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ABSTRACT

Dense, symmetric graphs are useful interconnection models for multicomputer sys-
tems. Borel Cayley graphs, the densest known degree-4 graphs for a range of diame-
ters [1], are attractive candidates. However, the group-theoretic representation of these
graphs makes the development of efficient routing algorithms difficult. In earlier re-
ports, we showed that all Borel Cayley graphs have Generalized Chordal Ring (GCR) and
Chordal Ring (CR) representations [2, 3]. In this paper, we discuss two space-efficient
routing algorithms for Borel Cayley graphs in these GCR and CR representations. Sim-
ulation results are included for networks with 1,081 and 15,657 nodes. The performance
of the algorithm is compared with that of ezisting algorithms.

Key Words: Borel Cayley Graphs, Generalized Chordal Rings, Multicomputers.

1 Introduction

Multiprocessors and multicomputers are two major categories of parallel computers [4]. In
the former, processors communicate via shared memory whereas in the latter, each pro-
cessor has its own local memory (hence a computer) and communication is via message
passing. Whether it is a shared-memory multiprocessor or a message-passing multicom-
puter, an efficient interconnection network to interconnect the communicating elements
is critical to the performance of the parallel computer [5]. In the design of an intercon-
nection network, there are two important issues: the interconnection topology and routing

algorithms.

A variety of symmetric graphs such as the hypercube and toroidal mesh, have been

proposed as interconnection models [6] — [11]. Systematic node labelling of these graphs
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can provide the bases for routing algorithms. In these systematic instances, labels of the
source and destination node can be used to determine a next step which optimally reduces
the distance to the destination. These optimal, distance-reduction routing schemes are
easy to implement and thus making these graphs attractive. However, interconnection
graph density becomes very important for massively parallel systems and unfortunately
these systematically labelled graphs are not the densest graphs. (A dense graph has large
number of nodes with a small diameter and degree. The diameter is the maximum of
the minimal distance between all node pairs. The degree is the number of neighboring

elements of a node.)

A special class of symmetric graphs, Borel Cayley graphs are currently, the densest
known, degree-4 graphs for a range of diameters [1]. The definition of these graphs is
reviewed in the next section. Originally, Borel Cayley graphs are defined over a group
of matrices, which lack a simple ordering. Furthermore, connections are defined through
modular matrix multiplication. In other words, routing or path determination between
non-adjacent nodes is not trivial. The question arises whether ordering the nodes in
some way and labelling them with integers can lead to an efficient routing algorithm,
preferably based on a formula. That is, is there an optimal, distance-reduction formula

based on node labels? None has been found for Borel Cayley graphs.

In a previous report, we have shown that two optimal, time-efficeint routing algo-
rithms for Borel Cayley Interconnection graphs are feasible [12]. However, both algo-
rithms require a large database of O(N?) for the entire network or of O(N) for each
node. In this paper, we propose two sub-optimal but space-effient routing schemes,
namely the CR Routing and the Two-Phase Routing. Given a Borel Cayley graph with
N = pk nodes, where p is a prime and k is a factor of (p — 1), CR routing requires a

small table of O(k) whereas Two-Phase Routing has a space requirements of O(p + k).

This paper is organized as follows: In section 2, we review the definitions of GCR,

CR, Cayley graphs and Borel Cayley graphs and restate the propositions that all Cayley



graphs have GCR representations and that all Borel Cayley graphs have CR representa-
tions. An example from Borel Cayley graph is used to illustrate these representations.
In section 3, we discuss the Class-Congruence Property (CCP), a property pertinents to
Borel Cayley graphs in a special GCR representation. Section 4 presents the two space-
efficient routing algorithms, including simulations and examples. Finally in section 3, we

present a summary and conclusions.

2 Review

In this section we review the definitions of Generalized Chordal Rings (GCR), Chordal
Rings (CR) [11, 9], Cayley graphs [13] and Borel Cayley graphs [1].

2.1 GCR and CR Graphs

Definition 1 A graph R is # Generalized Chordal Ring (GCR) if nodes of R can be
labeled with integers mod N, the number of nodes, and there is a divisor ¢ of N such
that node ¢ is connected to node j iff node i + ¢ (mod N) is connected to node j + ¢
(mod N).

A Chordal Ring (CR) is a special case of GCR, in which every node has +1 and -1
modulo N connections. In other words, a CR satisfies the connection condition in Def-
inition 1 and, in addition, all nodes on the circumference of the ring are connected to

form a Hamiltonian cycle.

2.2 Cayley and Borel Cayley Graphs

The construction of Cayley graphs is described by finite (algebraic) group theory. Recall
that a group (V, *) consists of a set V which is closed under inversion and a single law of

composition *, also known as group multiplication. There also exists an identity element

IeV.



Definition 2 A graph C = (V,G) is a Cayley graph with vertex set V if two vertices
V1,03 € V are adjacent & vy = vy * g for some g € G where (V, *) is a finite group and
G C V \ {I}. G is called the generator set of the graph and I is the identity element of
the finite group (V, *).

The definition of a Cayley graph requires nodes to be elements in a group but does not
specify a particular group. A Borel Cayley graph is a Cayley graph defined over the Borel

subgroup of matrices:

Definition 3 Let V(,,) be a set of Borel matrices, then

Vipa) = {(g {) :z=a" (modp), y€Z,te Zk}

where p and a are fix parameters. p is a prime, a € Z, \ {0,1}, and k is the order of a.

That is, ¢* = 1 (mod p).

In other words, the nodes of Borel Cayley graphs are 2 x 2 Borel matrices, and modular
p matrix multiplication is chosen as the group operation *. Note that p and a are fixed
parameters and the variables of a Borel matrix are t € Z; and y € Z,. In other words,
there are N =| V |= p x k nodes. By choosing specific generators, Chudnovsky et al.
[1] constructed the densest, nonrandom, degree-4 graph for diameter D = 7,...,13 from
Borel Cayley graphs. It is also worth noting that the Borel Cayley graph discovered by
Chudnovsky with D = 11 has N = 38,764. In our research, we have discovered yet
another denser Borel Cayley graph with N = 41,831 for D = 11.

Borel Cayley graphs are defined over a group of matrices, which lack a simple ordering
that is very helpful in the development of efficient routing schemes. Furthermore, in
this original matrix definition, there is no concise description of connections. Adjacent
nodes can be identified only through modular p matrix multiplications. The problem of

finding an optimal path between non-adjacent nodes is not trivial. In earlier reports, we
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Table 1: The GCR/CR Constants.

proved that all Borel Cayley graphs can be represented by GCR (2] and CR graphs [3].
These GCR/CR representations are useful for routing because nodes are defined in the
integer domain and there is a systematic description of connections. We restate these

propositions as follows:

Proposition 1 All finite Cayley graphs have GCR representations.
Proposition 2 All degree-4 Borel Cayley graphs have CR representations.

The proof of these propositions are included in [2, 3] and therefore not repeated here.
Basically, these representations are achieved by choosing a transform element T and class
representing elements a;, ¢ = 0,...,q — 1 for the ¢ classes of a GCR/CR from the vertex
set. The choices of these elements are mainly arbitrary for the GCR case; and more

specific for the CR case (2, 3].

2.3 An Example

As an example, consider a Borel Cayley graph with p=7,a =2, k =3 and N = 21
nodes. For undirected, degree 4 Cayley graphs, the generator set G = {A,B, A", B~1}.

1 1 2 1 .
SupposeA:(O 1),B-—(O 1),thed1ameterD-—3.

To obtain a GCR representation, we arbitrarily choose the transform element T =

<(1) i) with T7 = I and class-representing elements a; = (c:) (1)) for class ¢ (see GCR
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Figure 1: Representations of BLy(Z7)

algorithm in [2]). With these choices, the divisor ¢ = k = 3 and V = {0,1,...,20}.
Connections can be defined as: For any j € V,if y mod 3 =¢: j is connected to j + «;,
j+aoft, j+Bi, and j + 87! (mod N), where the GCR constants o;, o], §; and 37! are
listed in Table 1. This GCR representation is depicted in Figure 1.

To obtain a CR representation, we choose the transform element T = A~!B where
T3 = I and class-representing elements a; = A’ for class . With these choices, the
divisor ¢ = 7 and connections can be defined as: For any j € V,if jmod 7T =1: jis
connected to j + 1, j — 1, j + 7, and j + A; (mod N), where the CR constants, 7¥; and
A; are listed in Table 1. We show this CR representation of the graph in Figure 1.

3 Class-Congruence Property (CCP)

In the transformation of a Cayley graph to a GCR, the choices of the transform element
T and the class representing elements a; are arbitrary (see GCR algorithm in [2]. By

1 1 a 0
0 1) and a; = ( 0 1) for a Borel Cayley graph, we

can provide a formulation of the GCR constants:

chosing specific choices of T = (



According to the partition, these imply that ¢ is connected to
i+t >+ <dy>p ¢ <i~ti>+<—aly >, g
<ttty > +<a'y2>p ¢, and <i—ty >, 4+ < —a'"hy; >, q.

The formulae for a;, o7, i, B! thus follow. O

In other words, by choosing the transform element T = (é i ) and the representing

i
?), we impose a natural numbering system for the matrices

element of class i to be ((6
in the group. It is this numbering system that allows us to deduce analytic formulae for
the GCR constants, a;, 8i, o}, and 8! for class ;. We notice that these constants are
different for the different classes. However they are congruent modulo ¢. This implies
that every class has the same class-connectivity and hence we name this property the

Class-Congruence Property (CCP).

Proposition 4 The Class-Congruence Property (CCP)

The GCR constants associated with a Borel Cayley graph with T = (1 1) and

0 1
a; = (% (1)) are congruent modulo q, where q is the number of classes in the GCR.
Specifically,
a= aq; (mod q9) =1 Vi

C2 ai-l (mOd q) =q- 131 Vl; (2)
c3 G (mod ¢} =t Vi,
a= B (modg =q-t Vi

The proof of this proposition is simply the modulo ¢ arithmetic of the connection con-

stants a;, o', B; and B! in Equation 1.

We can verify Equations 1 and 2 with the 21-node Borel Cayley graph described in
Section 2.4. In that section, we have a GCR representation of the graph with choices of T
and a; that match the specifications in Propositions 3 and 4. A simple substitution shows
that the values of a;, [, 3;, and B! in Table 1 satisfy Equations 1 and 2. In other
words, even though the GCR constants, a;, e[, §;, and B;! are different for the three

classes, they are congruent modulo ¢ = 3. This property is useful for routing because it
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facilitates the decoupling of the original graph into two smaller sub-graphs. We call the

resulting algorithm Two-Phase Routing and is discussed in the next section.

4 Routing

In general, the goal of routing is to send messages between pairs of nodes. There are
two aspects: path identification between non-adjacent nodes, and how to resolve conflicts
when multiple messages in a node have the same outgoing links. In this paper, we
discuss the first aspect: path identification. Path identification is a trivial problem for
graphs with path-defining labels that implicitly define shortest paths between vertices. In
this case, optimal routing or shortest-path identification can be achieved computationally
with an algorithm that has a space requirement independent of graph size, i.e., its space
complexity is O(1). The toroidal mesh [14] and hypercube [8] are examples of such
graphs. However, it is inconceivable for Borel Cayley graphs to have path-defining labels

in the matrix domain.

When Borel Cayley graphs are represented in the integer domain of GCR graphs,
two optimal routing (path identification) schemes become feasible. In a previous report,
we have summarized the two algorithms, a table look-up scheme and Vertez- Transitive
routing [12]. Both algorithms are optimal in the sense that shortest paths are guaranteed.
However, both have a large space commitment of O(N) at each node, or O(N?) for
the entire network of size N. To reduce the space-commitment, we propose two sub-
optimal but space-efficient routing algorithms, CR routing and Two-Phase routing. These

algorithms are sub-optimal only because shortest paths are not guaranteed.

4.1 CR Routing

The existence of CR representations for any Borel Cayley graphs permits a simpler and

more space-efficient routing algorithm which routes messages to intermediate nodes that



Step Current Node Neighbors
0 0 1,6,11,20
1 20 0,11,14,19
2 14 4,13,15,20
3 15 1,8,14,16
4 16 -

Table 2: CR Routing Steps.

decrease the peripheral distance from the destination node. Here peripheral distance refers
to distance around the circumference of the CR graph. For example, node 1 is closer
to node 3 than to node 4 in the peripheral sense. For this algorithm, each node stores
only two CR constants in addition to an implied +1 and —1. For obvious reasons, paths
obtained by this algorithm are suboptimal in length. Instead of choosing an intermediate
node from the immediate neighbor of the source node, a more dynamic approach is to
choose intermediate nodes from all nodes within a certain distance from the source. In
other words, the source node “looks ahead” a certain distance and routes the message
towards the node that is “closest” (in the peripheral sense) to the destination node. This
dynamic approach requires more storage, 2q = 2k constants, instead of 2 constants, need

to be stored in each node.

4.2 An Example

In this section, we use the same Borel Cayley graph described in Section 2.4. Again,
p=7T,k=3, N =21, and diameter D = 3. We have a CR representation with divisor
q =7 (Figure 1).

Suppose we want to find a path between nodes 0 and 16. The immediate neighbors
of vertex 0 are nodes 1, 20, 6 and 11. Out of these nodes, vertex 20 is closest to vertex

16 in the peripheral sense, i.e., counting links around the circumference of the CR graph.
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The neighbors of vertex 20 are nodes 0, 19, 14 and 11. Out of these nodes, we choose
vertex 14, which is two steps from the destination vertex 16. We have thus found a path:
0, 20, 14, 15, 16. We observe that this path has a length of 4 while the graph’s diameter
is only 3. As indicated in the next section, sub-optimal path length is a serious drawback

for this algorithm. The different steps of the algorithm are summarized in Table 2.

4.3 Two-Phase Routing

In this section we present a routing algorithm that requires a moderate amount of storage
and finds paths of reasonable length for Borel Cayley graphs. We assume the graphs
are in GCR representations and there are ¢ classes. We call this algorithm “Two-Phase”
routing because the original large Borel Cayley graph with N = px k nodes is divided into
two smaller graphs. Such decoupling is made simpler because of the Class-Congruence
Property of Borel Cayley graphs described in Section 3. The algorithm is divided into
two phases. In Phase I, we have a degree 4 GCR graph of size N; = k. In Phase II,
we have another graph with size N; = p. In essence, Phase I deals with class-to-class
routing while Phase II routes messages within the same class. A message is first sent
to an arbitrary vertex of the same class as the final destination; then in Phase II, it is

routed to the destination vertex. We describe these two phases separately:

4.4 Phase I: Class—to—Class Routing

This phase of the algorithm is responsible for routing messages from source nodes to
arbitrary nodes of the destination class. In this section we describe how the Class-

Congruence Property described in Section 3 enables routing with much less storage space.

Proposition 3 provides explicit formulae for the connection constants a;, o', 8,

and B! for class ¢ of a Borel Cayley graph in a GCR representation. Furthermore
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Proposition 4 shows that:

a= o (modq) Vi
2= o' (modq) Vi
= B (mod q) Vi
cs= B7' (modq) Vi

The fact that ¢; to ¢4 are independent of class implies the “class connection” pattern are
the same for different classes. Note that in this phase we route messages to arbitrary
nodes in the destination class. We can thus consider routing in a simpler GCR with
divisor = 1 and size Ny = k for the ¢ = k original classes. Each vertex, which actually
represents a class in the original graph, has the same connectivity constants, ¢; to ¢4. In
other words, we can apply the vertex-transitive routing algorithm for this smaller GCR
graph. With only k nodes, the space complexity for this phase is reduced to & x § and
the time complexity is O(D,), where D, is the diameter for this phase and D, < D.
With only 1 class, vertex transitivity becomes simple: if ¢ connects to j by a sequence of

enerators, 0 connects to j' = 7 — ¢ through the same sequence of generators.
g J =1 g q g

4.5 Phase II: Within Class Routing

In this phase, we consider routing messages within the destination class. We assume
messages originate from nodes in the destination class, and need to travel some multiple

of q (peripheral) distance to the destination vertex.

In other words, in this phase, the source vertex ¢ = myq + ¢; and the destination
vertex j = maq + c;. Since both source and destination are in the same class, ¢; = c;.
Our originalyve‘rtex-transitive property becomes: if : connects to j through a sequence of
generators, then vertex 0 connects to vertex j’ through the same sequence of generators,

where
! <a* Ul (my—m) >, ¢+ <ca—c >,
= < a1 (my—my) >, q.

<.
il

That is, if : and j are different by some multiple of ¢, j’ is also some multiple of ¢q. Because

of this property, we can establish a database that stores all the paths from vertex 0 to the
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nodes g¢,2gq,...,(p— 1)q. Routing between any nodes ¢ and j can be achieved by looking
up the corresponding row j’ of the table. To conclude, this phase needs a table of O(p)
and the time complexity is of O(D;) where p is the number of nodes and D, < D is the

diameter in this phase. The following example illustrates this algorithm.

4.6 An Example

In this example, we find a path between vertex 0 and 16 of the Borel Cayley graph
described in section 2.4. This Borel Cayley graph has p = 7, N = 21 nodes, ¢ = 3 classes,
diameter D = 3, and the connectivity are defined as: For any : € V, if : mod 3 =:

“3™ : 1is connected to ¢ + aj,t + aj'l,i + Bt + ﬂj"l;

“0” . iis connected to1+ 3,2 — 3,2 + 4,1 — 10;

“1” : iis connected to1+ 6,2 — 6,2+ 7,2 — 4; (3)
“2” : 1is connected to1 — 9,1 + 9,1+ 10,2 — 7.

= aj (rnod q) =0 V]’
Furthermore, ¢ = aj-l (modq) =0 Vj;
= B (modq) =1 Vj;
ca= B;' (modq) =-1 Vj.

In phase I, we have a simple GCR with 3 nodes where each one connects to +1. In
other words, routing can be achieved in a single step; taking path B for +1 and taking
path B~! for —1. In this example, source vertex : = class (0) = 0, destination vertex
j = class (16) = 1. We apply our vertex-transitive formula with j' =< j—i >;= 1. That
is taking path B gets to the correct destination class. Furthermore our GCR constants
show that taking path B corresponds to +4 in class 0. Hence our problem now becomes

finding a path between vertex 4 and vertex 16, both of which belong to class 1.

In phase II, we apply our vertex-transitive algorithm to a graph with p nodes. Ac-
cordingly, we have a table of size (p — 1)D. Such a table is shown in Figure 2. We apply
our vertex-transitive formula for this phase and find ;' = 2¢q. We then look up row 2
of the database and find the corresponding path to be: AA. This concludes the routing
process and we have found path BA A between nodes 0 and 16.

13
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Figure 2: A Phase II Routing Table for BLy(Z)

4.7 Performance Evaluation

We use a computer program to implement these two routing algorithms. To evaluate
the performance of the algorithm, a message is sent from an arbitrary source node, say
node 0, to all other nodes in the network. The path length obtained through two-phase

routing is recorded and compared with the optimal (shortest path) case.

We investigate large Borel Cayley graphs with two different values of p. The first case
deals with p = 47,k = 23,a = 2, and N = 1,081, and in the second case p = 307,k =
51,a = 4, and N = 15,657. In both cases, we consider graphs with four different sets of
generators and hence different diameters, the first of which corresponds to the densest

degree-4 graphs. We assume the following notations: %, and t; define the generators

A= (a(;l i), B= (a(;’ i), D stands for the diameter, avg is the deterministic
average path length, which is determined by taking the average of all optimal path lengths
between any two nodes. The following parameters are obtained from the program: avg
for the average path length, and maz for the maximum path length. The results are

summarized in Table 3 and Table 4. In the case of CR routing, parameter d corresponds
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p=47, k=23, a=2, N =1081
| set 1 | set 2 | set3 | set4

th 1 7 1 3
ts 7 8 2 6
D 7 8 8 9
avg 5.54 | 5.74 | 5.76 | 5.72
D, 4 6 6 6
D, 7 7 7 7

d=1 max| 50 39 50 41
avg | 24.50 | 18.40 | 20.85 | 17.64

CR d=2 max| 35 32 37 33
avg | 13.67 | 14.17 | 14.24 | 12.68

Routing (d=3 max| 25 26 24 20
avg | 9.71 }10.83 | 10.16 | 9.31

d=4 max| 16 17 22 18
avg | 6.65 | 7.33 | 7.67 | 7.53

Two-Phase max | 11 13 13 13
Routing avg | 7.67 | 8.12 | 8.50 | 8.03

Table 3: Simulation Results for p =47, N = 1081.

to the different “look ahead” distance. For d = 1, only the immediate neighbors are
considered and for d = 4, the neighbors at distance 1,...,4 are considered. Furthermore,

the average path length and the path length distribution for the densest cases are also

plotted in Figures 3 and 4.

From these results, we observe that the two-phase routing has average path length
comparable with the diameter D and maximum path length bounded by 2D. The CR
routing, on the other hand, has large path lengths in general, even though its performance
improves with the “look ahead” distance d at the expense of a higher time complexity. To
conclude, two-phase routing gives good performance {(maximum path lengths are bounded
by 2D and average is close to the diameter D) with a small space complexity of O(p+ k),
where N = p x k.
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p=307, k=51, a=4, N = 15657
[setll set21 set3] set 4

t 2 1 4 1
t; 16 4 13 2
D 10 11 12 15
avg 810 | 8.16 | 8.56 | 9.65
D, 6 7 8 13
D, 10 9 10 10

d=1 max| 125 240 152 245
avg | 52.76 | 130.63 | 69.81 | 120.53

CR d=2 max| 115 112 132 227
avg | 49.99 [ 62.65 | 51.24 | 121.42

Routing |d=3 max| 100 76 107 91
avg | 35.56 | 31.04 | 38.88 | 32.31

d=4 max| 55 51 68 75
avg |20.64 | 21.82 | 24.30 | 24.69

Two-Phase max | 16 16 18 23
Routing avg | 11.49 | 11.38 [ 12.37 | 13.99

Table 4: Simulation Results for p = 307, N = 15657.

5 Conclusions

A variety of network topologies have been proposed as efficient interconnection networks.
In many cases, the networks are symmetric and have systematic vertex labels. Further-
more, knowing the vertex labels of the source and destination often permits the optimal
choices of the next step in a muiti-step path. These choices are optimal in the sense that
the distance to the destination node is reduced. Such distance-reduction routing property
is essential in the efficient implementation of the network. However, these systematically

labelled graphs are not the densest, an important factor in the construction of massively

parallel systems.

A special class of symmetric graphs, Cayley graphs, has received special attention as

interconnection models [1, 15, 16]. One of its subclass, Borel Cayley graphs, are the

16



currently densest known, constructive , degree-4 graphs for diameter D = 7,....13 [1].
These Borel Cayley graphs are originally defined over a group of matrices, the Borel
matrices. Unlike other existing networks, Borel Cayley graphs lack a systematic vertex
labeling that can induce a distance-reduction routing algorithm. For Borel Cayley graphs,
knowing the labels of the source and destination nodes does not render the determination
of a path. In other words, path determination between non-adjacent nodes is not a trivial

problem.

In earlier research effort, we have proved that all Borel Cayley graphs have GCR
and CR representations. These GCR/CR graphs are existing topologies, defined in the
integer domain. Furthermore, there is a concise description of connections based on class-
structure. This novel concept of transforming Borel Cayley graphs into GCR/CR made
two optimal routing schemes, a general table look-up scheme and the Vertez- Transitive
routing, feasible [12]. However, these schemes require a space commitment of O(V) at
every node and O(N?) for the entire network of N nodes. In this paper, proposed two

sub-optimal but space-efficient algorithms, the CR routing and the Two-Phase routing.

CR routing exploits CR representations of Borel Cayley graphs. This representation
implies the existence of a Hamiltonian cycle formed by connecting adjacent integers in
the modulo N labels, and thus making CR routing a distance-reduction scheme. Fur-
thermore, it is highly space-efficient. For a Borel Cayley graph with N = p x k nodes, its
space requirement is only of O(k). However, its path-length is sub-optimal. Simulation

show that look-ahead beyond a single step produces path length closer to optimal.

Two-Phase routing exploits the Class-Congruence Property (CCP), a property we dis-
covered to be pertinent to Borel Cayley graphs in a special GCR representation. Its space
commitment is of O(p + k) with time complexity O(D), or O(p) with time complexity
O(D?); and it guarantees path length < 2D, where D is the diameter. Simulation shows
that the average path length is close to the diameter. The proof of CCP is also included.
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