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I. INTRODUCTION

The dielectric constant £ of polarizable fluids is surprisingly

well approximated by the simple Clausius-Mossotti relation. One may

reasonably hope to account for the remaining small correction by

writing

ABSTRACT £-1 41T
W = 3 pa(l + S) (1)

A simple classical description of the dependence of pair

polarizability upon distance for the monatomics is developed through

and expanding S in either a or p, where a is the polarizability of

an isolated particle and p is the number density of particles. For

the extension of the authors' earlier theory of fluctuating polar- small densities one may write S in its "second virial-coefficient"

izability. The result is shown to yield an analytically tractable
approximation, i.e.

theory for the dielectric constant of a fluid of such molecules.
£

S = 82 P (2)

with B~ density independent.

Direct computation shows that for model pair potentials appro-

priate to simple nonpolar molecules (e.g., the monatomics), 8~ is

positive in the classical DID (dipole-induced-dipole) model of a

polarizable fluid, in which the polarizability of each particle is

a fixed constant. The B~ in this model is given by

£ Z

f

-B$(r) -6 -3 -1 -3 -1 +
8Z = Za e r (1+ ar ) (1 - Zar ) dr (3)

where $(r) is the pair potential.

back to Silberstein. 1

Equation (3) essentially goes
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It turns out that experiments on simple nonpolar molecules

typically2 give a B~ that is smaller than the one calculated

according to (3). As an extreme case we have that of He, where

B~ is negative7,3 This disagreement between experiment and theory

gives rise to a challenging situation: it seems that classical

theory is unable to properly describe the dielectric behavior of

polarizable fluids beyond the Clausius-Mossotti level.

In an effort to understand this failure, workers have turned

to quantum mechanical computations, considering in particular two

neighboring He atoms in a small external field and computing the

polarization to see how it is affected by the relative distance

between atoms.4 It is found that for short distances the resulting

polarization is suppressed relative to that found in the DID model,

where the polarization of an atom is unaffected by its neighbors.4

This effect is obviously caused by the perturbations arising from

the overlap of the wave functions of the two lie atoms. The resulting

suppression of polarization makes it possible to understand the nega-

tive B~ for He; effectively the polarization will decrease suffi-

ciently rapidly with increasing density to make B~ negative.
This

is because more and more atoms will be in close proximity of each

other with increasing p. Thus there is effectively a density-

dependent polarizability in the fluid. This concept of a varying

polarizability has been hard to deal with on a first-principles

basis in the language of classical theories.

2

Our goal here is to find a simple classical model that can

account for a less positive S than found in the constant-polariza-

bility model in a way that is consistent with the underlying quantum-

mechanical genesis of the lowering of S. Although our final results

will be based upon the use of a/R3 r~ther than pR3 as a parameter of

smallness, where R is particle diameter, we shall continue to find

it convenient to use B~ rather than the full S as our guide in

arriving at those results.

Our starting point is the model of fluctuating polarizability

considered by Hs6ye and Stell.5 In this model polarizable and polar

fluids may be treated by the same methods. Use of the fluctuating

model will give essentially the same £ as the non-fluctuating model,

with the same B~, when the dipole moment fluctuates in a harmonic

potential (i.e., the average dipole moment or polarization of an

atom is proportional to the local field). However, the fluctuating

model is more general than the non-fluctuating one since the potential

for fluctuations may be anharmonic. This anharmonicity will affect

£
B2. As an extreme case of anharmonicity we may consider fluctuations

that are confined to a spherical surface of a certain radius in

dipole-moment space. This extreme case of a polarizable fluid

represents nothing but a polar fluid, since the magnitude of the

dipole moment will be fixed. The B~ may be computed for a polar

fluid. Accurate computation will give B~ > 0 (see ref. [6] and our

Appendix).



Although anharmonicity in the inter-atomic potential that gives

rise to fluctuations will indeed change B~, we see that B~ stays

positive even for extreme anharmonicity. Thus one must conclude that

an anharmonic potential alone will not give rise to the observed

negative B~ of He. So we seek other possible mechanisms. In the

next section we locate the one we believe relevant in simple fluids.
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II. A CLASSICAL DESCRIPTION OF TIlli POLARIZABILITY

In a previous study of po)ar fluids7 we have also considered

the more general case where a piece cjJi\(r)glgzis included in the

interaction. In the mean-field limit (or equivalently, in lowest

order in v-ordering) one there finds the dielectric constant to be

of the form 7

£-1 = _~L~ - Y e 2
£+2 I+8Y- - y + ...

(4)

where

z
f

-r
411~m = cjJi\(r)dr

(5)

with

41T
y=3pa

(6)

Thus we see that e > 0 can account for a negative B~. The problem

now will be to justify the added piece above in the two-particle

interaction.

In our previously discussed model for fluctuating polarizability5

there is a potential energy connected to the polarization (i.e.,

positive and negative intra-atomic elements bound by some force such

that they partake of thermal motion). If this potential is harmonic

it becomes

1 Z
cjJo(s)= 2a. s

-r
5 = 151 , (7)



for one molecule that is free. Here the a is the "bare" polarizability
+

while s is the fluctuating dipole moment. Por two molecules there

will be a potential given by (7) for each of them. In addition, they

also will interact with each other via the dipole-dipole interaction.

This will give a potential energy of the form

+ + + 1 2 2
~12(sl,s2,r) = 2a (sl + s2) + ~D(r)D(12)sls2

(8)

for such a pair. Here

D(12) = 3(~gl)(~g2) - glg2 ~D(r) = -r-3 (9)and

where the carets denote unit vectors.

+
If this molecular pair is placed in an electric field E there

will be an additional energy contribution

+ + -;t

CPE = -(sl + s2)1::.
(10)

Since (8) is a harmonic potential the average polarization

+ -+ +

p = <sl + s2> in the field E is easily found by taking the

One can then decompose E into a component Enminimum of ~12 + ~E.

+ + .
along the relative distance r and a component EJ.transverse to It,

and it is easily found that

+ +

p II = all Ell

+ +
PJ. =a.1.El.

and (11)

where

2a 2a
a = a
J. 1+-

r3

and (12)
au = 2 a

1 - r3

6 7

Equation (12) means that due to the dipolar interaction in (8) the

two molecules for finite r will effectively have a polarizability

that is different from that of the single molecules. Thus we see

+
that the two-body interaction in (8) has the effect of an r-dependent

polarizability.

In quantum mechanical computations4 that consider a pair of He

atoms in a weak external field, a polarizability much like (12) is

+
found for large r, as one might expect. However, for small :;, when

the wave functions of the two atoms begin to overlap, Eq. (12) does

not hold any longer, and all and a.L both become smaller than 'the

values suggested by this equation. This gives rise to an effective

density dependence that has heretofore not been included in classical

theories. Our purpose is to try to include this effect in such a

way that it fits naturally into the theory of classical fluids without

the introduction of density-dependent interactions, so that the

densi ty-dependence of the polarizabili ty will only be an effective

one, just as it is for real molecules.

A second goal is to do this in such a way that our classical

formalism can be understood as resulting from the true quantum mech-

anical mechanism that underlies the phenomenon we are describing, so

that the key parameters in the classical description can ultimately

To thesebe computed quantum mechanically from first principles.

ends we generalize Eq. (B) such that the average polarization of a

pair of atomsis stillproportionalto the appliedfield,with the



<P12 unchanged by
->- ->- ->-

rotation of sl' s2' and r. Thusan equal

instead of (8) we write quite generally

->- ->- ->- 1 rl ] 2 2

<PlZ(sl,52,r)= 2 La + a(r) (sl + sZ) +

<PO(r)O(lZ)slSZ + <p~(r)~(lZ)slsZ
(13)

with

lI(1Z) =5l5Z . (14)

As we did to obtain (11) and (lZ) we can again apply an external

field E to the pair of atoms. Ooing so, using (13) instead of (8),

we now obtain instead of (lZ)

Za

<Xu = 1 +aa(r)+ a<Pl(r)
and 2a

aJ.= 1 +aa(r) +a<P2(r)

(15)

with

<PI = Z<PO + <P~
and

<PZ=<P~ - <PO .

Thus we see that the coefficients of (13) can be related to the a"

and aL (that could come, e.g., from first-principle quantum mechanical

computations).
->-

In (13) there are three r-dependent coefficients, so

they cannot be uniquely determined by (15) alone. But additional

equations can be established by quantum computations if, e.g., the

fields acting on the two atoms are not the same. If these two fields

point in opposite directions we shall find, instead of (IS), the

polarizabilities

8 9

a"1
Za

1 + aa(r) - a<Pl (r)
and 2a

al = 1 + aa(r) - a~2TiJ

(16)

Thus any computation or determination of au , aJ.' aI, , and al as

functions of r will give a, a(r), <PO(r), and <p~(r) to be used in (13).

It is easily seen that (13) may be split into three terms:

->- ->-

<P12 = <PO(sl) + <PO(5Z) + <P(lZ) , (17)

where <PO is given by (7) and <P(lZ) is the two-body interaction

1 Z Z

[ ]<P(12) = 2" a(r)(sl + sZ) + <PD(r)O(lZ)+ <p~(r)i'I(lZ)sls2 .

(18)

From this we realize that the ;-dependent pair polarizability corres-

ponds to nothing but the pair interaction (18) plus the one-body

interaction (7) with fixed polarizability (7). From (18) we see that

the interaction between fluctuating dipoles is not simply a pure

dipole interaction. Instead it contains other pieces close to the

repulsive cores, and <Po(r) will also differ from (9) in this region.

->-
Besides (18), there will be s-independent interactions modelled,

typically, by a hard-sphere or Lennard-Jones interaction in the case

of simple nonpolar fluids such as the noble-gas fluids.

We note that the last term of (18) is much like the exchange

interaction used for magnetic systems, also due to overlap of the

electron wavefunctions of neighboring atoms.



III. COMPUTATIONOF TilE DIELECTRIC CONSTANT

A. An integral-equation approach

We want to find £ for a system which has a pair interaction \~hich
-+

consists of an s-dependent piece (18) plus a piece that does not depend
-+

upon s. This latter piece (which in our simplest model will be a hard-

sphere core) we take as the reference piece of the potential with (18)

considered the perturbation. To compute the equilibrium properties of

our system we can again utilize the idea of lI,!ye and StellS that dif-

ferent values of -; represent different species of a mixture, so that

methods applicable to mixtures may be used. Our previousS computations

already included £ for a polarizable fluid with potential energy given

by (8). The £ was found explicitly in the MSA (Mean Spherical Approxi-

mation), and approximations beyond the MSA were also considered. The

same computations can be done based on the new interaction (18). In

the spirit of the GMSA(Generalized Mean Spherical Approximation),8

the difference between (8) and (18) can be modelled by appropriate

With such terms in <p/l(r) and

<PD(r) the corresponding Ornstein-Zernike equation can again be solved

explicitly,8 as the equations become that of the one-Yukawa problem.9

terms of Yukawa and Yukawa-like form.

The MSA solution for £ will also depend upon the a(r) term which

decouples from the <P/l- and <Po-terms upon solution of the Ornstein-

Zernike equation. This dependence arises because the a(r) will affect

the magnitude of the fluctuating dipole moment or, more precisely, <s2>.

Upon solution the a(r) will couple to the reference-system hard-core

10 11

potential, and through convolution an additional term with s-dependence

sis; will be induced. This will result in a three-component mixture

problem (with common hard-core diameter). The solution of this latter

problem can be obtained in the form of algebraic equationslO [for a(r)

of Yukawa form].

B. A perturbative approach

Although we hope to return to the above program in future work,

we shall not pursue it here. Instead we shall follow a perturbative

approach. The parameter a/R3, where R is an atomic diameter, is a

small quantity, especially for lie. Therefore only the lowest orders

in a/R3 beyond the Clausius-Mossotti result for £ will be of major

interest to us. We aim to capture the lowest-order contribution to

S in Eq. (1) that is already present in the harmonically fluctuating

case given by (8), as well as in the constant-polarizability DID model.

This is of second order in a/R3, as is well known. Deviations from

this contribution as a result of the difference between (17) and (8)

we shall consider only through first order in a/R3. To this end the

potential (18) may be split into three pieces to obtain the following

potential bonds for graphical expansions

v(12) = -6<P(12) = va(12) + vD(12) + vo(12) (19)

where



1 2 2
va(12) = - '2 l3a(r)(sl + S2);

s s

vU(12) = 13 ~ U(12)
r

voelZ) = -I3SISZ[CPIl(r)t.(12) + (CPD(r) + r-3)O(12)]
(20)

This decomposition is made so that vU(12) represents the pure dipole

interaction such that v(l2) = vU(12) gives back (8), and we regard

the va and Vo as perturbations upon vD' Therefore in our graphical

analysis we shall treat Vu through second order while considering

va and Vo only to first order. This will insure our obtaining

results to the desired orders of a/R3 noted earlier in the paragraph.

Since our polarizable fluid with fluctuating polarizability may

be considered as a polar fluid mixture we shall utilize the general

result for £ for such mixtures. II It reads

(21)

(22)

(23)

(24)

The mi is the dipole moment of molecule i, which in the present case

will be s. The 1:(12) is the vertex (or "self energy") function such

12 13

that the pair correlation function h. .(12) is given by1J

-+
p.o. .o(r) + p.p.h.. (12) = F.. (12)

1 1J 1 J 1J 1J

with

If
dQ3 dQ4 -+ -+

F(12) = 1:(12) + 1:(13)v(34)F(42) iI1TiI1Tdr3dr4 (25)

(Here fdQ means integration over orientations g in the case of axial

symmetry.) The v. .(12) is the dipole potential bond which in our1J

case will be the vD(12) of Eq. (20), and which is to be cut inside

some radius. We can choose to cut it sharply at the hard-sphere

surface for simplicity but as in the one-component cas/ it is also

possible to include a piece v l\ (r)l\(12) in v(l2) with a corresponding

change in 1:(12) as defined by (25), so that formula (21) is generalized

to include the appearance of a 8-parameter.7

Expressed in terms of graphs the 1:(12) has to be at least doubly

connected with respect to the v(12) bonds.12

We now expand the 1:(12) to second order in vD and first order in

va and vo'
With

1:(12) = PO(12) + W(12)

-+
[po (12) ] .. = p.o. .0 (r)

1J 1 1J
(26)

we find va

v v Aa 0 .'
1~(12) = 0"""0 + 0---0 + cr---o +: :0...0

vo vD v)~v
+ ~ + Q +v~ +[b':":' \~ D (Z7)

£-1
£+2 =Tr(z)

The z is a matrix

z = crv

where

41T

Vij = '""9l3mimj

and

I dQI dQ2 -+cr = 1:(12)l\(12) 41T 41T dr



liere

;..-:'.'.":-:..= hO (lZ3)
= ho(r) =ho(lZ) ,

:. ..... 0ZF (lZ). : I I 0 + +

~... .i= 7 op(s)op(6) FO(3s)FO(46) drsdr6 '

where FO(1Z) = p(1)p(Z)hO(lZ) + p(l)o (lZ)

correlation functions respectively of the reference system.

hO(lZ) and ho(123) are the pair correlation and three-particle

Equation

and

(27) is to be used in (Z4), in which only four of the terms contribute.

We find (a.. + a )
1J sl s2

1
a = p 0 + _3 [-L l + (L 2 +L

3)]SP P S l
s

2sl s2 sl sls2 51 52
(28)

where Ll comes from the third and fifth graphs in (27), L2 comes from

the seventh, and L3 from the eighth.

we have

Using (20) with goer) = hO(r) + 1,

Ll = J ~~(r)go(r)d;
1

I
+ +

LZ = 3 Tr[T(13)T(3Z)]hO(12)dr2dr3
1

I
+ +

L3 = 3 Tr[T(l3)T(32)]ho(123)dr2dr3

1 2 1 ';' 2 1
J

2+
A = - Sp<s > =- S L P s = - S p!s ds

3 3 5 5 3 5

Here p = J p+(drl/41T) such that5 5

p = L p = I
p+d!5 S

The T(1Z) is the dipole tensor (i,j = 1,2,3 here)

1
T.. (12) = _3 (3i1.~. - 0..)

1J r 1 J 1J
for r > R

(2!Ja)

(2!Jb)

(30)

(31)

14 15

where R will be taken to be the hard-core diameter. For smaller r

T.. can be chosen to be zero in keeping with our freedom to choose
IJ

perturbing potentials inside a hard core for a prescribed full

potential v(lZ).

With Eq. (Z8) inserted in (22) we get

';' 41T
Z = L 0- V = - Sp 5 5

5ls2 53 sls3 s3sZ 9 51 1 2

Tr(z)

1 Z
x {o + - Sp<s >[-Ll + A(L2 + L3))}

slsZ 3

41T 2
{ }

="'9 Sp<s > 1 + A[-Ll + A(L2 +L3)]
(33)

(3Z)

To obtain £ we need finally an expression for <52>, which we

d
. .

) )
.

1
.
1 5,13

eterm1ne VIa tle clemlca potentIa 5,

~! = ~ - ~O(s) . (34)

The chemical potentials of the reference system will be (in our mixture

picture, ~! = ~O!)

B~o+ =In(p!/p) + Sg(p)
5 5

(35)

The first term of (35) is the ideal-mixture term and g(p) is the chemical

potential of the reference system of identical particles without the

dummy index !. Equating (35) to (34) one finds

P! = peB(~-g) e-B~O(s)
(36)

Normalization (30) will determine \1. However, we are m0re interested



in <s2>. Inserting expression (7) for CPo(s) one easily obtains

<s2> - 3a- T. (37a)

So from (29)

A '" ap . (37b)

This lowest-order result for A is sufficient for use in (33), where A

appears only as a coefficient of perturbing terms. The <s2> in the

lowest-order term of (33) must be treated more accurately -- again to

first order in va and Vo and to second order in vD. The excess chemical

potential due to the perturbing interaction may be obtained via the

Helmholtz free energy per unit volume pex. In terms of graphs this

excess quantity becomes

lex = -OFox =i (.2. . ~\ . !/O . e)\' -) \ vD vD

(38)

The excess chemical potential ~~x thus becomess

)( ()lex 1 2 Z
8~~ '" - ao+ '" ~p[ (s + <s »L4s p; Z

1 Z
where from (37), a '" "38<s >, and

2
s aLs] (39)

L4 '" f a(r)go(r)d;

LS '" ~ } Tr[T(IZ)T(21)] [110(12)

+

+ 1]dr2 (40)

with T(12) given by (31).

16 17

The ~+ is obtained by adding (39) to (3S), i. e., ~+ '" Po+ + ~~x.S s s s

Combining this instead of (3S) with (34) we obtain, instead of (36),

1 Z 8 1 Z
p; '" pexp[8(~ - g -z p<s >L4]exp{- Z [;X+p(L4 +aLS)]s }

(41)

Prom this we easily obtain, instead of (37),

<SZ> - 3rt 1 3a- T 1 + ap(L. +aL~) ::: T [1 - ap(L4 +aLS)]
( 42)

Inserting this into (33), along with A given by (37b) we find

where [using (Z9), (31), and (40)]

II '" p(Ll+L4) '" p } [a(r) + cp~(r)]go(r)d;

lZ

}

,,++

IZ '" "3 p Tr[T(13)T(3Z)]hO(IZ)dr2dr3

lZ

}

(' ++
13 '" "3 p Tr[T(13)T(3Z)]no(lZ3)drZdr3

Iz + 13 '" pelS + p(LZ+L3)]
( 44)

Here we have used

PhO(lZ) '" pho(lZ) + 6(lZ)

pZhO(lZ3) '" pZho(123) + p[ho(lZ)6(13) + hO(13)6(IZ)

+ ho(Z3)6(12)] + 0(IZ)0(13) (45)

41T
Tr(z) '" "3 pa[l - ap(L4 -aLS)] [1 + ap(-Ll +ap(LZ+L3))]

41T 2
'" :3 pa[l - ap(Ll+L4) + a P(P(LZ+L3) + LS)]

41T 2
(43)'" :3 pa[l - all + a (IZ + 13)]



....

with 0(12) = 0(rI2)' Note that condition (31) on T(12) prevents

some of the terms in (45) from contributing in (44). With (43)

inserted into the right hand side of (21) we find the desired result

for the dielectric constant £ for our model with interaction (13).

The well known result of the constant polarizability (DID) model is

recovered when 11 is neglected in (43). To put the result in a more

familiar form we may also write, instead of (44)

1

f

....

12 + 13 = '3 p Tr[T(l2)T(12)]go(12)dr2

1 2

f+ 3 p Tr[T(13)T(32)][gO(123)
....

- gO(13)gO(32)]dr2dr3

(46)

where we utilize the relations

go(12)

2"
P gO(123)

= hO(12) + 1

2
P gO(123) + P[gO(12)0(13) + gO(13)0(12)

+ gO(23)0(12)] + 0(12)0(13)

go(123) = GO(123) + t(12) + G(13) + 6(23) + 1 (47)

If we take the low-density limit we can find B~ of Eq. (2) for

our model (to first order in va and Vo and to second order in vo).

Equation (43) gives for p 0 [with ~O(r) the reference-system pair

potential]

£ f -8<P0(r) ....

B2 = - a [a(r)+ <Pf1(r)]e dr

+ }a2 f Tr[T(12)T(21)]e-8<P0(r)d;2
(48a)

18 19

For a hard-sphere reference system this simplifies to

£

i

8ITa2

B2 =-a [a(r) + <pf1(r)]dr + 3""3
r>R R

(4 8b)

(with R the hard-core diwileter). The first term of (48) can be

negative. Thus our model of fluctuating polarization with s-dependent

pair interaction (13) can accommodate a less positive B2 than the DID

result can, including the extreme case of the negative B2 found in He.

Using the picture of a position-dependent pair polarizability,

it is found4 that

B£ - 1 f2 - 2a a(r)e-8<P0(r)....dr (4 9a)

where

1
a(r) = 3 [all + 2a.L] - 2a (49b)

Expanding (IS) we find that (49) agrees precisely with (48) to the

order of a(r), <pf1(r) and ~o(r) that we have considered. Thus, one

can identify the difference, at least to this order, between the a(r)

computed quantum-mechanically from first principles and the classical

DID result [a(r) = 4a3r-6 to this order] as our -2a2[a(r) + ~f1(r)],

despite the fact that a(r) and <f>f1(r) cannot individually be extracted

from a computation of only Q.L(r) and a II (r), as noted in the discussion

of Eq. (16).
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APPENDIX

The Second Virial Coefficients of a Polar Fluid

The pressure can be expanded in density,

2
Bp = p + B2P + ... .

(AI)

In a similar way the dielectric constant £ also can be expanded

in density,

£-1 £
£+2 = y[l + B2P + ...] ;

41T 3
Y = 9" m Bp (A2)

We want to compute B2 and B~. B2 has been computed previously

for a Stockmayer potential,14 but B~ apparently has not been considered

before.IS Here we compute B2 by means of a method alternative to that

of [14]. Having found B2' we can give B~ almost immediately by doing

the corresponding calculations with some minor modifications. The

orientational dependencies are integrated out explicitly, and we get

a series which has to be integrated numerically with respect to the

magnitude of the relative distance r except in simple cases (for

instance, for dipolar hard spheres).

Let us consider molecules with spherically symmetric pair inter-

action except for the ideal dipole term,

+ ID
~(r,gl,g2) = ~(r) + ~ (1,2)

2

~ID(12)= - m3 [3(~Sl)(~g2) - slg2]r
(A3)



(~l and ~Z are unit vectors giving the orientations of the two

molecules, ;is the relative distance, ~ the unit vector of;, and

m is the dipole moment.)

BZ is then given by,

I
J

-a~ aOIdnZ +B =-- (e - 1)- - dr2 2 4n 4~ (M)

Performing the integrations over gl and gz' one can write,

B2 = -Znf [e-a$(r)I(r) - l]rZdr
(AS)

[I(r) will be independent of the direction of ;.] We want to find

I(r),which is given by,

J

dnl dnZ . .
I(r) = I = ~ 4n exp[2aTijS~s~]

(A6)

2 3
where 2a = am /r , T.. = 3x.x. - 0.. (the x. are components of the

1J 1 J 1J 1

unit vector ~), and s~ and s~ are the i and j components of 51 and 5Z'
respectively. In (A6) and below, we use the Einstein summation con-

vention for repeated indices.

If 51 and s2 were not restricted to the surface of the unit sphere,

expression (A6) would be a "noll-diagonalized"Gaussian integral. We

now remove this restriction by introducing the a-function and Laplace-

transforming the integral

f

ii ii
I = 2'0(s s - 5 )0200(s s11 1 22

+ +

. . dSl dS2

5z)eXp[2aTijS~S~] ~ 4n
(A7)

Expression (A7) equals expression (A6) for 51 = 52 = 1.

we Laplace-transform with respect to 51 and 5Z:

Equation (A7)

22 23

[ [
-z 5 -z 5

i = leI 1 e Z 2 dS d5
a a 1 Z
1

f

ii ii ii + +

= (zn)2 exp[-zlslsl - z2s2s2 + ZaTijsls2]dsldsz
(AB)

The exponent in the exponential we have to diagonalize to perform

the integration. This can be done as follows. We introduce new

variables

-- 1
f

ii ii ij + +
I - -z expl-zulul- zUZu2 + ZaT. .ulu2]dulduZ (AlO)

(Zn) 1J

and then make the further transformation

+ I + +

ul = 12 (vI -vZ)

+ 1 + +

Uz = 12 (vI +VZ)

+ + + +

dVldvZ = dUldu2

(All)

I - 1
J

ii ij +
- ~ exp[-zv l

vl + aT. ,v
l
vl ]dv

(Z1I) 1J 1

J [ ii ij +
x exp -zvZvZ - aTijvZvz]dVz

(AlZ)

Finally we have to diagonalize T.., but to find I we need only1J

the eigenvaluesof T... The eigenvaluesare independentof ~, so by1J

choosing for instance s:- = {l,O,a} one easily finds the following

eigenvalues,

A =

{

:l

-1 (A13)

+ - (Zl)1/4 + . + - CZf/4 +ul - Z- sl'
Uz - Zi'" SzZ

+ + + + l/Z
dUlduZ = dSldsZ; Z = (zlzZ)

(A9)



. . + + + +

So by a sUItable rotatIon VI + wI; dVl = dWl' one gets,

ii ij 11 22 33
-zvlvl + aTijVlVl =-(z-2a)wlWl - (z+a)(wlwl + wlwl)

(A14)

+ +

and similarly for a rotation v2 + w28 Accordingly,

~ 1 'Tf3/2 113/2

I = z 1/2 1/2
(2'Tf) (z - 2a) (z +a) (z + 2a) (z - a)

~ 11I -

- 4(z2-4a2)1/2(z2-a2).

co co

= ~ L (2p)12 (4x)P L xm
4z p=O (2Ppl) m=O

2
x = (a/2) . (AlS)

Inversion of the transform for 51 = 52 = 1 yields the I(r) given

by (A6),

I = 1
11

- zl z2

(211i)2 lee dZldz2'

(A16)

co

Using (AIS) in (A16) we have I = (11/4) L L where
n=O n

L (r) = !.-
II

1 xn ezl z2

n (211i)2 ~ e dZldZ2

(

1

I

1 z
)

2

211i zn+3/2 e dz a2n

a2n 4

{

n+l
=- 2 (n+ 1)I 2n

[r(n+3/2]2 11 [2(n+l)]I}(2a)

which yields

co

{

2n+l(n+l)I
}2 (2a)2n I (2t)~.

I(r) = l. [2(n+l)]1 t=O (tl)n=O
(AI?)

24 2S

For dipolar spheres, use of (AI?) in (AS) yields

co n+l 2 4n n
B - 211 R3

[
1 L

{

2 (n + 1)I

}
\1* L J3!2..!.1

2-3 -n=l [2(n+l)]1 2n-lt=0(tl)2]

where (\1*)2 = ~m2/R3. Equation (AIS) generalizes a result of Keesom,16

who did not obtain the general ternl in the expansion in \1*4.

(AIS)

Next we want to compute B~ with the same interaction given by

(A3). To compute B~ we need the "short-rang~" part W(12) of the pair

distribution function defined by Eqs. (2S) and (26).12 Fourier

+
transforming at k = 0, we work with

W(12) = I W(12)d~ .

(A19)

The W(12), depending only on the relative orientation ~lg2' can be

expanded in Legendre polynomials,

- 2£ .2£
W(12) = 3p B2Pl(glg2) + ...=3p B2g1g2 8

(A20)

B~ is then given by:

I

- dndn

f
dndn

B£ = (" ~ ) W(12)-.-!. ---3. = ("") W(12)-1. 2 d+2 sl 2 2 411 411 sls2 2 4114iT r
p p

(A2l)

fo lowest order in density

W(12) = p2[e-~~ + ~~ID - 1] . (A22)

[n analogy to (AS) and (A6) we now shall get,

B~ = 411f e-~~(r)J(r)r2dr ,
(A23)



where J(r) is given by

I
<illl <ill2 i .

J(r) = J = 4n 4n (glg2)exp[2aTijSls~]

since the last two terms of (A22) will not contribute.
Integral (A24) can be computed in the same way as

(A24)

glg2'

Taking the same steps this time we shall get an extra factor due to

integral (A6).

1 i i i i 1 i i i i
glg2 = 2 (VIvI - v2v2) = 2 (wIwI - w2w2)

Accordingly

3300

j = 3na =3na 2 xn-lA
4(

2 4 )3/2(
2 2

)
2

4 7 _1
n '

z - a z - a z n-

where An can be expressed in various ways. For example,

n
A =! \' (2t) In 2 L ~t(n+l-t)

t=l (tl)

which

n-l

A = L (2t) ~ (2t + 1) (n - t)
n t=O (tl)

combined yields,
n

A =.!. L (2t) I (3t - n) .

n 3 t=O (tl)2

(A25)

(A26a)

(A26b)

(A26c)

(A26d)

Upon inversion, the general term of J(r) can be evaluated,

II

3 z z 5

{

n

}

2
~ a n-l 1 2 d d = 3- 2 (n + 1) I (2 )

2n+l

(2ni)2 ;: x e e zl z2 11" (2n+ 3)! a ,

to yield

00

{

n 3
J(r)=24 2 2 (n+l)!

}
(2 )

2n+l

n=l (2n+3)1 a An
(A27)

26
27

Putting this into (A23), we get for dipolar spheres

00

{

n

}

2

BE =4njl*2R3 L i 2 (n+1)1 A *4n
2 n=l n (2n+ 3)I n j.I .

(A28)

Since An is manifestly positive for all n [from, e.g., (A26a)], so

E
is B2. Equation (A26d) is the form of An used in the expression for

B~ given in Ref. [6].

We emphasize that (AS) with (A17) and (A23) with (A27) are

relevant to any spherically-symmetric reference-system potential

~(r) -- not just the hard-sphere potential.
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