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ABSTRACT

The quantum statistical mechanics of a polarizable fluid model

is considered using a path-integral approach. The quantum mechanical

partition function associated with the internal degrees of freedom

of each molecule is approximated by a classical partition function of

a polymer ring, while the center-of-mass motion of each molecule is

treated classically. The resulting system of particles can be derived

by an Ornstein-Zernike'equation, which we solve analytically in the

Mean Spherical Approximation. We give the dielectric constant, free

energy, and internal energy of our model in both its continuum-fluid

and lattice-gas versions. (In the former we assume hard-sphere cores;

in both versions we take harmonically oscillating dipole moments as

characterizing the internal degrees of freedom, with ideal dipole-

dipole intermolecular coupling.)



1. INTRODUCTION

The path-integral approach to quantum mechanicsl enables one

to think of quantum problems as corresponding to limiting cases of

certain classical statistical mechanical problems, since a path-

integral can be regarded as a limit of approximating sums that can

be thought of as a classical configuration integrals.2-4 In the

case of nontrivial quantum problems the associated classical problems

can be of much interest in their own right, but tend to be almost

as conceptually and computationally formidable as the quantum problems

with which they are associated. Nevertheless, for two reasons, there

is growing interest in the path-integral approach. First, there is

the ever-increasing computational capabilities of electronic computers

that render the approach a more and more viable computational tool.3

Second, there is a growing set of new approximation techniques to

handle some of the corresponding classical problems.4 This paper

exploits the second development.

We show here how a simple molecular model of a fluid in which

the internal molecular degrees of freedom are treated quantum mechan-

ically can be solved through the application to the corresponding

classical problem of an appropriately tailored lowest-order gamma-

ordered approximation, which amounts to the use of an extension of

the well known mean spherical approximation (MSA). The fluid model

we treat as an illustrative example consists of polarizable monatomic

particles, modeled as hard spheres with harmonic polarizability. It

I
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1S a nontrivial and useful paradigm of a simple fluid, since the

hard-sphere cores reasonably approximate the steeply repulsive part

of the pair interaction between real monatomics while the polariza-

bility gives rise to the dispersion forces that represent the source

of the attractive part of the pair interaction.

To our knowledge, our treatment is significantly different from

any of the various approaches using path-integral techniques that

have previously appeared. It is perhaps closest in aim to that of

Chandler and Wolynes,4 but of the three new prospectives those

authors list as characterizing the novelty of their work -- connection

between quantum influence function and a classical cavity distribution

function, observation of a (quantum exchange)-(classical chemical

equilibria) isomorphism, and realization that modern classical theories

of polyatomic fluids provide a practical computational route to the

quantum problem -- our article touches on only the third, and then

only in a peripheral way. Because we treat the center-of-mass motion

of our molecules classically, the repulsive cores of our classical

particles are not those of flexible polymer rings of hard-core atoms,

but are instead simple hard-sphere cores.

The model we consider here is the quantum version of the thermally

fluctuating model of polarizable monatomics that we have discussed in

detail in an earlier publication.S It is a simpler model of a polar-

izable fluid than a more general model we have subsequently described

in classical terms;6 we hope to ultimately describe the quantum analog

of that more general model too.
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In Section II we describe our model. In III we summarize the

relations between a quantum mechanical propagator and its approxi-

mating sum viewed as classical partition function. In Section IV,

we find the properties of the classical system described by our

quantum mechanical problem in an appropriate version of the mean

spherical approximation (MSA). In Sections V through VII we give

the dielectric constant, free energy, and internal energy of our

model in the MSA, in both its continuum-fluid and lattice-gas

versions. In an Appendix we briefly discuss the partition function

for a harmonic oscillator, to which we refer in Sections VI and

VII.
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II. MODEL

The atoms or molecules of our dielectric fluid will consist of

two masses M and M where M «M.
e n e n These masses, which are of

opposite charge with charge of magnitude e, are bound by a potential

that we can write as ~(s), where s = 111 and

-+ -+

S = er (1)

will be the dipole moment with the charges separated by a displacement

-+

r. The relative motion of these two masses will be associated with

the reduced mass

MeMn

M = M + Mne
(2)

while the center-of-mass motion is associated with the full mass

M = M + M .

0 e n (3)

Since M «M we shall not perform full quantization.0
Instead we

shall treat the center-of-mass motion classically while the internal

relative motion and its dipolar interaction with other molecules

will be quantized. This is a strategy relevant to most real molecules,

where M can represent the mass of the electronic cloud around a muche

heavier nucleus of mass M .n

Assuming that the internal relative motions are small compared

to intermolecular distances, the electronic interactions between

molecules can be expressed in terms of the dipolar pair interaction

sls2
~(12) = - - 0(12)

r3
(4)
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with

(
A.A.

)(
A.A.

)
A. A.

D(12) = 3 rSl rS2 - sls2

where hats denote unit vectors.
-+ -+

The sl and s2 are the dipole moments

of molecules 1 and 2 respectively, and r is their relative distance.

Besides this dipolar interaction, which will enter the quantization,

the molecules feel a highly repulsive core interaction which will

not be quantized, as it is not coupled to the internal motion of the

molecules. In our model we take this core interaction to be a hard-

sphere interaction, with hard-sphere diameter R.

The potential ~(s) that binds the masses M and M can be fairlye n

arbitrary. If, for instance, ~(s) allows only a fixed value s = m

then the system will be a quantized polar fluid. However, for our

computations a harmonic ~(s) will be the most suitable:

1 s2 .
~(s) = 2a (5)

This latter case will represent an "ideal" polarizable non-polar

fluid where the average polarization of a single molecule is strictly

proportional to the applied electric field of any magnitude.
As is

then obvious, the a will be the polarizability both in the classical

as well as the quantum-mechanical case, because the dynamics of the

single molecule will be that of a harmonic oscillator.
With the

potential given by (5) we can deal explicitly with the internal

degrees of freedom of the equivalent classical polymer problem as

far as we shall go in our approximation to the many-body problem.
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[With anharmonic ~(s), however, we would also have to introduce some

approximation for the internal degrees of freedom too. For example,

one might use the same type of approximation in the full problem as

in the single-polymer problem, which in this context will be one

dimensional (along the polymer).]

The approximation we shall use is the LOGA (lowest order y-ordered

approximation)7 which can conveniently be further approximated by the

MSA (mean spherical approximation)8in its treatment of the hard-sphere

reference system. Wertheim solved the MSA for the case of rigid

dipolar spheres; and we have alreadyS extended his solution to the

classical problem of spheres with thermally fluctuating polarizability.

Here we extend it further to the problem of spheres with the fluctuating

polarizability treated quantum mechanically.

The parameter y in general characterizes the inverse range of

the perturbing interaction, i.e., its r-dependence is parameterized

as ydf(yr),r = lEI - Ezl, d = dimensionality.
For dipolar interaction,

y-pararneterization is a bit degenerate and the y is simply the inverse

range inside of which the dipolar interaction is cut off.lD In terms

of this ordering the LOGA gives the first-order contribution in y

beyond the reference-system hard spheres. It should then be noted

that the LOGA becomes exact in two different limits. First of all,

it becomes exact in the limit y ~ D. Secondly it becomes exact in the

G
. d III 10 0

aUSSlan-mo e lmlt too. The Gaussian model will be the case in

which all the atoms are placed on the vertices of a regular lattice

(with one atom at each vertex).lZ
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III. QUANTUM PARTITION FUNCTION

Consider the partition function Z of a quantum mechanical

system

Z = Tr e-SH = \ <~ le-SHI~ > .
L. n nn

(6)

Here the H is the Hamilton operator, and ~ are the eigenfunctionsn

of the system or some other complete set of eigenfunctions that are

normalized. Let the wave function at time zero be ~(O). At time

t the wave function is then

~(t) = e-(it/~)H ~(O) (7)

where b is Planck's constant divided by 2IT. In the Schrodinger

representation the time evolution (7) may be expressed by means of

the propagator K(x,x',t)

~(x,t) = f K(x,x',t)~(x' ,O)dx' .

(8)

Here the x and x' stand for the spatial coordinates of the system.

The propagator is the solution of the Schrodinger equation with

boundary condition

K(x,x' ,0) = o(x - x') . (9)

By means of the propagator the partition function may now be written

as
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\'

f

-SH
Z = L ~*(x)e ~ (x)dxn nn

= r If ~~(x)K(X,x' ,-inS)~n(x')dxdx'

= J K(x,x,-i~S)dx
(10)

where the completness relation

\' ~* (x)~ (x') = 0 (x - x' )L n nn
(11)

for complete sets of eigenfunctions has been utilizedo

The propagator may be expressed in terms of a path integral. 1

-+

For instance, for a single particle of mass M in a potential VCr),

the Schrodinger equation has the form

[

~2 2
1

H* = - 2MV + V(-;))

d
= ihat~ (12)

or

(h2 V2 - V(-;) 1~ = ddS ~ .2M )
(13)

The propagator is then given by

f {
N-l

K(1,1',-ihS) = lim exp - .L
N+oo 1=0

x
(

M
)

d/2

27IT}h 2

[

M -+ -+ 2 -+

J}2 (r. 1 - r.) + nV(r)

2n'h 1+ 1

N-l

[[

M

)

d/2

TT 2 d-;.]
(14)

1=1 2nnh 1

where d is dimensionality and

S =nN,
-+ -+

r = rO'
-+ -+

r' = rN .

(15)

Here the interval S has been divided into N equidistant pieces of
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length 11. In (14) it is understood that the limit N + 00 should be

taken with S fixed, so 11 + O. [With V = 0, (14) is nothing but the

solution of the diffusion equation.]

For a many-body system the path integral (14) generalizes in a

straightforward way.

By use of (1), (10) and (14) we can easily write down the quan-

tized partition function associated with the internal motion of one

of our polarizable molecules when it is isolated. It is the limit,

as N + 00, S fixed, of the function

I {
N-l [1 a +. -! 2

ZeN) = exp - pIo L2 11 (Sp+l p) J }

N-l

+ 11<P(Sp) TT (Ad; )
q=O q

(16)

with

a =~
(he) 2

and
3/2

A = (2~11)
(d = 3)

It is easy to see that this ZeN) for the quantum system is nothing

but the classical partition function for a polymer of segments bound
+

to one another by a potential <P(s). The s represent the positions
p

of the individual particles (atoms) of the chain. Neighboring par-

ticles are separated by a distance 11 along the chain which is closed

and of length S. It should be noted that the direction along the

polymer acts as an additional spatial dimension in the problem. This

will become clearer when interactions between polymers are turned on.

Along the polymer there are nearest-neighbor interactions that give

the polymer a certain flexibility. In the limit S + 0 the length of
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the polymer goes to zero, and we obtain the usual classical partition

function for the internal motion of a polarizable molecule. Likewise

in the limit n + 0 this classical limit is again obtained since then

the flexibility of the polymer vanishes.

Now we consider the propagator for an arbitrary number of our

polarizable molecules. If these molecules did not interact then the

propagator would be nothing but the product of single-particle propa-

gators given by (14). Likewise the partition function (16) would be

a similar product. The classical analog of this partition function

or path integral would then obviously be a system of non-interacting

polymers.

When the two-body interaction is turned on it will enter the

propagator in the same way that the V(1) does in (14). The only

difference is that the two-body interaction will contain the coor-

dinates of two different molecules. In this way we obtain a classical

polymer problem with two-body interaction for the quantum partition

function of the internal motion of the polarizable molecules. In

addition we must integrate over the center-of-mass motion, which

involves hard-sphere interaction, and which we shall treat classically.
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IV. METHOD OF SOLUTION: THE MSA

We have just seen that the many-body quantum problem is equiv-

alent to a classical problem of interacting polymers. Now the

question arises as to whether there is an adequate method for doing

the statistical mechanics of this latter problem. We find that the

y-ordering idea for long-range forces may be applied in this case.

Our reference system will be the (classical) hard spheres with the

center-of-mass motions of the molecules. The perturbing interaction

will be the dipole-dipole interaction due to the internal motion of

the particles. We shall consider the y-ordering to first order beyond

the reference system (with quantization of the dipole interaction).

Imposing the core condition (of the hard spheres) on the pair corre-

lation function gives the MSA (mean spherical approximation), which

we shall consider. To apply the MSA to the present polymer problem

we have to extend our trick used in the classical case with fluctuating

polarizability.S The trick consists of regarding polymers (or molecules)

with different internal configurations as being polymers (or molecules)

of different species. With this point of view one gets a classical

mixture problem where each species no longer has internal degrees of

freedom. The density of the different species will be determined via

the chemical potentials.

To find the interaction between the polymers due to the dipole

interaction (4), we note (as concluded before) that ~(l2) will enter

the many-body path integral in the same way that ~(s) does in (16).
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TIIUS the perturbing polymer pair interaction becomes

N. N

~(12) = - ~ ~ L s IS 2DPP(12) = - n3 L s IS 2~q(12)O
r p=l p P ar p,q=I p q pq

(17)

where

DPQ(12) = 3(r~pl)(r~q2) - ~plgq2 .

The M5A is the solution of the OZ (Ornstein-Zernike) equation

-

h(12) = c(12) + I Pt f C(13)h(32)dt3
(18)

with boundary conditions that are, for.particles with hard-sphere cores,

c(lZ) = ~a~(lZ)
+ +

Ifor r > R , r = Irl - rZ '

h(lZ) = -1 for r < R , (19)

where the condition on h(IZ) is the exact core condition for such

particles. In our case the densities Pt will become p({1p})' i.e.,

functions of the internal polarizations! (p = 1,2,...,N) along thep

polymer chain. 50 in (18) there will be the change

i Pi + J [if d-;p)P({-;,,}).

(ZO)

By inspection of (17) - (19) it is seen that the solution must

. + + +

have the form (r = rl - rZ)'

N

c(lZ) = co(t) + n2 L s IS 2[c~q(r)~pq(12)+ c~q(i)DPq(12)]
. p,q=l P q .

. N
h(lZ) = h Ct) + n2 L s s [hPq(-;)~pq(12J+ hpq(i)DPq(12)]

0-1 pI q2 ~ D
- p,q-

(21)
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with ~pq(12) = SplSq2" The ca(;) and ha(r) decouple from the remaining

quantities and we shall regard them as given by the well-known MSA

solution (identical to the Percus-Yevick solution) for hard spheres, 13

which constitute our reference system. The boundary conditions (19)

with use of (17) then become

~

ha(r) = -1,

~

hXq(r) = 0,

and cpq(tJ = ~ <5

D 3 pqTjr

and hgq(;) = a

for r > R
-

Ca(r) = 0, c~q(r) = 0,

for r < R

(22)

With insertion of (21) into the Fourier-transformed OZ equation

(18) there will be integrals such as

p<s . s .> =
f

f-iir d-;
)
s . s . p({-; }) = 13 <5. . R ,

p1 qJ l~=i m p1 qJ n 1J pq
<s .> = 0

p1

(23)
+

Here the s . means the i-th componentof s. So far in our development
p1 p

the R are unknown while the factor 31 <5.. follows from the sYmmetry
pq 1J

+

of the problem, consistentwith the p({sn}) that we shall find later.

where

"'pq ~ ~ ........
D (12) = 3CKSp1) (KSqZ) - SplSqZ .

For the fluid under consideration, the cO' c1q, cEq, hO' hXq, hgq and their
+ + +

1 1

+
1transforms depend upon rand k only through Ir and k respectively.

(25)

Fourier transformed,Eq. (21) has the form

2 N 4 ....
c(12) =ca(k) + Tj 2 s IS 2[cXq(k)pq(12) + cEqCk)DPqC12)]

p,q=l p q

N

h(lZ) = h (10 + TjZ 2 s s [hPqcI0pq(lZ) + hPq(k)DPq(lZ)]
0 p,q=l pI qZ 6. D

(24)
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However to accommodate the lattice gas in discussions below, we use the

more general vector notation.

It will be convenient to introduce

J2 = -0 + 26

1
6 = 3" (J 1 + J 2)

1
0 = - (2J - J )3 1 2

Jl = 0 + 6

... 1 ~ '"

cl = 3" (c6 + 2cO)

'" 1
(
'" '"

c2 = 3" c6 - cO)

C6 = cl + 2c2

'" ... ~

Co = cl - c2 (26)

along with the same equations in which c is replaced by h. Here

0 = j)pq(12), 6 = ~pq(12), C6 = c~q(k),
and

Co = cbq(k).

With this, (24) becomes

N

c(12) = CO(kj + n2 I s s [cpqJpq+ cpqJPq]
p,q=l pI q2 1 1 2 2

(27)

with an analogous expression for h(12). By insertion into the Fourier-

transformed OZ equation one then finds the "multiplication" table

JlJl = Jl' JlJ2 = 0,
and

J 2J 2 = J 2 '
(28)

1.e.,

J fir d-;m] JiU(13) p( {-;n3})J ~q (32) = Ru,;\,q (12)

(29)

etc. The OZ equation thus results in the following set of equations

N

h~q(k) = c~q(k)+ n2 I c~u(k)R h~q(k)1 1 . 1
1 UV1 '

u,v=

(i = 1,2) (30)

Since the polymer chains are closed rings they possess translational

invariance. This will reflect itself in Eq. (30) in the way that the
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quantities involved wi~l depend only upon relative distances along

the chain. Thus we can Fourier transform (30) along the chain to

obtain

-I{ -+ -K -"> -I{ ~ -1<-
h. (k) = c. (k) + Ruc. (k)h. (k)1. 1 J\.1 1 (i = 1,2) (31)

where K is the discrete scalar transform variable,

n n
J( = 2IT - = 2IT -

11N S (n = 1,2,...,N) . (32)

Here

N . u

f

.Uf..
1J\.X 1l\.A

RI(= 11 IRe ---+ R e dx
n=l pq pq

11+0

(33)

where n = p-q and x = n11. Inverted (N11= S), we have

R - 1 '\ .
pq - N11 L Rue-1I(xK J\. .

(34)

-I{ -+ -J( -
The definitions of c. (k) and h. (k) are analogous.1. 1

Applying this latter Fourier transform to the boundary conditions

(22) we find

J(-
c~(r) = 0

J(-
h~(r)=0

and 1i'4- 1
cJ\.(r) = 3"D r

for r > R

and 1(-
hD(r) = 0

for r < R . (35)

Now consider Eqs. (31) and (35) for a fixed IC It is then seen

that these equations are nothing but the equations that solve the

corresponding problem of classical dipolar hard spheres, whose solution

is well known.9 From (31) and (35) the density p~ and the dipole

moment m of these classicalspheres are given by
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PI<: = R}(
2

8m = 1 . (36)

The R~ are to be determined later via the chemical potential.

result is the quantized generalization of our classical model with

This

fluctuating polarization.5 There we also had an effective dipole

moment m = m for the equivalent polar-fluid problem to be determined.e

The generalization here in going to the quantized problem gives an

infinite set of classical polar-fluid problems associated with the

different values of }(.

The explicit MSA solution of the classical dipolar hard-sphere

problem thus gives9

-1< -1<-1
1 - ~.c.(O) = [1 + RKh. (0)] = q.

uK]. ]. ].
(i = 1,2)

ql = q(2~) and q2 = q (-~)

2
( )

(1 + 2x)
q x = 4

(1 - x)

c~(O) = -2K(q1 - q2)

with
41T 2 41T 1

Y = - 8m P = - R = - (q - q )9 k 9 k 3 12

, ~ = ~ KRKR3, 3K = J hDCr)r-3 dr . (37)

Or by substitution

I<:

cl1(O) = -16~ . (38)

-+

To determine R1< we need the p({sn}) which we get via the chemical

potentials. Considered as a mixture problem these will be by use of

Eqo (16)

-+ N
I

[

1 () -+ -+ 2
]

8~({s }) = 8~ + NinA - _2 - (s 1 - s) + n~(s )
n p~l n p+ p p

(39)
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where the last term has the same effect as an external field. The

~ is a common constant which is the proper thermodynamic chemical

potential for the fluid under consideration. Equation (39) is the

generalization of Eq. (4a) of ref. [5].

The chemical potentials must be related to the densities.

Previously we have found this relation in general for the MSA.14

The relevant equations we again find in ref. [5]. In referring to

these equations we shall preface them with an I. Noting that in our

case I p. [C'n(O) - Co 'o(O)] = 0 or <~ > = 0 the excess chemical
. 1 lJ\, lJ\, P1

potential from Eq. (1.18) becomes

E 1
S~J/, = 2 [cJ/,J/,(O) - coJ/,J/,(O)]

(40)

or in our present notation, using (21) [cEq(O) = 0],

E ~ 1 N
S~ ({s }) = 2 I s s c1q(0) .

n p,q=l p q
(41)

This should be added to the reference-system piece to obtain in

analogy with (1.21)

N

S~({;n}) = In[p({!n})/p] + S~o +; I s s C1qCO) , (42)
p,q=l P q

where ~O = ~O(p) is the chemical potential for reference-system hard

spheres at density p,

P = J p({-;n})[tp-;J .

(43)

Equation (39) combined with (42) gives the MSA density distri-

bution
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P({;n}) = C exp{-

N

I
p=l

r? N
-""2 2.

p,q=l

fl a -+ -+ 2
]L2 n (sp+l - sp) + n~(sp)

; ; cpq(O)
}p q /::,

(44)

where C is a constant independent of ; .p
-+-+

The R = P<s s > [of Eq. (23)] is to be determined from (44).pq P q

In this respect the R represents the spin-correlation function ofpq

a one-dimensional spin problem, which in general is not exactly

With cxq(O) = 0 this reduces to the one-particle quantum

problem, [Eq. (16)] which in (44) means nearest-neighbor interaction,

solvable.

and which may be treated more explicitly. (We note that we can apply

the MSA to this one-dimensional problem too, along with our MSA of

the full many-body problem. The details of this MSA for the single

chain we shall not consider here.) However, with harmonic ~(s), as

given by (5), this one-dimensional problem can be solved explicitly

in a straightforward way since it becomes a Gaussian model. (This

explicit and exact result would also come out of the MSA computation

of the single chain.)

With ~(s) given by (5), Fourier transformed coordinates may be

introduced

-+ 1 N
a]( = iN"" I

p=l
-+ 1 N
s = - I
p iN"" ~=l

iKx -+
e s

p

-iKx -+

e ~ (45)

with x = pn and ]( = 2TIn~
With this transformation, (44) turns into
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P({;n}) = C exp{-

N
11 L:2 n=1

l(

J

++

}+ c/1(O) aI<a_I<

[

\ a 1

2[1 - cos(Kll)] 112 + a

(46)

where

+ +
a = a*
-I< J( (I( = 27T ~) .

Since

N N +

TTd; =TTd~
p=l P n=l

we now easily compute that (m = p - q1 and x = mll)

N 'V 1 N .1.1

\' ~l\.x \' + + ~l\.x
R~ = 11 L R e =llPN L <s s >e

m=1 pq p,q=1 P q

--+
11 + 0 aI<2

3p
a .1

cos(kll)] _2 + -+
11 a

3p
1 K .

+ a + c/1 (0)

c~ (0)

+ + > =

= llP<aka_I( 2[1-

(47)

This, combined with Eqs. (37) and (38), gives the explicit MSA solution

for harmonic ~(s).
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v. THE DIELECTRIC CONSTANT

To find the dielectric constant E of our quantum fluid, we have

to generalize previously known expressions for E of classical fluids.

10
We shall employ a method used by H~ye and Stell. The method

consists of adding two test charges to the dielectric fluid and com-

puting the correlation function for large separation. This will give

the resulting effective force between the charges and thus the dielec-

tric constant.

Like Eq. (19) in ref. [10], the pair correlationfunction for

the test particles again is given by the direct interaction between

these particles plus interaction via one polar particle of the medium

plus interaction via two polar particles correlated by the fluid's

pair correlation function. We will thus need the Fourier transforms

of the charge-charge interaction llr and the charge-dipole interaction

-(s~)/r2, which are respectively (with k = Itl)

4TI

k2
and

4TIi
C

AA

- ~ ks) .
(48)

By quantization the test charges should also become equivalent

to polymers. But they may be regarded as stiff rods since the dis-

tance between the test particles is large. With charge q on each of

the test particles their direct interaction, Fourier transformed,

will be (S = Nn)

2 N 2 N 2
~ (12) = ~ =!. L ~ = !. n I ~

CC k2 N p=l k2 S p=l k2
(49)
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Likewise, the interaction between one of the test charges and one of

the "polymer" dipoles will be

.., - 1 N 47fi AA

~CD(12) = -~DC(2l)=S 11 L - ~ (ks2)
p=l P

The effective interaction ~~C(12) between the two test charges

(50)

now becomes

-S~~C(12) = -S~CC(12) + I [-S~CD(13)]P({!n3})[-S~DC(32)]

N -+

II

-+

xTT (ds 3) + [-S~CD(13)]P({sn3})h(34)
p=l p

N N

x P({-;n4}) [-(3~DC(42)] TT (d! p3)IT (d!q4)
p=l q=l

(51)

or

N2

[

2 N 47f 4 \ R
-E - ~ I - 47f 11 L R - 11 l.. Q,v
~CC - k2 3(3 Q"p=l Q,p ~ Q"v,u,p=l

x (~ ~u + ; h~uJ RupJ

2 4 -0
= 47fi [1 - ; RO(l + hIRO)]k

(52)

when equations (26) and (33) are utilized.

The dielectric constant £ is now determined by the macroscopic

law (r -+ 00 or k -+ 0)

E I
~CC = E ~CC

(53)

which when combined with (52) yields (k -+ 0)
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[
4'IT -0

J
-l

E = 1 - T RO(1 + hI RO) . (54)

Thus for our polarizable hard spheres we obtain the explicit result

E = q(2;)
q(-;)

(55)

with

4'IT

T RO = q(2;) - q(-;) = 4'ITpa

q (x) = (1 + 2x) 2/(1 - x) 4 . (56)

Here Eqs. (37), (38), and (47) have been used.

It is seen that the E in the MSAwith harmonic ~(s) of Eq. (5)

is precisely the same in the quantum mechanical case, considered

here, as in the classical case for the same model.5 As is obvious

from our computations here this would not be the case for anharmonic

~(s) -- see Eq. (44) and our comments below.

As in the classical case we can put the particles on the vertices

of a regular cubical lattice here too. In this case the hard-sphere

"'0 -1

results (37) and (38) are of course not valid. As [1 + hlRO] =
",0 . ",J{

(
1

[
-J{ ",J{

]1 - clRO we have to know more preclsely cl 0) = 3 c (0) + 2cD(0)

[Eq. (26)]. For a cubic lattice with cells that may be chosen to have unit
-+- -+-

volume, r =0 and r fO replace r < Rand r > R in (22). One has

-J{ -K K
( )c~(k) = c~(O) = c~ 0 , (57)

since according to the resulting (22), cXq(~) = 0 and thus c~(;) = a

for; F O. From (35) c~(;) = 1/r3 (; f 0). Multiplying this with

the angular dependence of the dipolar interaction [Eq. (17)] it is
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5
found that

...}(

cD(O) = - 4'IT3 . (58)

~

(For k + 0 it makes no difference whether a system of cubical symmetry

or one of spherical symmetry is considered.) Equations (57) and (58)

used in (54) give

4'IT 4'IT

8-1 - """9RO - 9"" RO
8+2 - ...0 ..8'IT - 1 0 -.

1 + c1RO - :r RO 1 - 3 Roc~(O)
(59)

Equation (47) means

RO = 3pa [1 - ROC!(O) ] (60)

which inserted in (59) gives

8-1 4'IT

8+1 = :r pa

0

1 - !. ROC~ (0)3- P
O-.~

1 - ~ P ROCb,(O) .

(61)

Again comparing with the corresponding classical model it is seen that

the MSA results are the same.5 The equivalence follows from the fact

that the c~(O) in Eq. (1.39) (of ref. [5]) is the same as our ROC~(O)/P.

This is clear from Eq. (31) where R~ enters instead of p (K = 0), and

there are corresponding appropriate changes in boundary conditions (35)

and in relation (47) compared to ref. [5].

If we let the lattice be close packed, i.e., p = 1, then the MSA

result (61) becomes the exact result
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8-1 47r
8+2 = 3'" po. (62)

This is the well known Clausius-Mossotti relation for polarizable

cubic crystals.
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VI. FREE ENERGY

Thermodynamic quantities can be obtained by use of the general

MSA expressions obtained by H~ye and Stell in ref. [15]. Its Eq. (38)

for a mixture gives for the excess Helmholtz free energy fE per

particle

-SPfE = I = 12 L p.p. [c.. (0) - cO'.(0)].. 1 J 1J 1J
1J

1 1
f {

o - -+
- 2 3 Tr ~n[l - pc(k)]

(21T)

- £.n[l - peo(k)] - PCo(k)} dk

,.

+ peek)

(63)

where peek) is a matrix with elements (p.p.)1/2 c. .(K), and likewise
1 J 1J

~

for the reference-system piece peO(k). In our case here p. -+p({! })1 n

J

N -+
and L -+ 1T (ds ).

i p=l P

-+

The first term in (63) vanishes since <s > = 0,p

- -
and the peO(k) terms cancel against similar pieces in peek), which

-
is clear from the form (27) [e(k) -+ e(12)]. Inserting (27) into (63)

we thus find ~ = 21TN; = 2; n, n = 1,2,...,N and N -+ 00)

II\,
J {

-K -
I = - 2 ,- ,3 * £.n[l - RKcI(k)] + 2£.n[1

1 \' l(

- 21. RKcLl(O) .K

...,l(-
}

-+

Rl(c2(k)] dk

(64)

The factor 2 in front of the second £.n term is there because the J2

averaged over orientations is 2 while Jl so averaged is I [Eqs. (26)

and (28)]. Due to integrals like (23) we get factors R betweenpq
51. -- .-

e.P(k) and c~J(k). Summations with respect to ...5I.pqj... correspond1 1
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to convolutions. Thus Fourier transforms [Eqs. (33) and (34)] may

be utilized, replacing all the summations with a single one in k.

To obtain the full free energy the reference-system piece fR

E
must be added to f . We have

J

-+ N

[

1 a -+ -+ 2
- p({sn}) I 2 ~ (sp+l- sp)

p=l

J

. N
-+ -+ -+

p({s })in[p({s })/p] 1T ds + pNtnA

n n q=l q

J

N
~ 2 -+

+ "2 s 1T ds .

Ct P q=l q

(65)

R R
-Spf = I = I -0

Here the 10 is the result for the reference-system hard spheres at

density p. The second term is the ideal-mixture term. This enters

because we regard the different "polymer" configurations of the

internal motion as being different species of a mixture. The third

term plus the last term represent an energy

correction associated with the last two terms in expression (39) for the

chemical potential [with <I>(s)given by (5)]. This arises because

in our mixture picture we regard this term as an external potential.

However, thermodynamically it does not have this status, so that its

presumed partition function adds an artificial contribution to the

energy. This term in (65) compensates for this mixture-picture

assessment of energy contributionso In this way the resulting

chemical potential will be the proper thermodynamic oneo [This is

the same correction as the one made in Eq. (94) of ref. [16].] Note

that without the perturbing dipolar interaction the last two terms

of (65) will give the contribution from the quantized internal motion
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of the free molecules. When the perturbation is turned on, the 1R

-+

will change since the p({s }) will change, i.e., the mixture reference-n

system changes.

With density distribution (44) used in (65) we find

R 1 \' J(

I = 10 - ptn(C/p) + 2 L R~C~(O) + pNtnA
K

(66)

The C is determined by the normalization (43). Except for the last

term in (44), and the dimensionality of the vector; this would givep

the quantized partition function of the single oscillator considered

in the Appendix. Utilizing the methods applied in the Appendix to

obtain (AI) and (A4) we find

3

[

aR~

)
NinA - in(C/p) =- I in -

2 l( 3pT)2

n
(K = 2TI NT) , n = 1,2,...,N) . (67)

Altogether, adding (64) and (66) the Helmholtz free energy f

per particle becomes

3

(

aR~
)

1 1
-Spf = - p I in - - - -

2 ~ 3PT)2 2 (2TI)3

J(~
}

7
+ 2in[l - Rll2(k)] dK + 10 .

~ f {in(l - ~C~(k)

(68)

Here we can also specialize to a regular cubic lattice. We shall

further let the lattice be close packed, i.e., p = 1 with cells of

unit volume. With that, f dk = (2TI)3, and (68) becomes (with 10 = 0)

-Sf = - 11 N It ~2

2 3 L in{2[1-cos(161)] + [Tlhwl(k)] }
(2TI) n=l

.. 2

J
-+

+ 2in{2 [1 - cos (~)] + [T)T1W2(k)]} dk
(69)
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when (47) is used for RIC

lattice-gascase yields

'" ~

Use of (26) for c. (k) and (57) for the1

2

~
--+2 e .!.-

wI (k) = 1.1 a
",I< -t

]2cD(k)

2

~
- e 1 -I< ~

- M a + cD (k)]
(70)w/k) 2

with (16) inserted for cr. For a lattice gas, c~(O) = 0, which from

boundary condition (35) means that C~(k) is independent of K.

this one sees that the sum in (69) is precisely the same as that of

From

-
(A4), which is evaluated in our Appendix (for fixed k)o The result

is given by (A16). Using this we find

-8f = - 1

f t
1 -

3 In{2sinh [2 8hwl (k)])
(2IT)

1 ~

]
-+

+ 2tn{2sinh[2 8hw2(k)]} dk 0
(71)

This is precisely the Helmholtz free energy for a set of quantized-
harmonic oscillators; one subset having frequencies wl(k), and two

-+
subsets having frequencies w2(k).

one would obtain by evaluating the eigenrnodes of the lattice.

Furthermore this is the result

These

-+ .....
eigenrnodes will have the frequencies wl(k) and w2(k), and quantiza-

tion of the resulting set of oscillators yields (71).
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VII. INTERNAL ENERGY

The internal energy u per particle may be obtained by differen-

tiation of (68), utilizing Eq. (31) with conditions (35), since

d
u = as (Sf) . (72)

The u may alternatively be obtained from the general t.1SA expressions.

For the excess energy uE, Eq. (37) of ref. [15] yields

-Sp.u. = 12 p. [h. .(0) - c. .(0)] + 12 L p.p.c. .(0)
1 1 1 11 11 . 1 J 1JJ

(73)

such that

E - \ p.u. .pu - L: 1 1
1

For a hard-sphere reference system alone one has u. = o.1
. +

S1nce <s > = 0
p

the last term in (73) drops outo In analogy with (64) we thus get

E 1 \ 1<
Spu = 2 L R1<c~(O) .

1<

(74)

This should be added to the internal energy uR of the reference system

which follows from (65) (with 13= Nn).

1 \ 1 2 2
+ 2 L cr{-2[1 - cos(I<rt)] 2" + 'h 0.} }R1<

1( n

1\ 2..22
= SpuO + 2 L [3p - a(l( - n 0.} )R1<]

1{

221
(em 0.) = a) . (75)

f N [R d R + 1 cr + + 2
Spu = n a- (Spf ) = SpuO + p({sn}) L - 2- (s +1 - sp)

n p=l n p

J N
n 2 + 3 3

+ - S ""IT ds + p - N = Spu + - pN
2a p q=l q 2 0 2
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The uo is the classical kinetic energy of hard spheres.

arises upon differentiation of the pNinA term of (65).

3
The "2 pN

Adding (74)

and (75), the full internal energy per molecule is obtained:

R E \' 2
f3pu = f3p(u + U ) = f3puO + L [3p - aI< Rl{]

l{

2 2 }(

an W + ct,(0)

= 3p I 2 2 2 1{ ,
K a(l( +11 w ) + ct,(0)

(76)

where expression (47) for Rl{ has been used.

For a lattice gas the core condition hK(O) = 0 may be used to

put (76) into a different form.

4 -'0 ~

From (26) ht,(k) = hI(k) + 2h2(k).

So by use of (31)

(77)

(73)

For a close-packed lattice (p = 1) this reduces to

1

f{
1 2

}

+

Rl( = 3 2 -+ 2 + Z 2 dk,- , rrrll (h',' (lr)) rrrll (1;1,'(it))
(79)

-+ ~

with wl(k) and wZ(k) given by (70).

gives (putting uo = 0)

Inserted in (76) with p = 1 this

x K .-.

1 J cl(k) + 1 J c2(k) +
0 = dk + Z dk

(21T)3 1 - R1(C(k) (21T)3 1 - Rl{C(k)

J + f +
3R = 1 dk + 2 1 dk.
K (21T)3 Rl - C(k) (Z1T)3 Rl - C(k)

RK - 1 J { 1- - 3 Z - 2 2 l{ -K
p (Z1T) a[I< +t1W ] + (l-p)ct,(O) - ZpcD(k)..

2 } ++ 2 2 2 }( -1< dk

a [1< + 1'1 W ] + (l-p) ct,(0) + pCD (K)
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-t 2 - 2
1 f{ (hwl (k)) (hW2(k))

}

-+
Su = I + 2 dk .

]{ (27T)3 1(2 + (11w1(k)) 2 J{2 + (ru.u2(10) 2

(80)

Again comparing with the Appendix, this is the sum evaluated in (A17).

Comparing we find

1

J {
I -" - 1 -'> -+

}

-+

U = 3 211wl (k) coth (hwl (k)) + 2 . 2 hw2 (k) coth (nw2 (k)) dk.
(27T)

(81)

Corresponding to (71), this is nothing but the average quantized energy

of the eigenmodes of the lattice.
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APPENDIX. PARTITION FUNCTION FOR A SINGLE HARMONICOSCILLATOR

We want to compute the partition function (16) for a single

oscillator with ~(s) given by (5). This path integral is then the

same as a Gaussian model and is exactly solvable by standard methods.

Thus the normal modes as given by (45) may be introduced, and like

(44), Eq. (16) assumes a simple fo~ in terms of cos(Kn), aK and a_~.

Z =
J

exp
{ - i I [[2(1-cos(~n))

n=l

N 1/3
xTT (A daK).
n=l

~ + h2w2]a~a_~}2n

(AI)

To have an oscillator with one degree of freedom only, for simplicity,

the vector !~ is replaced by the scalar a~ (~ = 2~ n~~ in this Appendixo

The C1)ist.he eigenfrequency of the oscillator

w2 =~ - e2
h 2cra.- Ma. .

(A2)

Equation (AI) integrated with cr and A as given by (16) leads to

N 1
Z =TT 2 1/2

n=l [2 (1 - cos (~n)) + (nhw) ]
(A3)

or

[

N1 1 N
[(

N12 2
JbtZ = NtI1 2~J - 2" n~l £.11 2~J 2 (1 - cos (I<n)) + E

(A4)

where

Nn 1E=-nw=-Shw.2~ 2~ (AS)
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We would like to identify the sum (A4) with the well-known result for

the harmonic oscillator obtained by summation over the eigenstates.

However, we are not able to sum (A4) directly so we shall use other

methods to obtain the desired results. Differentiating (A4) with

respect to E we obtain a series where only terms with n close to 1 or

N are of importance. With that, the limit n + 0 may be taken before

summation (~n = 2~n/N), and the sum may be extended to all n.

00 Edlnz=- \
2 2- L +EdE n=-oon

(A6)

This sum may be computed explicitly noting that, using residue cal-

culus,

0 =~ i dz. = 1
2~1 j (z2 + E2) (1 - e2~lZ) 2iE (1 - e-2~E)

00

1 1
L

E+ +--
. 2~E -2~i 2 2

-21E(1 - e) n=-oon + E
Izi = R+oo (A7)

or

dlnZ - cosh (ITE)- - -IT
dE sinh(~E)

(AB)

which integrated means

lnZ = -tn[2sinh(TIE)] + C .
(A9)

The remaining problem is to show that the constant of integration

C equals zero. This requires additional investigation of (A4).
For

1 « E + 00 the sum (A4) may be replaced by an integral, i.e., (with

x = 1(1) = 2~n/N)
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'I 1 N

1
27f 'I [ (

2m:11
~YLZ = - "2 27f 0 -Ln 2(1 - cosx) + TJ J dx . (AlO)

Because of the prefactor N + 00 we must be a bit careful in going from

(A4) to (Ala). Equation (A4) may be considered as the trapezoidal-

rule approximation to integral (Ala). As the cos(~) runs through

precisely one full period 27f there will be no end-effect errors.

The error connected to each term in the sum is thus proportional to

the second derivative of the integrand times the step length ~x = 27f/N

squared. The sensitive region is around x = a where the integrand

is almost singular (N + 00). With 2 (1 - cosx) ::: x2 we thus find for

the error made with a = ;; E,

00 2 2
N 2

1

x -a N 21 1
21f (~x) 2 2 2 dx 'V 27f (~x) a = E --r. a .

_00 (x +a ) E+OO
(All)

To compute (Ala) we need consider

1

1

27f

L = - -- In(l - acosx)dx .
27f 0

We find (x = tg ~)

(A12)

J

2TT

[
.

J

2TT

jdL 1 cosx dx 1 1 1 dx
da = 27f a I - acosx = a - + 27f a 1 -acosx

= ~ [-1 + ; foo 1 J = ~ [-1 + ~
1
00 Arctgfj l:~ t )

l
_00 1 -(1 + (1+<J")t2J 7f l-a2 _00 t 1 ~

= 1 1
all-a2 - a . (AI3)

Since obviously L = 0 for a = 0, (AI3) integrated gives

rl [
2 1/2

)JL = -lnL"2 I + (I-a) .

(A14)



Applied to (AlO), the above is to be used with

cr = 1

1 + ;(2~E ) 2

(1-cr2) 1/2 = 211"EN

= 1 - .!..
[
211"E)2

2 N J +

N
inZ =- [in2 + L] = - 1I"E2 (E -+- 00) .

This fixes the C in (A9) to zero, i.e.,

inZ = -tn[2sinh(1I"E)]

or
00

Z = [2sinh(1I"E)]-1 = L e-~(n + ~)
n=O

which is the well-known result for the harmonic oscillator.

By use of (A3) - (AS) the average energy or internal energy is

found to be (1<11= 2'ITll/N)

a 1 a
u = - - (inZ) = - - - (inZ)as N al1

- 1 N I1h2w2 1 00 h2 w2

- N L 2n2 2 --+- NI1 L 2 2n=l 2(1 - COsJ{l1) + 11 w 11-+- 0 n=-oo J{ + h w
N-+-oo

=_nw a 1
211"":'\ (inZ )

- 1 cosh - D1'lliJ
aE - "2 'htu 2 I-'

sinh.!.. S'htu2

35

(AlS)

(A16)

(A17)
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