal(e(l,2,3)) T ZTcm + w2Tcp)(ZTcm + w3Tcp)clwl

< {Ctotal(9(2 1 3))
+ weTep(ZTem + w3T awy + waTlep - w1 Tep - c3ws}

= (

+ wch,(ZT + Tcp)CQUJQ + U)chp . ‘LU2TCP . ng;;}
= (ZTem + 1 Tep)(ZTem + w3Tp)crw,
)

After cancellation of several terms, the result is cqw; < caw,. One can also prove a
similar result for the case when P, and P are switched. Then, the two conditions

that must be satisfied in order to minimize C;. are:
awy < CWw2 and Cwy < C3w3

Equivalently,

qw) < uwy; < C3W3

13

For the general IV processors case, the fractions of the workload are

N /n-1 -1 1 N
[1+z([1 k,-)] - 52T + i) (21)

a =
n=2 \i=1
1 N
Qg = k1a1 = Bwchp H(ZTcm + w.-Tc,,) (22)
=3
a3z = kzag wchp w2TcpH ZTcm+w: cp) (23)
1=4
1 n-1 N
an = knp_10n_1 = D [T (wiTs) - H (ZTem + wiTey) (24)
=1 i=n+1
ay = knyojano = H (w; Cp) (25)
=1

where from Eq.(13):

N [n-=-1 N
D= Z [H(wiTCP) . H (ZTcm + wiTcp)] (26)

n=l |i=1 i=n4l
Again, D is not changed by switching any set of w; with any other w; (7,7 =
., N and ¢ # 7). One can see this point more easily in Eq.(19).
The total computing cost is then

Ctotal = D Z

n=1 | i=1 i=n+1

n-1 N
[H(waTcp)- II (2T + w.-T.:,,)c,.w,.} (27)

Consider two arbitrary adjacent processors, P; and Pj;;. In the following, it will

be shown that if Crotai(O1,3,....j,j41,...n)) is smaller than Ciotarl(O(1,2, 41,5

..........

Ciw; < Cjp1Wjq1.

D
{Ctotol(9(1,2,...,j,j+1,...,N)) T
cp

-5 ["fl(w. T.)- T (2Tum + wTp)erun

n=1 {i=l i=n+l

+ (w1 Tep)(w2Tep) - - (wj1Te)

14

X (ZTcm + wj+1Tc,,)(ZTcm + ’w]'+2Tcp) cee (ZTcm + UJNTCP)C]‘wj
+ (wchp)(w2TCP) v (wj-lTCP)(ijCP)
XA(ZTem + Wit2Tp)(ZTem + witsTep) -+ (Z2Tem + WnTop)Cjp1)41

N n-1 N
+ 2 [H(w.-n,)- II (ZTm+w.-Tc,)cnwn]}

n=j4+2 | i=1 i=n41

D
< {Ctotal(@(1,2.....j+1,j,....N)) T

cp

= J-Ell [ﬁl | ﬁl(ZTcm + w.-Tcp)cnwn}
+ (w1 Te)(weTp) - - (:’j—chp)

X (ZTem + wiTep(ZTem + wiraTep) -+ (ZTem + wnTip) i1 W) 41
+ (W To)(waTe) - - (wjm1 Tep) (wis1 Top)

(ZT + w2 T)(ZTem + wjssTep) -+ - (2Tom + wNTep)ciw;

1 N
+ Z [H(wt II (ZTcm +wiTcp)ann]}

n=j42 | t=1 i=n+l

After some cancellations, the only remaining terms are:
(ZTem + winTop)cjw; + wiTy - cinwiss < (ZTem + w;Top)cimwsin + win T - ciw;
Further cancellation brings:

Cjwj < Cj41WjH1

..........

.....

is smaller than Cm.,;(9(1,2,",,“1,,'"",1\;)), by running the above proof in the reverse di-

rection.

Since P; is an arbitrary jth processor, if one performs the same proof forj = 1,2,...,N -1

the result will be

aqw < QQwy < -+ < CNWN

in which, with this order of processors, the total computing cost is minimized. O

15

4 Further Reducing the Total Computing Cost

The total computing cost Ciuq can be further reduced as low as

Ctotal = _min NcnwnTcp (28)

But there is a significant difference if one reduces Cyy,; to be less than that found
in the previous section. The processing finish time Ty will increase. The timing
diagram for this situation appears in Fig. 3. It is easy to see that it is possible to
algorithmically minimize the cost subject to a bound on the delay. First, arrange the
processors such that c;w; < cowy < --+ < eywy is satisfied. Note that it is assumed
that the “cheapest” processor receives the workload from the outside environment
and becomes the load distribution processor. Next, increase the processing finish

time by allowing some delay 7. The new processing finish time is
I =Tr+r (29)

Increase o until ayw,T,, reaches TP while decreasing ay by the same amount.
The idea is that if a greater portion of the workload is processed in the cheaper
processor than in the more expensive processor, the total computing cost Cioar will ‘
be reduced. The procedure is repeated for the next processor. That is, increase
a3, 0Q3,. .., while decreasing ay. If ay becomes zero, then set ay = 0 and the load
will be not delivered to the most expensive processor. Go to the next most expensive
processor and decrease any-;. If ay_; becomes zéro too, then decrease an_;, and
so forth. .

The above algorithm is given for purposes of exposition. For implementation
two recursive numerical algorithms will be presented in the following.y The first
algorithm, the cost minimizer, finds a, which minimizes the total computing cost
further when the processing finish time is bounded by T7**. The second algorithm,
the finish time minimizer, finds a, which minimizes the processing finish time for a

bound on the total computing cost, namely Cjiyen-

16

4.1 Cost Minimizer

The objective function is as follows:

OBIJECTIVE: min Cost
T’STVIGW

The algorithm is (initially assume that all a;’s are zero.

(a) Find oy:
new TFew
ayun Ty = = aa = T,
(b) Find a, (initially n = 2):
n-1
a"w"TCP = Tfncw -T, T;cw - 22 ;2T
n = a, = 1=
T, = Za.-ZTC.,,. ZTom + wnTcp
=2
() Y ai <1,
=1
then repeat step (b) withn =n + 1.
If Z a; =1,
=1
then stop and ap41 = appz = =an =0.
If E Q; > 1,
=1
n-1
then stopand a, =1 — Z a;
: =1
“and Qpy) = Qe = - =any =0.

As can be seen, this algorithm essentially allocates load for each processor in

turn (from least expensive to most expensive in terms of cost/load) up to the upper

bound on finish time until all the load has been allocated. Thus the finish time

constraint is satisfied while cost is minimized.

4.2 Finish Time Minimizer
The objective function is:

17

OBJECTIVE: min T}

< given

The algorithm is as follows:

(a) Find a, (n =1,2,...,N) from Eq.(8-10).
(b) Set a, = a, — A, (r = N initially) where A < a,.

(¢) Find a, (n =1,2,...,r — 1) by using

arunTy = (ZT.m + walep)en
aweley = (ZTen + wilyp)as

ar-2wr-2Tcp = (ZTcm+wr—chp)ar—l

N
atattan = 1-)

k=r

N
(d) If (Ctotal = Z ancnwnTcp) < Cgivcm

n=1

then stop _
else repeat step (b) and (c).
But if the above inequality is invalid even with o, = 0,

then set a, = 0 and repeat step (b) and (c) with r =r — 1.

Here an initial minimal time allocation is made. Load is subtracted in incremen-
tal steps from the processors starting from the xﬁoét expensive (in terms of cost/load)
to the least expensive. A renormalization is performed at each step. The process
stops when the cost is brought at or below the desired cost level. Thus the cost
constraint is satisfied at the price of a larger finish time. However the finish time is

minimal given that the cost constraint is satisfied.

Case | Sequence | Ty | Ciotai

1 | ©na2s |0.667|8.333
Ousz |0.667 |8.167
O3 |0.889 | 7.445
Os1) | 0.889 | 6.667
O(312 | 1.000 | 7.000
Oa21) | 1.000 | 6.333

SO Wb

Table 1: Processing finish time and total computing cost for six cases of sequences.

5 Resource Management Evaluation

Based on the previous results, a number of computer resource management results
were obtained via simulation for three cases. The first case is the one described in
- section 2 and 3, namely finding the optimal sequence of processors for the minimal
processing finish time and the minimal total computing cost when all the proces-
sors finish computing at the same time. Next, some performance observations are
described for further reducing the computing cost when the processing finish time
is delayed, as discussed in section 4. In the final case, the question is addressed as
to whether the performance-: can be improved by replacing one fast but expensive

processor with a number of cheap but slow processors.

5.1 Optimal Sequence

Table 1 is obtained for the values of Z = T, = T, = 1, vy = 1, ¢ = 10,
we = 2, ¢; = 3, w3 = 3, and ¢3 = 1. For these values, the fastest processor
has the most expensive computing cost and the slowest processor has the cheapest

computing cost. A number of basic points are raised in a consideration of this

19

table. Apparently, the odd numbered examples (rows) are not of concern since in
these examples C;,¢q is higher than that of in the even numbered examples for the
same Ty. In example 1, the processing finish time Ty is the smallest while the total
processing cost Ciq is the highest. On the other hand, the largest Ty occurs in
example 6, yet Cioar is the lowest. Here one thus has a choice between a smaller
processing finish time or a smaller total computing cost. If one wants a smaller
processing finish time regardless of the total computing cost, sequence O, 32 will
be an appropriate choice. The sequence ©(32,) is suitable when a smaller total
computing cost is desirable but a smaller processing finish time is not required. By
choosing the sequence ©(;3,3), a moderate processing finish time and a moderate

total computing cost will be achieved.

5.2 Further Reducing the Total Computing Cost

Two plots, Fig. 4 and Fig. 5, are obtained from the two algorithms, the cost mini-
mizer (minimizing the total computing cost with a bound on processing finish time)
and the finish time minimizer (minimizing the processing finish time with a bound
on total computing cost), respectively. In both cases, Z = T,y = T, = 1, wy =1,
a = %, weg =2,¢cp=1, w3 =3, and c = %. Again, for these values, the faster
processor has the more expensive computing cost and the slower processor has the
cheaper computing cost.

In Fig. 4, each point in the most upper cun}e represents the lowest possible total
computing cost for the corresponding processing finish time. As shown in this figure,
the total computing cost is monotonically decreasing as the processing finish time
increases, which means that the lower the total computing cost is, the greater the
processing finish time is, and vice versa.

In Fig. 5, the total computing cost is initially obtained at Cioa1 = 1.689 without
any delay of the processing finish time (7 = 0 and Ty = 0.674). The finish time

20

minimizer algorithm recursively calculates the processing finish time and the frac-
tions of the workload for a given total computing cost (Cyien = 1.5). Note that the
example value of Cyipen (1.5) is the lowest possible value that can be achieved, since

min(c,wnTep) = 1.5, for all n.

5.3 Splitting Processors

An important question in current computer architecture and microelectronics is
whether it is better to design a system using one very fast but expensive processor
or to use many cheap but slow processors instead. This question arises, for instance,
when one considers fast but expensive semiconductor technologies such as gallium
arsenide in relation to the more traditional silicon implementations of computers.

To answer this question, the following examination is performed. Feor all cases,

Z=Tm=Typ=1

Fig. 6 depicts the case when one replaces (splits) one fast but expensive processor
(wy = 1,¢; = 1) with N cheap but slow processors (wn, = N,cn = 7). Note that
all the processors have the same computing cost per load, i.e., c,w, = 1 for all.
n, including the original processor in order to preserve fairness. That is, if one
splits one processor into N processors, then the computing speed of each one of
N processors becomes N times slower and the computing cost of each one of N
processors becomes N times cheaper. When one fast but expensive processor is

used, the total computing cost is
Ctotal = alclwchp =1

since a; = cqwy = T, = 1. The total computing cost when N cheap but slow

processors are used is

N N
Ctotal = Z ancnwnTcp = Z an =1

n=1 n=1

21

since cawn, = T, = 1 for all n. Thus the total computing cost is unchanged with
respect to the number of splits, or more explicitly, the number of cost equivalent
processors, as shown in Fig. 6(b). This is thus a cost conservative splitting of the
fast processor. However, the processing finish time becomes larger as one increases
the number of cost equivalent processors. Since the computing speed of the load
origination processor also becomes N times slower when the processor is split to
N cost equivalent processors, the processing finish time increases as the number of
splits increases.

The next situation studied is when there are two processors with different costs
per load. Which one is better to split for better performance? Some examples are
presented in Fig. 7, 8 and 9, in an effort to answer the above question. For all cases,
w; = ¢; = 1 and w; = 2. Note in all of these cases if P, is split then P; processes
load first, followed by the split P; processors. Alternately, if P; is split, the split P
processors process load first, followed by the P, processor. Fig. 7 illustrates the case
when ¢; = 1, i.e., P, is twice expensive in cost per load compared to P,. As shown
in Fig. 7(b), splitting the cheaper cost per load processor (P,) allows for less total
computing cost, while splitting the more expensive cost per load processor (FP;),
results in a higher total computing cost.

The underlying explanation for this phenomenon is as follows. In this example
cost is inversely proportional to computing speed (as ¢; = ¢; = 1.0). The load
allocation equations automatically allocate most of the load to the fastest (cheapest)
processors and allocate very little load to the slower (more expensive) processors.
Thus a split of P, the cheapest processor, allows a better subset of very cheap
processors to be created. This leads to the lowest cost solution. |

Fig. 8 shows the total computing cost when the cost per load of P, and P, are
reversed with respect to that of in Fig. 7. The computing cost per load of P; is less

than that of P;, so splitting P; produces the lower total computing cost.

22

The processing finish time is independent of any cost factor and it increases as
one splits P; because splitting P; reduces the speed of the load origination processor.

This is shown in Fig. 9.

6 Conclusions

In this paper the optimal sequence of the processors for the minimal processing
finish time and the minimal total computing cost was examined. It was found
that a smaller total computing cost can be obtained by arranging the sequence of
processors such that the cheaper processor receives the workload earlier than the
more expensive processor does. Here cost is defined in terms of cost per load, ¢, wn.
But these two factors, the processing finish time and the total computing cost, were
found to involve a trade-off between each other when the faster processor has a more
expensive computing cost and the slower processor has a less expensive computing
cost, as in most practical situations.

Splitting a fast but expensive single processor into a number of slower but cheaper
processors in a linear and conservative manner was found to actually raise the pro-
cessing finish time. It was also found in this paper that when there is more than one
processor with different computing cost per load one can reduce the total computing

cost by splitting the less expensive one.

7 Appendix

Theorem 2 For a given set of processor speed, S(w) = {w1,w,...,wn}, the pro-

cessing finish time is minimized if

wy = min(w;, wa, ..., wWN) (32)

23

Proof. Let us first prove this theorem in the case where there are three
processors (N = 3). From Eq.(9), the fraction of the workload for load origination

processor is

oy =1+ ky + kyky] ™ (33)
where:
wlT
k _—r
! ZTom + wTop (34)
w2Tcp
b= grF wsTop (35)

The processing finish time is then [19, 20):

Tf = alw,TC,
w T
Ty w Ty w T
ZTom + waTep ZTem + waTep ZTem + waTyp
W Top(ZTem + w2 Tep)(ZTem + w3Tep)
(ZTem)? + ZTem (w1 + wa + w3) Ty + (w1w; + wows + waw,)TZ
(36)

I

1+

The value of denominator of T is not changed by switching any w; with any other
wj (4,7 = 1,2,3 and ¢ # j). However, the numerator is minimized when w, is
chosen to be the smallest among w;, w; and ws. This can be explained as follows: If
W1 Tep(ZTem + waTep) < ng;,,(ZTm + w1 T,), then it is true with cancellation that
wy < w, since ZT,, > 0. Similarly, if wch,,(ZTcm‘ + w3Tp) < W3Tep(ZTem + i Tep),
it is also true that w; < ws.

For general N processors case, the first fraction of the workloaa‘ is
oy =L+ ky +kky+-o- 4 (kikye - knoa)]™! (37)
where:

ko wn Ty
" ZTcm + w,..,.ch,,

n=1,2..,N-1 (38)

24

The processing finish time is now:

Tj = alwchp
wchp
1+ ky + kyka + - + (kikz - kny)

N
w1Te [[(ZTem + waTep)

= N [n-1 n= N . (39)
ST (wiTw) - [(2Tom + wils)
n=1 | i=1 i=n+1

Again, the denominator of T is independent of switching any w; with any other w;
(¢, = 1,2,...,N and 7 # j). Only the numerator is dependent on switching w,
with any other wy (k = 2,3,...,N) and is minimized when w, is chosen to be the

smallest w;. a

25

References

(1]

[2]

[4]

(5]

[7]

I. Ahmad, A. Ghafoor, and G. C. Fox, “Hierarchical scheduling of dynamic
parallel computations on hypercube multicomputers,” Journal of Parallel and

Distributed Computing, vol. 20, pp. 317-329, 1994.

S. H. Bokhari, “A network flow model for load balancing in circuit-switched

multicomputers,” IEEE Transactions on Parallel and Distributed Systems, vol.

4, no. 6, pp. 649-657, June, 1993.

C.-H. Lee, D. Lee, and M. Kim, “Optimal task assignment in linear array
networks,” IEEE Transactions on Computers, vol. 41, no. 7, pp. 877-880, July,
1992.

K. K. Goswami, M. Devarakonda, and R. K. Iyer, “Prediction-based dynamic
load-sharing heuristics,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 4, no. 6, pp. 638-648, June, 1993.

G. Huang and W. Ongsakul, “An efficient load-balancing processor schedul--
ing algorithm for parallelization of gauss-seidel type algorithms,” Journal of

Parallel and Distributed Computing, vol. 22, pp. 350-358, 1994.

V. M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M. A. Mohamed, and J. Telle,
“Mapping divide and conquer algorithms to parallel computers,” In Proceedings
of the 1990 International Conference on Parallel Architectures, 1990, pp. 128-
135.

K. Ramamrithamm, J. A. Stankovic, and P.-F. Shiah, “Efficient scheduling al-
gorithms for real-time multiprocessor systems,” IEEE Transactions on Parallel

and Distributed Systems, vol. 1, no. 2, pp. 184-194, April, 1990.

26

[8] X. Qian and Q. Yang, “An analytical model for load balancing on symmetric

[10]

[11]

[12]

[13]

[14]

[15]

multiprocessor systems,” Journal of Parallel and Distributed Computing, vol.

20, pp. 198-211, 1994.

Y.-C. Chang and K. G. Shin, “Optimal load sharing in distributed real-time
systems,” Journal of Parallel and Distributed Computing, vol. 19, no. 1, pp.
38-50, September, 1993.

K. G. Shin and M.-S. Chen, “On the number of acceptable task assignments
in distributed computing systems,” IEEE Transactions on Computers, vol. 39,

no. 1, pp. 99-110, January, 1990.

D.-T. Peng and K. G. Shin, “A new performance measure for scheduling inde-
pendent real-time tasks,” Journal of Parallel and Distributed Computing, vol.
19, no. 1, pp. 11-26, September, 1993.

G. C. Sih and E. A. Lee, “Declustering: A new multiprocessor scheduling
technique,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, no.
6, pp. 625-637, June, 1993.

J. Xu and K. Hwang, “Heuristic methods for dynamic load balancing in a
message-passing multicomputer,” Journal of Parallel and Distributed Comput-

ing, vol. 18, no. 1, pp. 1“—13, May, 1993.

J. Blazewicz, M. Drabowski, and J. Weglarz, “Scheduling multiprocessor tasks
to minimize schedule length,” IEEE Transactions on Computers, vol. C-35, pp.

389-398, May, 1986.

J. Du and J. Y.-T. Leung, “Complexity of scheduling parallel task systems,”
SIAM Journal on Discrete Mathematics, vol. 2, pp. 473-487, November, 1989.

27

[16]

[17]

(18]

[19]

[20]

21]

22]

W. Zhao, K. Ramamritham, and J. A. Stankovic, “Preemptive scheduling
under time and resource constraints,” IEEE Transactions on Computers, vol.

C-36, pp. 949-960, August, 1987.

Y. C. Cheng and T. G. Robertazzi, “Distributed computation with communi-
cation delays,” IEEE Transactions on Aerospace and Electronic Systems, vol.

24, no. 6, pp. 700-712, November, 1988.

Y. C. Cheng and T. G. Robertazzi, “Distributed computation for a tree network
with communication delays,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 26, no. 3, pp. 511-516, May, 1990.

S. Bataineh and T. G. Robertazzi, “Distributed computation for a bus network
with communication delays,” In Proceedings of the 1991 Conference on Infor-
mation Sciences and Systems, The Johns Hopkins University, Baltimore, MD.

March, 1991, pp. 709-714.

S. Bataineh and T. G. Robertazzi, “Bus oriented load sharing for a network of
sensor driven processors,” IEEE Transactions on Systems, Man and Cybernet-

ics, vol. 21, no. 5, pp. 1202-1205, September, 1991.

S. Bataineh and T. G. Robertazzi, “Ultimate performance limits for networks of
load sharing processors,” In Proceedings of the 1992 Conference on Information
Science and Systems, Princeton University, Princeton, NJ. March, 1992, pp.
794-799.

S. Bataineh, T. Hsiung, and T. G. Robertazzi, “Closed form solutions for bus
and tree networks of processors load sharing a divisible job,” IFEE Transaction

on Computers, vol. 43, no. 10, pp. 1184-1196, October, 1994.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

T. G. Robertazzi, “Processor equivalence for a linear daisy chain of load sharing
processors,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29,

no. 4, pp. 1216-1221, October, 1993.

J. Sohn and T. G. Robertazzi, “Optimal divisible job load sharing for bus
networks,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32,

no. 1,, January, 1996.

J. Sohn and T. G. Robertazzi, “A multi-job load sharing strategy for divisible
jobs on bus networks,” Technical Report 697, SUNY at Stony Brook College
of Engineering and Applied Science, August, 1994.

J. Sohn and T. G. Robertazzi, “An optimal load sharing strategy for divisible
jobs with time-varying processor speed and channel speed,” Technical Report
706, SUNY at Stony Brook College of Engineering and Applied Science, Jan-
uary, 1995. Conference version: Proceedings of the ISCA International Confer-
ence on Parallel and Distributed Computing Systems, Orlando FL, Sept. 1995,
pp. 27-32.

D. Ghose and V. Mani, “Distributed computation in a linear network:
Closed-form solutions and computational techniques,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 30, no. 2, pp. 471-483, April, 1994.

D. Ghose and V. Mani, “Distributed cdmputation with communication de-
lays: Asymptotic performance analysis,” Journal of Parallel nd Distributed

Computing, vol. 23, pp. 293-305, November, 1994.

V. Bharadwaj, D. Ghose, and V. Mani, “Optimal sequencing and arrangement
in distributed single-level tree networks with communication delays,” IEEE
Transactions on Parallel and Distributed Systems, vol. 5, no. 9, pp. 968-976,
September, 1994.

29

[30]

(31]

32]

[33]

[34]

(35]

(36]

V. Bharadwaj, D. Ghose, and V. Mani, “Multi-Installment Load Distribution in
Tree Networks with Delays,” [EEE Transactions on Aerospace and Electronic

Systems, Vol. 31, No. 2, pp. 555-567, April 1995.

V. Bharadwaj, D. Ghose, and V. Mani, “An eflicient load distribution strat-
egy for a distributed linear network of processors with communication delays,”
Computer and Mathematics with Applications, vol. 29, no. 9, pp. 95-112, May,
1995.

V. Bharadwaj, D. Ghose, and V. Mani, “A study of optimality conditions for
load distribution in tree networks with communication delays,” Technical Re-
port 423/GI/02-92, Dept. of Aerospace Engineering, Indian Institute of Science,
Bangalore, India, December, 1992.

H. J. Kim, G. L. Jee, and J. G. Lee, “Optimal load distribution for tree network

processors,” submitted for publication.

J. Blazewicz and M. Drozdowski, “Scheduling divisible jobs on hypercubes,”
Technical Report R-94/002, Poznan University of Technology Institute of Com-
puting Science Research Report, April, 1994.

J. Blazewicz and M. Drozdowski, “The performance limits of a two-dimensional
network of load-sharing processors,” Technical Report R-94/007, Poznan Uni-
versity of Technology Institute of Computinglscience Research Report, Novem-

ber, 1994.

J. Blazewicz and M. Drozdowski, “Distributed processing of divisible jobs with
communication startup costs,” Technical Report R-94/006, Poznan Univer-

sity of Technology Institute of Computing Science Research Report, December,

1994.

30

(37] E. Haddad, “Communication Protocol for Optimal Redistribution of Divisible
Load in Distributed Real-time Systems,” Proceedings of the ISMM Interna-

tional Conference on Intelligent Information Management Systems, Washing-

ton DC, June 1994, pp. 39-42.

31

Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Distributed computing system consisting of N processors equipped with

front-end processors connected through a bus.

Timing diagram of N bus interconnected processors with load origination

atP1

Timing diagram of N bus interconnected processors for further reducing

the total computing cost Ca by increasing the processing finish time.

The total computing cost and a’s according to the cost minimizer algo-
rithm.
The total computing cost and a’s according to the finish time minimizer

algorithm.

(a) Replacing one processor with N cost equivalent processors.
(b) The total computing cost and processing finish time against the num-

ber of splits (processors).

(a) Splitting P, and/or P; into a number of cost equivalent processors
when the cost per load of P, is less than that of P,.

(b) The total computing cost Ciota; against the number of splits.

(a) Splitting P, a.nd/of P, into a number of cost equivalent processors
when the cost per“ load of P is higher than that of P,.

(b) The total computing cost Cioe against the number of splits.

(a) Splitting P, andfor P; into a number of cost equivalent processors
when the computing speed of P, is faster than that of P;.

(b) The processing finish time T against the number of splits.

32

% >

Front-end Front-end Front-end
processor processor processor
Main Main Main
processor processor processor
Processor 1 Processor 2 Processor N

Figure 1: Distributed computing system consisting of N processors equipped with

front-end processors connected through a bus.

33

T,

P 032 em | 032Tem | - - - [onZTom | Ty Comm
' w1y [Comp
p Ty : Ty
? I Wy Tep | Comp
P Ts Tf
3 | asw3 Ty B Comp
Ty Ty
Py | anwnTep | Comp

Figure 2: Timing diagram of N bus interconnected processors with load origination

at Pl.

34

T

Ty
p 22T em | 032Tm | - - - [aNZT., | ' T7*Y Comm
1 ayw Ty ! | Comp
—
P T, N Vs
2 [awy T, K | Comp
3 F a3w3Tq, l Comp

Tn

l
PN . l anNTc,, l

Comp

Figure 3: Timing diagram of N bus interconnected processors for further reducing

the total computing cost Ci:a; by increasing the processing finish time.

35

Cost Minimizer Algorithm
2 T | I

Total cost o—
alpha_1 —+-
alpha_2 -8--

M alpha_3 %=
1.5 MR W

1k

-
=t
_+—+‘+
ot
S
+ +-+-+-+""""’+ +
apo T
bt
ot .
p-+-+
0.5 p] 4

Total Computing Cost and Load Fractions

Processing Finish Time (Tf)

Figure 4: The total computing cost and a’s according to the cost minimizer algo-

rithm.

36

Finish Time Minimizer Algorithm

2 Y T T
Total cost —o—
alpha_1 -+-
g alpha_2 -8-
g alpha_3 -»-
§e)
0
5 1.5 F ,
Iy
]
d
0
|
o}
c
[}
I} 1k
-1
5 .+-+‘*"*'+-+ *
0 el
At
o et
-
5 +4-4"”"+'+—+
5 ottt
o}
§
¢} 0.5 -1
~
o
o
2] .5BEEDE6GEE8-0.g.
388 =] B-G-a.ﬂ_ﬁ_.a‘ﬂ
X..x__x“x 'B"B-G.B_ﬂ_e-a
0 ‘I.*""‘*‘x.:x | Q.G"B"B-G._Q_ G-
0.7 0.8 0.9 1

Processing Finish Time (Tf)

Figure 5: The total computing cost and a’s according to the finish time minimizer

algorithm.

37

Total Computing Cost and Processing Finish Time

UJI=1

1 = 1
Gy = 1
w, =N w, =N wy=N
- L = 1 =1
GA=nw Q=N CN=N
quw; =1 cwy =1 eywy =1
(2)
Splitting one processor into a number of processors
2 1 1 LI T
Processing finish time -e—
Total cost —+-
1.5 F e -
I o T S S S S R S S S S S RS S A SV S S AT S S e
0.5 1 L i - |
10 20 30 40 50

Number of Processors (N)

(b)

Figure 6: (a) Replacing one processor with N cost equivalent processors. (b) The

total computing cost and processing finish time against the number of splits (pro-

cessors).

38

Uq‘_l. ‘LU2=2
Cl“l Cg==1
wy =1 cowy =2

) Splitting P1 and/or P2 when w(l]=c{1l]=1 w{2]=2 c{2]=1
1.375 T '

1 L]
Splitting only P1 #—
Splitting only P2 —+-
Splitting both P1 and P2 -8--
1.3125 p . .

1.25

Total Computing Cost

® 8 EBBBE-@.
1.1875 98886668000 00008000060GAG0E0GE0E)

1.125 L ' L) 1

10 20 30 40 50
Number of Processors (N) :

(b)

Figure 7: (a) Splitting P, and/or P, into a number of cost equivalent processors
when the cost per load of P, is less than that of P;. (b) The total computing cost

Chotal against the number of splits.
39

Py P,

wy = 1 Wy = 2
¢ =1 ¢ = 0.25
Guy = 1 CaWq = 05
(a)

Splitting Pl and/or P2 when wlll=c[1]=1 w(2]=2 c(2]=0.25
0.95 —

i T L}

Splitting only P1 -—
Splitting only P2 —+-
Splitting both P1 and P2 -8--

0.925 y

L 2
¢

L3

L J

s
$

b
3
@

Total Computing Cost

BE8G8E3EBEBE-EBG6-9GHE
BE}B-E}BGB‘E}BE}E‘B’BG}BG
0.875 % : |
B
o -
*'+ do b ol k. g s
+++rYT‘Y R o Bt o T TE S SRR S R S S SNSRI
0.85]
0.825 L L N o

10 20 30 0 50
Number of Processors (N)

(b)

Figure 8: (a) Splitting P, and/or P, into a number of cost equivalent processors
when the cost per load of P, is higher than that of P,. (b) The total computing cost
Chotat against the number of splits.

40

o
o

w1=1 UJ2=2

N/

Processing finish time when splitting P1 and/or P2

1.5 T T T T
Splitting P1 -o—
Splitting P2 —+-—
Splitting Pl and P2 -8--
1.25 aaaﬂaaaeggeeaeaeaeaes
0 paE088
E -
-
B
Kl
]
o
o
-t
B 1 -
o
g
-
]
L]
0
v
0
H
[s¥]
0.75 . , .
et o b b b e de de b o b e e de e b b b b b b b+ 4
0.5 L L L L

10 20 30 40 ' 50
Number of Processors

(b)

Figure 9: (a) Splitting P, and/or P, into a number of cost equivalent processors
when the computing speed of P, is faster than that of P,. (b) The processing finish
time Ty against the number of splits.

41

