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Abstract

In this study, three thermal problems have been examined which
occur in the design of space suits to be used when personnei are
c):utéide the parent vehicle. The first concerned the time-temperature
variation of an infinite thermal conductivity suit when exbosed to
extreme conditions of heating and cooling. The second was related to
temperé.‘ture differences which may occur from the top to the bottom of
the suit thereby causing physiological discomfort. Finz;lly the scheme
was examined whereby these temperature differences might be ameliorated

by circulating a fluid in passages behind the suilt material.
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Analysis of Limiting Thermal Conditions

Encountered by a Manned Space Suit in Orbit

Introduction

One of the difficult problems of protecting & man in space while
free of a shielding vehicle or structure is to preserve him from the
adverse thermal enviromment. Without adequate temperature control,

a man would readily freeze when shaded from the sun or burn when
exposed to the sun. In order to provide a satisfactory temperature
regimen, the parameters involved in this thermal problem must be defined
and investigated. A general analysis of the problem is canpliéated by
the changing types of thermal radiation fields to which he‘may'be exposed |
and the influence of his orientation both with respect fb the solar
system and nearby objects.

In éddition to his orientation and form, man himself by reason of
his physiological processes influences the problem through body heat
generation and resplration and perspiration processes. 1Thus, the number
of free parameters in the problem become very large, and there is some
doubt whether a completely general analysis which accouﬁts for all of
these factors is feasible.

An approach which appears to offer more immediate Pfdgresé ié to
divide the total problem into separate and manageable parts while remain-
ing conscious of the interrelations among these various perts. This
paper concentrates on three of these parts, which, other than metabolic
heating, are independent of all physiological consideratioﬁs. Thué, the
conclusions are valid for determining the feasibility of the suit thermal-v

design approach.
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In the first part an analysis is made of the equilibrium
temperature hilstory of a space sult assuming that the thermal
conduetivity of the suilt 1s infinite and that no ’oém;peruture
control system exists. In the second part an analysis is nade
of the temperature difference which :mis‘n‘t:‘be found from the top
to the bottom of the suit assuming & finite thermal conductivity
of the suit material. In the third part, the effect of circulating
a liquid coolant ls examined in its ability to reduce the top to
bottom temperature differences calculated in the second part.

General Orbit Consideretion

The reasons for the choice of orbits for the present study
may be illustrated by & brief discussion of the motion of the earth
in the solar system. Figure l(a) shows the important aspects of the
earth's motion around the sun looking down on the ealiptic plane
(the plane containing the earth's path around the sun).

~ The four importantyreferences locations of the orbit, the

summer and winter solstices and the vernal and autumnal equinoctial
points are slso shown in figure 1(a): Figure 1L(b) is a side view
locking parsllel to the ecliptic showing only the'aoln'b:l.ca points.

It 1s important to note two things about the polar axis of the earth.

Filrst, the polar axis 1ls not perpendicular to the ecliptic but is
tipped at an angle of sbout 23 degrees from this perpendicuiar.
Second, the polar axis remains fixed in its orien'bat:l.on in space as
the earth travels around the sun. Thus, st the winter solstice the
North polar axis points away from the sun and at the summer solstice

it points toward the sun.




A close-up view of the earth at winter solstice (Fig. 2)
is useful in our discussion of satellite orbits. If the satéllite
is moving in an orbit perpendicular to the plane of the paper, then
only two numbers are needed to define its location with respect:to
the solar system. The satellite altitude, h, and the angle,@a ’
between the perpendicular to the ecliptic and the radius vector to
the satellite are convenient choices for this problem. For example,
if(s:?f and h = H (Fig. 2) the satellite is traveling in a polar
orbit at altitude, H, above the earth's surface.

Equilibrium satellite temperatures can be calculated for a wide
variety of orbits. However, for our purposes we will examine only
the extreme cases to which any design may be subjected. These cases
are when the satellite is continuously exposed to both the solar and
earth's radiation fields (@3 =0 ) and when the satellite is shielded
from the solar field by being in the shadow of the earth. These may be
called the "hot" and "cold" cases and will be described in more detail

in later sections.

Human Geometry

The orbital space suit in its final evolution may well bear a
close resemblance to the general outlines of a man. The chéice of
the geometry for the purposes of this calculation has an important
influence on the complexity of the calculations and the applicability

of the final results, i.e., the more nearly man-like the geometry, the



more difficult the calculations and the more useful the results.
Since the final configuration of the space suit to be worn by 8
man in orbit is at present unknown, no attempt was made at this
time to consider the geometry of a man wearing a space suit with
its accompanying life-support, stabilization, and locomotion
equipment.

Possible geometric choices of space suit configumtioﬁs have
been investigated by Charles Clauser, Aerospace Medical Division of
the Wright Air Development Division. Some of the results of his
investigations are shown in Figs. 3 and 4. These geometric forms
are representative of the general size of a 50th percentile‘(hei@t

and weilght) nude Air Force male. Total body surface area for such

& man would be approximately 21 square feet. An important decision

in the present investigation was whether to consider geémetrics which
were singly cylindrical and everywhere plane or convex, ‘such as in

Fig. 4 or to include other geometrics such as Fig. 3 which wbu.ld

allow radiatlon exchange between various parts. The geometry described
i | in Fig. L4 was chosen so as not to obscure the consideration of the
thermal problem with the additional complicated geometric details of

the analysis if the geometry in Fig. 3 had been used.

} PART I

INFINITE THERMAL CONDUCTIVITY SUIT

At any instant in time, a man wearing a space suit will be under
the influence of a number of factors which will determine his thermal

environment and consequently the average temperature of his thermodynamic




system. Among these factors are the thermal radiation fields from the
sun, earth, and nearby objects, the thermal properties of the suit, his
own metabolic heat generation and other biological processes, and the
Previous history or variations of all these factors.

A great deal of useful information and background knowledge should
accrue from an analysis of a part of this complex system. For example,
the temperature history of a space suilt without a man iﬁside (Eut with
energy generation within the suit to model the metabolic heat rate) may
be examined with a fair degree of sophistication. Such information,
coupled with the present knowledge of man's physiological processes,
serves as an excellent starting place for determining additional modifica-
tions necessary to a space suit before a man is placed insié.e.

The energy balance for determining the temperature-time history was
based on the suit scheme in Fig. 5. Additional specificatioﬁs were an
adiabatic inside surface and a very high thermal conductivity for the
space suit material so that no heat-transfer processes inside the \cylinderr
would require consideration and no temperature differeﬁces would exist
in the suit material.

Under the conditions described above, the energy balance on the

suit assumes the following form as applied to a unit of time:

_ dQ
Qe+ Qe = Qen "g‘t“ | "

The first term, ro’R , consists of a number of terms representing

the separate radiation fields absorbed by the suit. These fields include
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direct and reflected solar radiation, earth radiation, and radiation
from nearby objéc‘l;s, e.g., the parent satellite or spacé ship. The
second term allows for the internal generation of heé:b within the
sult or on its boundaries. The third term describes the amount of
thermal radiation which leé.ves the suit and the last describes the
influence of the heat capacity of the suit. Implicitly, 'i‘o has been
assumed that any radiation leaving the suit does not return by .reason
of a reflection process. |
Details of the energy balance are given in Appendix I and the

final equation in a dimensionless form is

NS +NV+NG*NE:Q4+3‘78tﬁ%—%—Z (2)

In Eq. (2) Ns and I\Tv are the dimensionless values of the absorbed
solar and nearby vehicle radiation fields, Ng the dimensionless
internal heat generation, and Np the dimensionless absorbed earth
radiation. The symtol € represents a dimensionless suit temperature
referred to the average temperature of the earth, i.e., Q:T/ Té .
The term 3.78 'LA; , developed in Appendix I, is a dimensionless measure
of the energy retention capacity of the suit material and 'tA -is a
dimensionless time referred to the perlod of orbit of the suit.

Eq. (2) i1s a first order, nonlinear differential equation which
requires the specification of one boundary condition. The condition

which has been chosen for all calculations is

When t'A =0 6=|2 (3)



7.

Equation (3) states that the space sult temperature at the beginning
of the calculation is 80°F. The calculation then predicts whether
the temperature of the suit increases or decreases under its environ-

mental influences and how much.

Calculation Results

The basic energy equation discussed above was solved on & computer
for two extreme conditions. The first condition was when (9 = 0 and
the space suit at 80°F was suddenly placed in the sunlight and remained
there during subsequent time. Parametric values were chosen so that the
solar and earth-radiation inputs as well as the radiation input from
the nearby vehicle were maximum. The internal energy generation rate
was chosen to approximate that of a man engaged in minor activity. Thus,
this caleculation could be expected to predict the maximum temperatures
that might be found in a space suit. Details of the cholce of parametric
values are given in Appendix II.

As an illustration of the temperature control factors available to
the designer, the calculation was then repeated for two additional cases.
In one, the suit properties were chosen so that a minimum.amount of out-
side radiation was absorbed and the internal heat generation rate the
same. The second condition considered the space sult at BOQF, suddenly
placed in the earth's shadow (in a 300 mile orbit in the plane of the
ecliptic) so that the only incident radiation field was the earth's. To

represent the "coldest" case, the internal heat generation rate was taken

at zero.
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The result of the calculations for these two conditions is

discussed in detail below.

Case I - Hot (Maximum Radiation Input and Heat Generation Rate)

Figure 6 presents the computed variation of the nondimensional
sult temperature with time, measured in multiples of the orbital
period, for three values of ESe_@_ . 'The extreme equilibrium values
of O =3.23 and 1.13 or T = 993°F and 48°F reveal the wide
variation of suit temperatures permitted by the choice of the suit's
spectral properties. The parameter, t?; , the heat retention parameter,

is defined as

tA:\ pC v - Pc T
C 7378 |XeATTTEte|T 378 | ETTS L

Thus , for a fixed orbital period, [‘? is directly proportional to the
specific heat per unit volume (£ C ) and the suit material thickness,

™ . Conversely l‘.‘e‘: is inversely proportional to the suilt's
emissivity, € .

Figure 6 indicates that the suit designer must limit the external

o
heat inputs by choosing a low es. value to maintain comfortable suit
temperatures. It may also be noted that the choice of a sufficiently
large value for the heat retention parameter will lengthen the time

in which the sult reaches its equilibrium temperature.

Case IT - Cold (Barth Heating Only)

Figure 7 shows the resulits of the calculations for the coldest case.
Judiciously chosen suit properties will inhibit rapid tempersture changes

when the suit is being heated by earth radiation alone. TFor example, when
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ti is equal to 12, the suit temperature drops only 2'50F from its
original value of 80°F in one equivalent Iieriod (90 minutes). This
slow decrease is interesting since the equilibrium (long time) temper-
ature for these conditions is -100°F and the suit can/ stay in' the
earth's shadow for only 34 minutes in a 300-mile orbit.

Thus,  controlling the thermal enviromment of a man in space
under cbnditions of earth heating only through the selection of
proper suit properties should be considered. This is true whether
control is desired on the unsteady state temperature, the final
equilibrium temperature, or both.

For an application of the calculations the following "suit

problem" will be examined.

Design Requirements:

A. Passive Heat Control
B. & max = l,,2é or 90°F
B min = 1.17 or 60°F
C. Exposure time: one 300 mile orbit
D. Lightweight suit material
E. Thin suit material to permit mobility

To be determined:

A. Surface coating ( _g_Ce_s__
.~ B. Suit material  ( C

)
)
C. Suit's totalmass ( £V )
)

D. Material thickness ( 7T
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A vhite Pb003 paint (‘%5-3 0.13) for the surface coating will

maintain the maximum suit temperature below the required 90°F since

ofés is only slightly larger than the 0.1l value plotted in Fig. 6
At low té value and a large F C value must be selected if a small
sult thickness is required. Thus, it is necessary for the material |
‘to have a high specific heat (¢) to obtain a low total mass suit.

If, for example, a water filled five-eights-inch thick shell is

chosen for the suit material then:
A
PC=60, fe = 4

A
This value of tc, will limit the minimum suit temperature to
6 = 1.16 or 62°F for a 300-mile orbit. The minimum temperature
requirement of 60°F will thus be met. The resulting total mass of

the suit is then a not unreasonable 64 pounds.

PART II
SUIT WITH FINITE THERMAL CONDUCTIVITY

The preceding analysis assumed an infinite thermal conductivity of
the space suit material so that no temperature gradients could exist in
the sult. This restriction will now be relaxed to allow different suit
thicknesses and thermal conductivities in order that these -témperat.ure
gradients may be examined. Since the maximum temperature difference
which might be encountered is of primary interest, the heat input and
the outgoing radiation have been chosen so that extreme temperature

gradient conditions will be encountered. Fig. 7 illustrates the model
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which was used. From Fig. 7 it is seem that the suit is to be subjected

to a solar heat flux, ﬂ g > only at one end and the remaining two sur-
faces of the suit are allowed to radiate into space at zero degrees absolute.
In addition the total heat absorbed by the end area is assumed to be con-~

centrated uniformly around the circumference of the shell at its initial

boundary x = 0. The metabolic heat is uniformly distributed only

along the inner cylindrical surface, and the entire heat-transfer process

is assumed to be at steady-state.
With these assumptions and the suit geometry of Fig. T, the heat

balance for an elemental length of the cylindrical shell is expressed by:

dQ + OF - Q¢ o)
dx - = |
Substituting the defined exp:essions: o\
ek TDN A
Q=-KTDT T

Qr= CemaLT?
QI’T\ :-WDL-am

for the wvarious heating rates, and nondimensionalizing:

2
db | pg*-3 =0 (5)
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The boundary conditions for this ordinary second order differential

equation can be determined by considering the heat balance with the

external enviromment &t each end:

2
Q‘t M=0s Q=-KTDT; To 3% :WD:S 2s (6)

—_C!_Q_ —_ L_Do(égs ‘_B
dn ,q_o“‘ 4K% T

Oy

2 __4 -
at M=1, @Q=- mml[j—%%:o‘e"‘j T (1)

T
oy 98| -_LDLCTE g*_ g

M
Therefore, the solution of Eq. (5) subject to the boundary cohd'ition,
Egs. (6) and (7) will provide the temperature distribution along the
cylindrical portion of the suit for various suit materials and thick-

nesses. The maximum temperature difference will then simplj( be the

difference between the temperatures at the two ends.

Equation (5) was solved by a numerical integration scheme to

provide the required longitudinal temperature distribution. The

numerical work is greatly reduced by the use of the rellations for

the various parameters:

LDeCs 3s - ¢ Rie 3

_arTe L _ _
A= s 2 B e s 9o
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The following constants used in Part I were also selected:

L = 5.75 ft.
D = 1.04 f£t.
0(5 = 0.12
€ 0.8

Qm = 800 Btu/hr

AT Z 20.5 £t2
The number of arbitrary parameters is then reduced to ‘one, the initial
slope B, which is a function of the material thickness and thermal con-

ductivity.

The required suit shell thickness and mass can then be determined

from the relations

Té - O-;:—BQT (8)
_2.86 F
M = 5 - (9)

In the first part the sult temperature varistion with time was
determined from the balance of the metabolic heating with the vex-bernal
environment as influenced by the heat retention capacity of the material

and. the surface radistion properties. The shell thickness ( 7'; ) was
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determined as a function of the heat retention parameter, which was
chosen as four in the sample problem, and the surface radiation properties

to limit the minimum suit temperature to 62°F for a 300-mile orbit:

tA
T =€ Le (10)
l32pC

Therefore, with the various assumed constants, the ratio of the thick-
nesses or masses is a function of the material thermal diffusivity and
the initial slope B:

T)'-—-—M\-— E.OC
’}*é"M'a“'ESB (11)

When this ratio is greater than one, the material thickness as
required by the first analysis must -be chosen to provide a proper thermal
enviromment. Since this thickness is greater than that r.equired by the
present analysis, smaller equilibrium maximum temperature differences will
exist. If the ratio is less than one, then the thickness computed in
Eq. (11) must be chosen to minimize the maximum temperature difference.

This thickness is greater than that computed with Eq. (10) and this

Pprovides a greater thermal capacity which will lengthen the time for the

suit to reach thermal equilibrium with its external environment. This
ratio is useful only for the above type comparison since it éompares the
results of the time-dependent analysis of the first part with the results

of this non-time-dependent study.
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Finite Thermal Conductivity Results

15.

Equation (5), as restricted by the boundary conditions and simplifying

relations, was integrated numerically with the Runge-Kutta method on a

digital computer for a range of initial slopes, B. Agreement with pre-

computed slopes at |, = 1 was obtained to seven significant figures.

Figure 9 and 10 present in graphical form the numerical results for

the temperature variation along the suit and the maximum temperature dif-

ference from x = 0 to x = L. The strong dependence of both the temperature

and maximum temperature difference on the parameter B can be seen from the

figures.

A small value of B is desirable in any suit design problem.

It

may be seen, however, that small values of B come at the expense of increased

shell thickness and mass for a given shell material,

The shell thickness

increases as the ratio —‘f- increases and therefore, it is desirable to have

this ratio low. Aluminum and Copper have the lowest ratio foArvmetals while

the ratios for fabrics are approximately 100 times as largé.

The interlocking considerations of both the infinite and finite thermal

conductivity analyses can be illustrated by the following example:

AT

Given: Maximum Tolerable

To be determined:

maximum A T.

Solution:

1.
2.
3.
L.

With Fig. 9 and AT

From Eq. (9) and

From Eq. (8) and B,

From Eq. (11)

B,

%

111

= 30°F

Materisl type, thickness, mass, and resuvlting

30°F, By = 0.043
0.043, My = 951b,, for aluminum

0.043, Te = 0.33 in for aluminum
T_m

Ma

= 3.7 for aluminum
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. T .
5. Since 7},—? | , then the thickness T\, , and mass M,
te
must be used. Therefore,

7 =37Tx0.33= .22 in.
M=3.7x 95 = 352 |bwm

6. With Eq. (9) and My = 352 Ib,: B, = 0.011 for aluminum

7. With Fig. (9) and B, = 0.011: AT = 5.8

Thus & suit constructed with aluminum shell 1.22 inches thick would
have & mass of 352 1b, and a 5.80F maximum equilibrium temperature
difference.

Since the thermal diffusivity of most light metals is in the
range of 3.6 to 4.4 £tZ/hr, the thickness ratio will be greater than
one for B70,01l. Therefore, most light-metal suit thicknesses computed
with the results of the first.analysis wiil develop small equiiibriwn teinp-
erature difference and be very thick and heavy. , With the general conclusion
the 5/ 8-inch-thick, water-filled shell sugges*bed previously becomes attractive
gince it would have a mass of 6’1; lbm. The very large equilibrium and non-
equilibrium tempera'bure difference that would exist, since T Had = 186

could be reduced by circulating the water. This possibility will be

examined in the next section.
PART III
THE EFFECT OF CIRCUIATING WATER

In order to examine the effect on the shell temperature difference of
circulating water in passages Jjust inside the outer wall, the model used

in the second analysis will have to be modified as shown in Fig., 10. Since
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maximum tempersture differences are of primary interest, the math-
ematical model is chosen to produce these extreme conditions. Thus
the solar flux is again assumed to be incident on ohe end of the cylinder
while the other two surfaces are radiating to a zero temperature environ-
ment. The solar flux is also assumed to be concentrated uniformly around
the circumference of the outer shell at its initial boundary. In addition,
the metabolic heating is uniformly distributed along the inner shell surface
and the suit is taken to be in thermal equilibrium with its eﬁvironment.
If the fluld flowing through the passage is specified as being
incompressible, laminar and fully developed and having constant physical
properties , the energy equation describing the temperature field in the
fluid may be written as

2

The temperature boundary conditions gre specified as

Solution T:” T(x) )’)

Boundary Conditions

T(O>\JJ =To (13a)

5 %
T(X,\“)'-‘#a\e (13b)
%r_(xj-\r): %—Y—“— (13¢c)
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Condition: 13b, as is explained more fully below, is teken from the
results of the second analysis to give the maximum possible temperature
difference along the inner shell.

Equation (12) may be put into dimensionless form by the following

' - X - -
substitutions g A = &=
L S=v o T

2
Umonx AB___ _C)_@__._.
P o ¢ GL&”"L'“O (m?

where Qo= Yauw\“/o(w | - The boundary conditions become

6(0,8) = IB

oimyl) =€

’a’a“g“("( :‘|) =-A
where >\ = Qm Y‘/KwTé) and the heat conducted along the inner wall
is neglected.

In the above, it has been assumed that the solar heat is conducted
only through the outer shell and is not influenced by the flowing fluid.
The resulting temperature difference in the outer shell is then the one
computed in the second analysis and is applied in this analysis as the
boundary condition on that surface. Under these conditions the flow rates
computed will be maximum since the flowing water would clearly produce a
more moderate temperature distribution in the outer shell. Details of the
solution of Eq. (14) are given in Appendix III. The results é.re discussed
below.

Témpemture'_differene‘és? in the inner shell and over the passage length
are shown in Fig. 1l. They are plotted against the dimensionless flow

rate of water (Q ) and for two values of the dimensionless metabolic



19.

heating parameter ( A ).

Figure 2 illustrates the decrease in temperature difference with

increasing water flow rate. This decrease is shown quantitatively in

Table I for pérticular values of the suit and wé.ter passage geometry,

i.e., L=5.76%2t, Y =5/16 in, Xw = 5.5 x 103 £t2/hr. The flow

rates are for water flow around the complete suit eircumference.

Table I - Water Flow Rates

A= 0.0 Az=0.006
AT °F Flow Rate ~ Flow Rate
(Gals./min) (Gads. min)

0 2.02 1.618

5 1.h16 1.21k

10 1.112 1.012

15 0.950 0.808

20 0.808 0.728

25 0,606 0.668

Figure 2 also indicates that changes in the metabolic heating rate
do not have a great influence on the water flow required. The two values
given on the curves are for zero metabolic heat rate and for a value of

A Z 0.006 which corresponds to the metabolic heat rate found in a

normal man.
It may be concluded from the above that temperature differences in

a space suit under the conditions specified may be kept to reasonable



values withoﬁ.t excessive flow rates of the cooling fluid. Also the
variations in the distribution of metabolic heating over the body
surface and those due to differences ‘:‘i.n PRysical activity do not
appear to be important in their influence on the required flow rate

for the cooling fluid.

SUMMARY & CONCILUSIONS

An appropriately chosen analytical space suit model subjected to
environmental extremes has been examined to provide knowledge of the
dominant heat transfer processes and to determine the suit temperature
control requirements. Analytical results demonstrate that a wide range
of temperatures may be produced by vériation of the surface spectral
properties and the external heating sufficiently limited by seiection
of low Xs/e ratios. High heat capacity materials are required to
inhibit rapid temperature changes and prevent freezing temperatures
when passing through the earth's shadow. A water liner is recommended
as the highest capacity per pound suit counstruction.

Intolerable temp)erature differences can exist over the suit surface
depending on its material and thickness. However, circulation of the water
at small flow rates will prevent their occurrence.

Finnally, a water Jacketed space sult appears practical and when
modified to satisfy the requirement of an astronaut's physiological
processes should result in a garment capable of ;proteéting him outside a

vehicle that is located in an orbit about the earth.



APPENDIX I

Details of Orbital Suit Energy Balance

Figure 5 illustrates the model 'chosen for the orbital suit.

Application of the energy relation, Eq. 1, to the variety of radiation

fleld shown in the figure yields

®g3sAxe T Xv q.v Ax,v t+ O(sqg,f’é-s P\A%R'*‘K3‘QEQEA&E+$G A
I-1)
= ArCeT eV jtT (

In the above equation, the symbol, ‘;? » represents a heat flux

('b*tu/hr f-t) with an appropriate ideﬁtifying subscript. If the equa-
tion is divided by €At ?E’ after rearrangement, it may be written as

follows:
Ao, s AR s §s <y Axv| Ty Axg
[AT + /E?,SR AT J c ?E + c AT 9, ‘1": }35 I:KD AT } (1.2)

_GZ4+ Lcv |dT
- ?E GAT ?E &t

The reasonable assumption has been made that since the object in orbit

will have the same order of magnitude of absolute temperature as the

earth, then

(1-3)

m
]
R
m
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The independent and dependent variables may now be made dimensionless
by the relations

T

t _T
Te (I-14)

a
t——t—;‘ and e

These relations and the expressions for the earth's radiation field at

its surface, ﬁ;:q“ / E’I permit rewriting of the entire equation:

1-5)
4 d 6 (
Ns‘!‘ Nv'i"N(,;+ NE=e'+NCW
where
~ | Acxis % 28
NS - )\T) -+ /?S RM 3 = __?_S__ Influence of Direct and
AT e Reflected Solar Radiation
N v Ry Awy | v Influence of Nearby
€ AT | 9¢ Radiation Fields
| 36 Influence of Internal
Ns = | — Heat Generation in the
& 35 Suit
Ne=|X _.f_\z«ﬂ Influence of Earth
E D Av Radiation
o i
r »
N c = ..{f_Q_\_/__E_ Influence of Sult
€ Aﬁ £ t P Heat Capacity
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At this point Eq. I-5 may be rewritten with the aid of the solution

Lo a  simple case. If the suit were suddenly placed in space and not

under the influence of any external radiation fields or internal heat
generation, its temperature would begin to decrease at a rate dependent
upon the thermal properties of the suit. ' Specifically, the parametersf

Ng, Ny, NG’ g.nd’ NE, would equal zero and Eq. I-5 would reduce to:

. | |
de _ -6 (1-6)

If the sult temperature at zero time were SOOF, the boundary condition

applicable to the above equation would be

1_6:0 3 0= ha . (1-7)

when

The solution to Ed. 1_-6 with the bqundary condition I-7, can be

obtained by direct integration yielding
‘. /
6= . |
3t + (1-8)
Ne | (1L2)®

A time constant for the suit may be defined as the time at which

o
the suit temperature drops to 0.9 of its original value of 26 F and‘ may

a
be designated by the symbol, z.c with the value

—

[A /Vc
¢ 378 (1-9)

The basic equation, I-5, may now be written in the form as shown in Eq. 2

‘Ns+ Nv+Ne+Ne=54+3.75’ti*3%' (1-10)
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APPENDIX II

Selection of Parametric Values

The maximun and minimum values of the parameters in the computer
calculation were based on the following data which are applicable to the

case of a circular orbit 300-miles in altitude.

e = 420 Bbu/nr

ﬁe = 71.5 Btu/hr

Te = u50%R
AT = 20,54 £ 2 >
- - HE
te = 1.15 nrs. ~
R = 2 (Assumes diffuse reflection from a
flat earth.)
fes = 0.

For the calculation of the maximum suit tempersture the suit orientation

must be such that
_ - AT
Awx, 6= Acr = Aoy = Ak E 2 5
thus permitting specification of maximum and minimum values for the para-

meters. The details are given below

—| Awis Ak.e | s Ps
= Ns=| T T s Rpr | e g,

Consider a maximum value of (¢ / e to be 10: then

[\]5 = 532 .

mox
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Actual values taken were

NS =50 ,

WO\K

— o .

Ns‘miv\ =

N, - Lv A« v tv o
VTl ke AT | 9

9y , max = 1000 btu/hr £t2,

When Ay=Xfg and

Nvlwmax = 7

Actual values taken were
N oo, = 10

Nv\ mn = 0.
el

Wnen o(g , minZO0.Land Jg = 39.1 btwhr £t°

(Based on a total body
heat production rate
of 800 btu/hr), then

- 5.47

Moy x

Ne

_Actual values taken were

N@‘ max = 10
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This parameter has a unique value since the suit is always under

the influence of the earth's radiation field. The calculated value is

Ng =0.43

[A _ | PCVTE
¢ 378 | EAT T lp

for rubber or wood °C has the approximate value of 25 Btu/ft2 °F.

Taking a minimum value of & as 0.1 and a maximum thickness as 0.5

inches
A

[. =155

MOk

Actual value taken was

5 =16

c
Using the parametric values calculated abot, Eq. I-10 in Appendix T

may be written

3 78’26 _c—l_t_x + pt = 70.43 , Bio)= 1|2 (11-1)

This hottest case together with the results of a more moderate case are
shown in Fig. 6. The range of possible temperatures is illustrated by
another case (also shown in Fig. 6)where the choice of the suit spectral

properties Limited the external heat inputs was computed by Eq. II-2;

378" jfd r 0% = 142, Ow=12 (12-2)
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This solution predicts the lowest temperatures 'bq be expected in a

300=mile orbit normal to the ecliptic plane.
For the low temperature case, all incldent radiation fields except |

the earth's as well as the internal heet generation rate were zero. The

renul*ajng equation was
3.7¢ t‘ ‘w +8* =043, = he (21-3)

These results are shown in Plg. T»
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APPENDIX TIII

Solution of the Cooling Fluid Equations

If the laminar velocity profile is inserted in the energy equation,

Eq. (14), the equation to be solved is

X |
g gea (1= Sa)—i—%— =0 (III-l)

-3 ,
where 6 (0,g)=1,8M,1)=€ wl, g—%—-(’%*'):~?\

Since Eq. (IIT-1) is linear the solution can be expressed as a
sum of solutions. Thus, the variable boundary conditions can be satis-

fied by a careful choice of particular solutions and the general solution

will have zero boundary conditions. The general sdlution can then be

expressed as an infinite series of functions that are orthogonal to each

other and the weighting function (|- §2 ).
Thus, assume that the form of the témperature funetion is

- - ~da"
6(,8)=A(-§)+6c(§)e + 2 Cn€  ¢,(5) (11I-2)
=\
TRETSETS 6(0,€) = I= A(l-%)+6(§)+§¢w bn (5)
B BN = &M
6(,1)=e =60 + —_ cne ¢all)
de _ 36 " RN
"‘“"S—('YL)—\)—- h:“hﬁ';\)‘g"(.'l)e + - Cn€ é—s"&(l)



and to satisfy the boundary conditions, let

Gay=1, ?E@("):O> ¢o1)=0, "g‘%'“("\) =0

(=)

} Cngnts)=1-201-%)-6(§)

o= LU= [-Mi-9)-6(5)] a18) ds
" JO-52) 8,(5) A g

Substitution of the temperature function, Eq. III-2 into Eq. III-1 reduces

it to two ordinary differential equations, Eq. III-3 and Eq. III-k. The

prime notation represents ordinary differentiation with respect to g .

6'\(5) —~E(1-8%)G(§) =0 (III-3)
where G (W= i, 6'(‘1):0

1]
and ¢) (g)‘ SY\_(l“%E)QSn(%) =0 (ITI-L)
where Bal1)=0 , GPn(-1)=0

To solve Equation ITI-2 let:

s> 4n-3 .
- J-l
G(EJ:KOZE ](:n(g) ) fn(g):% KV\:JS

and it becomes:
4n- {
3—\
. ITI-
, K““‘::\ S ( 5)

|l_ __?. _ ~2
]Cn = (1 %)eh-l‘“ 3) j=
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Now fi (-1) = 0 and by tsking £ (§) = 1 and setting £ (-1) = 0,
for nZ &, then the series for G ( % ) will converge for'ali finite

values of E. The condition G (1) = 1 can be met by setting

. -1
E A=
Ko = = E {n“)

The solution to Eq. III-5 is then:

an-7 [ K j'f‘3
- T M- it Ka-r, e K2 3 Kaa, ) g% '
- - - <+ L K
fa (5) 3_3__“ TG |§ R e B kg S Ky
where
: 4an=-7 ;
K - K . K(\'\al + Kf\—\ , & . _I ~KV\'§;J+KV\—\;Jf2
Wl e e 6 A 1) (it2) (j+3)

- X _ Katua E - d “Kn—\,g*wn—\,4‘+a
Kﬂ;a n=-1,\ e , ( ) <J+a) |

Eq. ITI-4 can also be solved by letting:

oo 4K-3 .
Bals) = KE Sn 3, (5)> 9.(5)= JZ\DM ¢

and it becomes:

-7 ,
9‘: (g)= (-89, = (1-%7) E - §1~y (III-6)

I=1

I
where 9 (-1) = 0 and by setting ¢, ( § ) = 1 and QK(-I) = 0, for k= 2,
the series for Q5 n( %) will converge for all finite values of Sy.
The solution to Eq. ITI-6 is then:
AK‘ T :]+3

T et . _ 3 g LR
G (§)= > | Dmdshonden /ey Denael, Dent epa§ede,

J=1
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where
4%-7 ‘
- _ Dwy D1, 2 Y | =D wDwer, ik e
DK;(_-DK)Q P + 3 + { ” (J‘+?~)(_j\+3)
I=\
4K-7 ‘
J . .
= — D1, _ | ~Dw-1,d +De-1,j+2
DK)& ""b‘&'\)\ 2 ( ) (3+a)
J=1

o2
W=\
and the eigenvalues, S,, are determined from E S 9c(1) = 0. Te
X=1i

first four are shown in Teble I and are sufficient to provi&e acceptable

accuracy for o' s less than ten.




TABLE I

5, = 0.91138%02, s, = -8.8465043, 8, T -2h.6L0M12, 8, = -48.944780

Since the maximum temperature difference is required, let

AB =B (071)= 6 (1,-1)
and AB is the temperature difference on the inner surface between the
suit ends.

Thus,

v \ oo o>
-B Z e £ (1) Swlo ol
46 =(re ") 1—o + >Cn(i-€ ) S0 IcEV | (zm)

ZE W = K=t |

n=l

However, since £ (g) =1, £, (-1) =0 forn»2 and g ( §) =1,

g (-1) =0 for k7 2

the Eq. III-7 beccmes

~B
A= =B ) Cn(l—esm)

n-!
%E fn(l) Nn=1\

Since AQ is a function of the paramenter O it is a function of the water

(11T-8)

flow rate, U , which can be computed as follows.

1
U= 2awrUay » where u‘\v:ummx/(l‘ﬁa)dgz“%_umax
and [}

Uwmox = °‘\,‘“’a" a3 thvg U= -%— (W-%ﬂ-l:)fl (III-9)




FIGURES
Figure 1 (a) Earth-Sun Relation Locking Normal to Ecliptic
) Plane
Figure'l (b) Earth-Sun Relation Locking Parallel to Ecliptic
L Plane ;

Figure 2 Relation Between Polar Axis and Ecliptic Plane

Figure 3 Geometric Model of Man, All Cylinders

Figure L Geometric Model of Man, Cylinder

Pigure 5 Model Chosen to Analyze Tme-Temperature Variation
in Orbit Suit

Figure 6 Variation of Suit Temperature with Time-Hottest
Cage

Figure 7 Variation of Suit Temperature with Time Coldest
Case, Barth Heating Only

Figure 8 Analytical Suit Model for Part II

Figure 9 Suit Tempersture Distribution

Figure 10 Maximum Suit Temperature Difference

Figure 11 Analytical Suit Model for Part IIX

Pigure 12 Nondimensional Flow Rate
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LIST OF SYMBOLS

46'1';6 LB/9,xsD
2

Total outside area of man -~ - ft

Ares associated with absorption of energy from

energy field - - £42
reu /ofvﬂ;

max
LDXs Qs /4 Tax T

Ty € B/Ks 9

Coefficients defined in Part IIT
specific heat of sult - Btu/lb F
Outside diameter of suit - ft |
Coefficients defined in Part III
-Bs,

Functions defined in Part III
Function defined in Part III
Functions defined in Part III

A given satellite altitude
Altitude of satelite

Diminution factor of earth's radiation to suit
location

Coefficients defined in Part IIIL

Thermal conductivity of suit material - Btu ft
v . : - hr £

Overall suit length - ft

B/L

OF



2 O =2 0=

el

= <9 & 9 o o

M

’ﬁ?bg%:

H ]

it

i

L{]

[ R

1]

L1

1]

Mass of sult - 1b,
Dimensionlegs heat parameter '
Heating rate btu's/hr

Heat flux - Btu/hr £t2

Radiation heat flux associated with location,
x, Btu/hr £t2

Nondimensional heat £lux,3 = qI/KT,T,
Reflection factor (fraction of solar flux which
is incident on suit if the earth's reflectivity
were 100%)

Channel half width - £t

4, 2

Temperature - degrees Rankine

Maximum tempemture difference - © R

Time - hours |

t/ tp

Volume f£low mte-@l/m:m

Flow velocity - ft/sec

Volume of suit - £t3

Width of passage - £t

Coordinate parallel to suit axis - ft
Coordinate perpendicular to suit axis - £t
Total absorptivity to incident radiation

Angle between satellite and normal to ecliptic

Angle of inclination of earth's axis measured clock-

wise from normal to ecliptic
Eigenvalues defined in Part IIT

Total hemigpherfcal emissivity
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o) =
A =
§. z
S =
-F ES -
% z
T =
¢ =
Subscripts
a =
c =
E =
G =
L =
m =
P =
R H
T =
s =
A" =
W =
0 =
1 =
2 =

Nondimensional coordinate parallel to suit
axis, M = x/L

m/mE’Part'I, T/T, Part II, T/T_ Part ITI
Nondimensional heat flux, A= jmr/ Ko

Nondimensional coordinate perpendicular to
sult axis, § = y/r

Density of suit - lbm/ft3

Reflectivity of earth and atmosphere to solar
radiation

Stefaﬁ-Boltzman Constant, 0 = 0.173 x 10'8 B*bu/ft2
Hr OF

Thickness of suit materisl - - £t

Functions defined in Part III

Reference - 5LOCR
Heat capacity effects
Earth

Generated energy
Value at x = L
Metabolic heating
period of orbit
Reflected energy
Radiated heat

Sun

Nearby vicinity
Water

Reference - 510 °R
From Part I

From Part II
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TOTAL SURFACE AREA =21.0 SQ. FT.

FIGURE 4
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FIGURE ¢
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