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ABSTRACT Backpropagation of utility is one of the many methods for neuro-control. Its
goal is to provide a series of control signals to mazimize a utility function over time. In this
paper, we demonstrate how to use the basic backpropagation and backpropagation through time
algorithms as fundamental building blocks for backpropagation of utility. We also explore the
parallel implementation of the algorithm on Intel’s Paragon computer.

The backpropagation of utility algorithm is composed of three subnetworks, the action
network, model network, and an utility network or function. Fach of these networks includes
a feedforward and a feedback component. Pseudo-computer codes for each component and
a flow chart for the interaction of these components are included. To further illustrate the
algorithm, we use backpropagation of utility for the control of a simple one-dimensional
planar robot. We found that the success of the algorithm hinges upon a sufficient emulation of
the dynamic system by the model network. Furthermore, the ezecution time of the algorithm
can be improved through pattern-partitioning on multiple processors.

Keywords: Neuro-Control, Backpropagation of Utility, and Pattern-Partioning.

1 Introduction

Neurocontrol is defined as the use of neural networks to emit control signals for dynamic sys-
tems. Neural networks offer several advantages over conventional computing architectures [1].
Calculations are carried out in parallel yielding speed advantages and programming is done
by training through examples. These networks are characterized by their learning and gener-
alization capabilities [2]. The neural network “learns” the system model by training through
a set of training patterns. Their inherently parallel architecture and trainability make neural

networks attractive candidates for fast, real-time control with unknown dynamic models.

1The authors acknowledge and appreciate discussions with and contributions from Paul Werbos. This
research was supported by the National Science Foundation under Grant No. ECS-9407363. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors and do
not necessarily reflect the views of the National Science Foundation.
The authors also like to thank Professors James Glimm and Yue-Feng Deng in the Center for Scientific
Computing of the Applied Mathematics Department in SUNY Stony Brook for the use of the Intel Paragon
parallel computer.



The most dominant form of neural networks used 1s the multi-laver backpropagation net-
work. It is a hierarchical design consisting of fully interconnected layers of neurons [3]. The
weights associated with each neuron are updated by taking the gradient of the total squared
error with respect to the weights and performing a gradient search of the weight space [1].
Errors are propagated backwards through the network, hence the name back-propagation.
Despite its popularity, the main drawback of the basic backpropagation algorithm is its slow
convergence rate. Various efforts are made to increase the rate of convergence, e.g., the
Delta-Bar-Delta Rule [5). By incorporating memory from previous time periods into current
outputs, Werbos developed a more sophisticated version of the basic backpropagation algo-
rithm, known as backpropagation through time [6]. In our previous work, we found that by
combining the backpropagation through time algorithm with the Delta-Bar-Delta rule, the

neural network provides more robust and faster learning [7].

Almost all neural network applications in robot control involve the incorporation of one or
more backpropagation (basic or through time) neural networks into the controller. Different
approaches exist in the method of incorporating the neural network into the controller and
of training and adaptation [8]. Among these approaches, there are five basic schemes: the
supervised' control, direct inverse control, neural adaptive control, back-propagation of utility,
and adaptive critic networks. Werbos [9] provided a detailed summary of the five schemes
including the pros and cons of each method. In this paper, our objective is to illustrate the
theory of Backpropagation of Utility through a simple example, the control of a 1-D planar
robot. To decrease the execution time, we also explore parallel implementation of the various

algorithms on multiple nodes of an Intel 110-node Paragon parallel computer.

This article is organized as follows: Section 2 is a review of all the basic equations for the
backpropagation algorithms (both the basic and the through time versions), including the
delta-bar-delta rule for speeding up convergence. A simple network with six neurons is used
to illustrate the validity of the equations. Then in Section 3, we show how these equations are
used as fundamental building blocks for the Backpropagation of Utility algorithm. Section 4

illustrates how the algorithm is used for the control of a 1-D planar robot. Parallel imple-
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Figure 1: A Siz-Node Two-Layer Network.

mentation of the algorithms on multiple processors of an Intel Paragon parallel computer is

explored in Section 5. Finally, conclusions and a summary are included in Section 6.

2 Basic Equations

In this section, we present the basic equations for backpropagation and backpropagation
through time algorithms. A simple example is used to illustrate the validity of these
equations. For expository convenience, we assume there are m inputs, n outputs, H hid-
den nodes, and T training samples. The training inputs are presented to the network as
Xi(t), i=1,...,m, t=1,...,T and the corresponding desired outputs are Y;(t), :=
l,...,n, t=1,...,T. The detailed of the algorithm can be found in [6]. For the reader’s

convenience, they are also summarized here.

2.1 Basic Backpropagation Algorithm

The backpropagation algorithm is simply a tool for calculating the derivative of a function.
The network equations con.sist of the feedforward and feedback components. During the
feedforward mode, the network calculates an estimated output ¥ as a function of the in-
puts and the weights associated with the neurons. An error function is then produced by
comparing ¥ with the desired output Y. In the feedback mode, the gradients of this er-
ror with respect to the weight space are identified. Subsequently, the weights are updated
through the steepest descent method. More specifically, for training samples, t = 1,...,T,



the feedforward equations are:

r(t) = X(¢) [ <i<m Y
fort=m+1ltor=m+ H +n.
i-1
net,-(t) = ZLV,].t](t)
1=1

I,‘(t) = s(net,'(t))
Yi(t) = mamai(t)  1<i<n (3)

The error of the network is obtained by comparing the actual and the desired outputs.
T T n
E =) E(t)=3_3 05[Yi(t) - Yi(1)]? (4)
t=1 t=1i=1
where Y;(t) is the output of the neural network and Y;(t) is the desired outputs. This error
is fed back to the network. The error gradient F_W;; with respect to each weight, W;; is

calculated with the feedback equations:

For training samples, t = 1,...,T, the feedback equations are:

. OF

Yi(t) = —— = Yi(t) = Yi(¢ =1,..., 5
0= 570 = HO ¥ . -
forir=m+H+ntor=m+1,
R m+H+4n
F-.’C,’(t) = F—K—m-i{(t) + Z I’Vj{ * F-net,(t) (6)
J=i41

F neti(t) = s'(net;) * F_zi(t)
T
FW;; =) Fonett)*z;(t) i,j=1,....m+H+n (7
t=1
where s(z) is the sigmoidal transfer function and s(z) is the derivative of s(z). Also,

s(z) =1/(1+¢7%) (8)

8'(z) = s(z) * (1 - s(2)) (9)
Once F_W;; (the gradient of E with respect to W;;) is calculated, each weight is updated

according to:

New W;; =W;;—axF.W,;; i,5=1,....m+H+n (10)
where a is a constant called the learning rate.
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2.2 An Example

In this section, we use a small network to illustrate the equations presented in Section 2.1 ani
to demonstrate that the backpropagation algorithm is simply a tool for derivative calculation.
Consider the network with m = 1 input node, n = 1 output node, and two hidden layers
each with two neurons. The network is layered and there is no connections for nodes of the

same layer. The network with the weights associated at each node is shown in Figure 1.

According to Equations 2, the feedforward equations are:

zy(t) = Xi(t)

nety(t) = Wy * 24 (t) z2(t) = s(netq(t))
nets(t) = Wap * 24(1) r3(t) = s(nets(t))
nety(t) = Wi x 25(t) + Wiz * 23(t)  z4(t) = s(nety(t))
nets(t) = wsy * z2(t) + Wss * z3(t) z5(t) = s(nets(t))
netg(t) = Wy * z4(t) + Wes * z5(t) ze(t) = s(nets(t))

Yi(t) = z6()

The idea of backpropagation is to adjust the weights W5y, Why, ..., Wes, Wes such that f/(t)
is close to the desired Y (t). To achieve this goal, we need to find the gradient of the error

function with respect to the weights. From Equation 4, the error function is:

T
E= ;n‘a(t) ~Yh(t)]?

Using the Equations 6, for t = 1,...,T, the backward equations are:
FYA(t) = Ta(t) - i(t)
F_zg(t) = F.Y;(t)
F_netg(t) = s'(netg) * F_z¢(t)

F_Z5(t) = Wss * F_nete(t)
F nets(t) = s'(nets) * F_z5(t)

F _z4(t) = Weyq * F_netg(t)
F nety(t) = s'(nety) * F_z4(t)

F_x3(t) = Wyg * F_nety(t) + Wiz * F_nets(t)
F _nety(t) = s'(nets) * F_z3(t)

F..’L'z(t) = W42 * F_net4(t) -+ wdH2 * F-net5(t)
F_nety(t) = s'(nety) x F_z,(t)

F_z,(t) = Wy x F_nety(t) + W3 * F_nets(t)
F_net,(t) = s'(nety) * F_z,(t)



Ounce the Fonef, are known. the error gradient with respect to rthe different weiahirs are:

T
[“_”721 = Z F-Vlftz(t) * Il(t)

t=1

F_‘Vgl Z F. net3 * .El( )

F_ Wy = Z F_nety(t) = z,(t)

t=1

F_ ‘V64 ZF net6 *$4()

F Wes = ZF netg(t) * z5(t)

t=1

The weights are then adjusted according to

New Wi; =W, —ax F.W;;, +,7=1,2,...,6

To verify that F_W,; indeed corresponds to 57— aw , we calculate the gradient directly from the

forward equations. As an example, consider 835
i OE A% (t)
8W21 o avi(t) oWa
where oE .
g = ) -Yi(@))=Fh()
3f’1 t _ afﬁ t Onetg (t)
W ™  Onetg(t Wy,
Nt e’
s'(netg(t))

3netg(t) Onete(t)y dza(t) anetg(t) dzs(t)
[ 31‘4 ]8 Wa + azy 3W21]

WM Wes
Qx4 (t — _9z4(t) Onety (1) axs(t) Azs(t Onets(t)
OWa T Onety(t Wy Wy nets (¢ Wy
N’
s’ (nety(t)) s'(nets(t))

Inety(2) =[8net4(t)] Iz!t! Onety(t) 81:3“[]

3w, Az 3W: 9z W,
21 2 21 3 21
Wis
9z, (t) _ Bz(t dnety(t) dza(t) _  dza(t) IOnety(t
Wy, T Onety(t 21 3W,31 ~ Onets(t) 21
s'(netz(t)) 71(?) s (neta(t)) z1(t)

(11)



Hence substitnting Equations 12 to Equation 11, we have

T
,"TEX = Z F_Y108) s'(nets(t)) [ Wey s'(nety(t)) Wiy s'(nety(t)) oo(t)
=1 F _netg(t)
+Wss s'(nets(t)) Wsy s'(nety(t)) ry(t) ]
T F_z4 F_rg
s i e e

= Z [ F.nets(t) Weq s'(nety(t)) Waa + Fonetg(t) Wes s'(nets(t)) Wiz ] s'(neta(t)) z1(t)
=1 F_nety(t) © F_nets(t)
T

= > [ Fonety(t) Way + Fonets(t) Wsz | s'(neta(2)) z:1(¢)
t=1 F_.rm
T

=Y F_zo(t) s'(netz(t)l z1(t)
=1 F_nety (1)

il
s

F_netg(t) .’L‘l(t) = F_W21

-
1
—-

The rest of F_W;; can be proved similarly. From these equations, we can see that the
backpropagation algorithm is simply a tool for calculating the gradient of the error function

with respect to the weight space.

2.3 Backpropagation Through Time Algorithm

Backpropagation through time was first proposed by Werbos [6]. It is basically an exten-
sion of the basic backpropagation algorithm but also considers memory from previous time
periods. Mathematically, this is implemented through the introduction of a second set of
weights W’. In our version of the backpropagation through time algorithm, we associated a
weight W’ at each hidden and output node. A more general version that includes a W’ for
each connection can be found in [6]. In our version, the second equation of the feedforward
equations (Eq 2) is replaced by:
i-1
net;(t) = Z Wijzj(t)+ Wizi(t-1), m<i<m+H+n (13)
=1

And the second equation of the feedback equations (Equation 6) is replaced by:

Fzi(t)= F Yim_u(t) + Z;’;";f{"" Wi * F_netj(t) +W/!* Fonet;(t+1) (14)

t=m+H+n,....m+1



For adaptation of the 117

£ = Z[T:lF_ndz(f) «.r,(t)
New W/ =W!—- 3« F.I/ i=m+1... .. m+H +n

V-
N

where J is the constant learning rate for 11",

2.4 Delta-Bar-Delta Rule

To improve the convergence speed of the steepest descent/ascent method, Jacob proposed
the delta-bar-delta algorithm [5]. Basically, the algorithm is a special case of the Adaptive
Learning Rate (ALR) discussed in [9]. Every weight of the network is given its own learning

rate and that the rates changes with time. According to 5], the learning rate update rule is:

K if (?,'j(t - 1)5;j(t) >0
Aa,-j(t) = —¢a,~j(t - 1) if 5,']'(t —_ 1)5,‘j(t) <0 (16)
0 otherwise.

where
6ii(t) = F.Wy )
(1 - 9)6¢j(t) + 06;j(t — 1)

6:;(1)
a;j(t) aij(t — 1) + Day;(t)

In these equations, 6;;(t) is the partial derivative of the error with respect to W;; at time ¢t
and &;;(t) is an exponential average of the current and past derivatives with 8 as the base and
time as the exponent[5]. If the current derivative of a weight and the exponential average
of the weight’s previous derivatives possess the same sign, the learning rate for that weight
is incremented by a constant x. If the current derivative of a weight and the exponential
average of the weight’s previous derivatives possess opposite signs, the learning rate for the

weight is decremented by a proportion ¢ of its current value [5].

As discussed in [10], we found the best result comes from a combination of the back-
propagation through time algorithm with the delta-bar-delta rule. In this case, 8;(t), the

learning rate for W/ also changes with time. More specifically,

K if ﬁ;(t - 1)‘)’.’(t) >0
ABi(t) =4 —#Bi(t—1) if Zi(t —1)%(t) <0 (17)
0 otherwise.



w‘ncre*

Az(“) - F'Ii'l/
, (1= 0)=t) + 03,0t = 1)
(t) = At —1)+ A3(t)

’
=
I

3 Backpropagation of Utility Algorithm

The objective of the backpropagation of utility algorithm is to provide a set of action or
control signals to a dynamic system to maximize a utility function over time. The utility
function can be total energy, cost-efficiency, smoothness of a trajectory, etc. For expository
convenience, we assume the notation X(t) for system state at time ¢, u(t) for the control

signal, and U(t) for the utility function which is usually a function of the system state.

The system is composed of three subsystems, an Action network, a Model network, and
a Utility network, which can often be represented as a performance function. The Action
network is responsible for providing the control signal to maximize the utility function.
This goal is achieved through adaptation of the internal weights of the action network.
Such adaptation is accomplished through the delta-bar-delta rule with iterations. For each
iteration, there are feedforward and feedback components. In the feedforward mode, the
Action network outputs a series of control signals, u(t),t = 1,...,T whereas adaptation of

the internal weights is accomplished through the feedback mode.

The Model network provides an exact emulation of the dynamic system in a neural
network format. Its function is two folded: (i) in the feedforward mode, it predicts the
system state X(t 4+ 1) for a given system state X(t¢) and control signal u(t) at time t; and
(ii) in the feedback mode, it inputs the derivative of the utility function U(t) with respect
to the system state X (t) and outputs the derivative of the utility with respect to the control
signal, i.e., %‘U—((g which is used for the adaptation of the action network. The Utility network,
on the other hand, provides a measure of the system performance U(t) as a function of the

system state, X (¢). In the feedforward mode, it calculates a performance value U(t) and in

the feedback mode, it identifies g%(% which is used by the Model network.



System State

: ‘ X(t+1) Utility Function
|
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T
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Figure 2: A Backpropagation of Utility System.

The basic idea is that assuming we have an exact model of the system formulated as a
neural network (the Model network), we can use the backpropagation method to calculate the
derivative of the utility function with respect to the control signal from the action network,
le., Fu(t) = Z—Z((;?. Such derivative is then used to calculate the gradient of the Utility
with respect to the internal weights of the action network. Figure 2 shows a block-diagram

representation of the system. The dashed lines represent the feedback mode, or derivative

calculations.

The successful application of backpropagation of utility hinges upon an accurate Model
network that represents the system. The establishment of such a Model network is accom-
plished through training with the basic backpropagation or backpropagation through time
algorithms. Once an accurate Model network is obtained, the internal weights of the Action
network is adapted to output a series of desired control action, according to the flow chart in
Figure 3. In this flow-chart, Action, Model, Utility represent the feedforward components
of the corresponding networks whereas F_Utility, F_Model, F_Action are the feedback
components. The details of the construction of the Model network and the adaptation of

the Action networks are included in the following subsections.

10



3.1 Training of the Model Network

The establishment of a Model network that represents the system is accomplished through
training with either the basic or the backpropagation through time algorithm combined with

Jacob’s delta-bar-delta rule discussed in Section 2.3.

First, a sufficient number of training samples, Ty must be obtained. These training
samples consists of mps inputs (Xas(¢), 1 =1,...,mp, t=1,...,Ty), and nas desired
outputs (Yar:(t), ¢=1,...,nnm, t=1,...,Ty). Theobjectiveof a trained Model network
is to emulate the dynamic system. In the feedforward mode, it outputs the system state
X(t+1) at time t + 1 for a given system state X(¢) and control signal u(t) at time ¢t. That is
, Xum(t) consists of X(¢) and u(t) and Yas(t) is composed of the system state X(¢+1) at time
t + 1. For expository convenience, we assume there are Hps hidden nodes. A pseudo-code
for training the Model network with backpropagation through time algorithm is presented
in Table 1. The version for the basic algorithm can be obtained by setting W' = 0 for all

nodes at all times.

3.2 Adaptation of the Action Network

Upon completion of training of the Model network, we are ready for the adaptation of the
Action network. In this stage, we adapt the weights of the Action network to output a series
of desired control action u;(t), i = 1,...,n for time period t = 1,...,T. The desired system
state is Xy(t), ¢ = 1,...,m. This adaptation process is accomplished through a number of

iterations and is best described through the flow-chart shown in Figure 3.

There are basically six fundamental building blocks, Action, Model, and Utility in
the feedforward mode; and F_Utility, F_-Model, and F_Action in the feedback model.
For each iteration, in the feedforward mode, a series of predicted control signals u(t) for
t =1,...,T are provided by the Action routine. These control signals are inputs to the
Model routine which outputs the next system state X(¢+ 1) which is then used to calculate
the Utility function.

11



Assume magonyy Ny Hap o Dy Xy Yoy as defined in Section 2.
Fori.j=1...... Ny + nag

1. are randomly distributed between £1.6;, = 511 = 0.

Also. IV;; = 0 for nodes i.j in the same layer and is fixed for all iterations.
Initialize, W/ = v, =3, =0fori=mar + 1,..., Nys + nyy.

for (Iteration =1 to Maximum Iteration)

{
Step 1: for (t =1 tot ="Ty)
for(i=1toi=mp) zapi(t) = Xan(t)
for (i = mpp toi = Ny + nar)
netari(t) = ;_—___11 Whatijzumi(t) + Wyaami(t = 1)
Tpmi(t) = s(neAtM,-(t))
for (i=1toi=np) Ymi(t) = Tpr(mer+i)(t)
Step 2: Compute the Error, Ejs.
Ty Ty nym N
Ey = Z EM(t) = EZO.5[YM,‘(t) - Y]p{,’(t)]2
t=1 t=1i=1
Step 3: for (t =Ty tot =1)
[ for (i=1tot=np) F_YM,'(t) = Y’M i(t) = Yari(t)
for (i= Ny+npmtoi=mpy+1)
R m+H+4n
< F-ZM '(t) = F_YM (i—m-—H)(t) + E WM (79 * F-netM J(t)
j=i+1
+ Wi, * Fonetpr i(t + 1)
{ F_netpi(t) = s'(netpr;) * F_zari(t)
Step 4: For i,7 = 1,..., Ny + npg, compute
T K if (E.'j&,‘j >0
(1) F-Waijy = 6i5 = Z F_netpri(t) * zar(t);  (48) Daij = ¢ —day; if 656, <0
t=1 0 otherwise.
(i12) 5.'1' =(1-6)6; + 05,',' and (iv) ay; = aij + Aoy
Step 5: Fori=m+1,...,m+ H + n, compute
Tn K if v >0
() FWii=vi=), Fonetyi(t)«zpi(t); (i) AB; =3 —¢Bi if 77 <0
=1 0 otherwise.
(##)Fi=(1-0)y+6% and (iv) B = B + AB;
Step 6: New Wiprijy = Warijy —ij * F-Wiarijy 45=1,....m+H+n
New Wi, =Wh, = Bix F Wy, i=m+1,...,Nyy+npy
} .

Table 1: A Pseudo-Code for Training of Model Network.
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Initialization

Iter>Max
r—

++Iter

for ( Iter = 1 to Max )

feedforward mode

for ( t=1 to t=T )

X (e+1)

U (X(t+1))

-

Update F_W, F_W’*

Compute New W, W’

Figure 3: A Flow-Chart for Adaptation of Action Network.

Set
F_W,F_W’'=0
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Figure 4: A 1-D Planar Robot.

In the feedback mode, the training samples are traversed backward. Since the Utility
function is normally an explicit function of the system state, we can usually obtain Fx(t) =

g%%% analytically. The value Fix(t) is then input to the routine F_Model which corresponds

to the feedback component of the Model network. F_Action is the next routine which

au(t)
u(t)

Utility function with respect to the weight-space, i.e., F.W;; = %{_—? and F.W] = %—Uv(-vf,l for

takes the output F.u(t) = from the F_Model routine to calculate the gradient of the

all weights W;; and W of the Action network. Once the effect of all training samples are
accounted for in F.W and F_W’, delta-bar-delta rule is used to update the weights, W and

W', and the system is ready for the next iteration.

Note that, for simplicity, in Figure 3 we use a predefined value Maz to determine the
number of iterations. However, this is not always the best strategy, other termination criteria
such as a predefined utility value can also be used to determine the number of iterations.

Pseudo-codes for these building blocks are included in Tables 2 to 5.

4 An Example: 1-D Robot Control

As an example, we consider a simple planar manipulator with one rotational joint (Figure 4).
We assume, without loss of generality, that the robot links can be represented as point-masses
concentrated at the end of the link. The link mass and length are respectively: M = 0.1 kg,

L =1 m. This simple dynamic system is governed by the equation:
r(t) = M L*(t) + M g L cos(4(t)) (18)
where g = 9.81m/s? is the gravitational constant.
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Assume m inputs. n outputs. H hidden nodes. T samples. and .V = m + /f.
Inputs: .X,(t) system state at timet € {l.....m}

Wi, internal weights Lje{l...... V + n}
3% internal weights Lje{m+1,.... Ny +ny}
Outputs: z,(t) internal state i€ {1,...,N +n}

Yi(t) = wi(t) control signals i€ {1,...,n}

Action(X (t), W, W', z(t),Y(t))

{
Step 1: for (i=1to i =m)
zi(t) = Xi(t)
Step 2: for (i=mtoi= N +n)
{ net;(t) = YT} Wizi(t) + Wizt - 1)
z;(t) = s(neti(t)
Step 3: for (i = 1 to i = n)
) Yi(t) = wi(t) = 2pmam+)(t)

Table 2: A Pseudo-Code for Subroutine Action.

Let m,n, T, X(t), u(t) be defined in Table 2.
Assume mps = m + n inputs, npys = m outputs, Has hidden nodes, and Ny = Hpr + nag.
Inputs: Xari(t) contains X (t) and u(t) ie{l,...,mp}
Wiy i;) resultant weights after training 4,5 € {1,..., Ny + ny}
Wis;  resultant weights after training ¢, € {m+1,..., Ny + npr}
Outputs: za(t) internal state of Model network i € {1,..., Npr+ nar}

YM,-(t) outputs to Utility function i€ {l,...,np}
Model( X a(t), War, Wiy, zm(t), Yar(2))
{
Step 1: for (i = 1 to i = myy)
J:M,'(t) = XM,'(t)
Step 2: for (i = mpp to i = Npypr + npp)
netyi(t) = Tjo Waiszu;(t) + Wigza(t - 1)
zpmi(t) = s(neta(t))
Step 3: for (1 =1 to i = np)
} YMi(t) = Tarime4)(t)

Table 3: A Pseudo-Code for Subroutine Model.
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Let io.n. T X1t ity be defined in Table 2. and may = m + n.nyyp = m.
Assume f g hidden nodes, and Ny = Hap + nyy.

Inputs:  F_Xt) from F_Utility e {l..... nar}
ryr,(t) internal state of Model network 1€ {1,..... Var+ nar}
Wyrijy weights of Model network LJE{L ... Va4 nag}
Wi, weights of Model network LjE{m+1,..... Vi + nar}

Outputs: F.u(t) = %{% i€{l....,n}

F-Model(F-X( ), Wy, ‘V‘W’ zap(t), F- u,(t)

{
Step 1: for (i=1toi = Npy) F_zpi(t)=0.0
Step 2: for (i =1to i = ny) F_zp (NM-H)(t) = F_X;(t)
Step 3: for (i = Ny +npp toi = 1)
Ny+npg
F_zpri(t = Fopmi(t)+ Z W (i) * F-netpr (1)
J=i+1
+ Wll\li * F-netM,'(t + 1)
F netari(t) = §'(netari) * Fozari(t)
Step 4: for (1 =1toi=n) F_ui(t) = F_zpf myi
}

Table 4: A Pseudo-Code for Subroutine F_Model.

Let m,n,T, X(t), u(t) be defined in Table 2.
Assume Hjps hidden nodes, and Npas = Hpr + nyy.

Inputs: F_u;(t) from F_Utility ie{l,...,n}
z;(t) internal state of Action network i€ {1,...,N +n}
Wy  internal weights ,je{l,...,N+n}
w! internal weights i,je{m+1,...,N +n}

Outputs: F.W;;(t) = 3 4,5 € {1,...,N +n)
FWit)=53% ie{l,...,N+n)

F_ Action(F_X (t), War, Wiy, 2m(2), F-ui(t))

{
Stepl: for (i=1tot=N)  F_z;(t)=0.0
Step 2: for (i=1to i =n) F_z(n4i)(t) = Foui(t)
Step3: for (i=N+ntoi=1)
N+n
F_z,(t) = Fz;(t) + z W(;i) * F-net; () + W/ * F_net;(t + 1)
j=i+1
F_net;(t) = z;(t) * (1 — 24(2)) * F_z,(¢)
F.W;j = FW;; + Fonet;(t)«z;(t) j=1,.
Step 4: for (i=1toi=n) Fui(t) = Fzpmmei
}

Table 5: A Pseudo-Code for Subroutine F_Action.
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Figure 5: Desired Trajectory of Manipulator.

We consider that initially, at time ¢ = 0 second, the state of the manipulator is 8y = 8o =
0y = 0, with 7o = 0.981 Newtons. The neural network task is to generate a series of control
signals u(t) = 7 (¢), t=6t, 26t, ..., t; = T x 6t = 2 seconds to drive the manipulator
from the initial configuration o to 8y = 6(t = t;) = 60° with the following desired trajectory
specified by the quintic polynomial [11].

04(t) = 0o+ 10(8; — 0o)(t/ts)> — 15(85 — Bo)(t/ts)* + 6(8; — 0o)(t/t)°
Ba(t) = 30(8y — 8o)(£3/£3) — 60(8; — 8o)(t3/t4) + 30(8; — Bo)(t*/15)
Ba(t) = 60(8; — 8o)(t/t3) — 180(8; — 8o)(£2/t4) + 120(8; — 6o)(£3/t3) (19)

The desired angle profile of the system is shown in Figure 5. We assume the sampling

period is ¢ = 0.02 second. That is, the number of samples is T = t;/§t = 100.

The system consists of an Action network, a Model network, and an utility function.
Like in supervised control, in backpropagation of utility, our goal is to train the Action
network to provide a set of control signal u(t) = 7(¢); but unlike supervised training, the
desired control signals 74(t) are not used as feedback. Instead, the training of the Action
network is accomplished through feedback from the Model network, which basically acts as a

system emulator, and the Utility function which provides performance measurement. Using
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the terminologies of Secrion 3. the svstem state corresponds to the position. velocire, apd

acceleration of the syvstem. le.. X(¢) = (#)(t)./)(z‘)./).(t)). the countrol signal 15 u(f) = rit).

In the following subsections. we first describe how the Model network is trained. and
later how to use the trained Model network for the adaptation of the Action network which

provides a series of control signals for the specific task described here.

4.1 Training of the Model Network

Before the adaptation of the Action network begins, the Backpropagation of Utility algorithm
involves first, training of the Model network. Again, the Model network accepts as inputs
the system state at the previous time instant (i.e., 8(t — &t), 6(t — 6t), 6(t — 6t)) and the
control signal 7(t) at the current time. Its function is to provide the actual system state
for the current time (8(t), 8(t), 6(t)). From our experimentation, we found that it is more
efficient if the Model network is trained to generate the change in system state instead of

the actual value. Therefore, we train the model network to generate §6(t), 60(t), 66(t). The

system state of the current time can then be computed:
8(t) = 6(t — 6t) + 80(t), 6(t) = O(t — 6t) + 80(t), 6(t) = B(t — 6t) + 60(¢).

To obtain an adequate representation of the system, we need to train the Model network
with sufficient number of training points. In this case, we use the basic backpropagation
algorithm with delta-bar-delta rule (i.e, Table 1 with W’ = 0 at all times). The network
has two hidden-layers with ten nodes in each layer. As stated in [7], progressive training
in which the number of training samples increases gradually helps to maintain stability and
provide fast convergence. Therefore, we start the training on Ths = 20 samples and gradually

increase to Tps = 500 training samples. Each training set consists of four inputs (mas = 4):

9(t — 6t), O(t — 8t), 6(t — 6t), r(t) and three desired outputs (npr = 3): 864(t), 604(t), 664(t).

18
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Figure 6: The Input-Output Relationship of Model Network.

Each of these training samples is obtained by first generating a random system state

8(t — 6t), O(t — 6t) 6(t — &t) with the following constraints:

f(t —6t) € {0, 2r} radians,
6(t — 6t) € {-3, 3} radians/second,
é(t - §t) € {—5, 5} radians/second’.

For the given system state, we compute or measure the corresponding torque value, 7(t — ét)

and then generate a random §7(t) with the constraint that

é7(t) € {—0.02, 0.02} Newtons

An Euler integrator [11] is then used to solve for the actual system state 6(t), 6(t), 6(t) for
the given 7(t) = 7(t — 6t) + 67(t) and 6(t — 6t),8(t — 6t),8(t — 6t). The desired outputs of

the training set are computed as:

804(t) = 0(t) — 0(t — 6t), 804(t) = 6(t) — O(t — 6t), 86,(t) = 6(t) — b(t — 6t)

Figure 6 summarizes the input-output relationship of the Model network.

4.2 Adaptation of the Action Network

With the Model network successfully trained, we are ready for the adaptation of the Action
network. As illustrated in Figure 3, the adaptation of the Action network involves both a

feedforward and a feedback component.

In the feedforward mode, the Action network accepts the desired system state, namely,

Gd(t),éd(t),éd(t) as inputs. The output of the Action network is to provide the signal 7(¢)
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Figure 7: The Feedforward Mode of Adaptation of Action Network.

to drive the manipulator. For efficient training, we choose to train the action network to

generate §7(t). The value 7(t) can then be computed by:
T(t) = 7(t — 6t) + 67(2). (20)
where t = 6t, 26t, ..., T x ét and in this example, 7(t = 0) = 79 = 0.981 Newton.

The computed torque 7(t) (Equation 20) is then passed to the trained Model network
which accepts the desired system state of the previous instant, 64(t — ét), éd(t - ét), éd(t - 6t)
along with 7(t) as inputs. As described in the previous section, the output of the Model
network indicates the change of the system state from its input state, i.e, 86(t), 66(t), 60(¢).

The actual system state can then be computed according to:
0(t) = Ba(t — 6t) + 60(t), B(t) = 04t — 6t) + 60(t), O(t) = ba(t — 6t) + 86(t).

The last step in the feedforward mode is to compute the “utility” or performance of the

action network. Since our objective here is tracking control, we use the utility function

(O(t x 8t) — B4(t x 8t)) + (6(t x 6t) — Ba(t x 6t))% + (6(t x 8t) — f4(t x &t))>.
(21)
The input-output relationship in this feedforward component of the adaptation of the Action

network is summarized in Figure 7.
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Afrer a <enies of =o#) and rhe corresponding (71t} are produced. in the foedback mode,

the gradient of the Utility with respect to syvstem state is:

I (1) : : fo
— = [f(t) — G4(¢ B(t) — 8,(t 0(t) — 6,4(6)1.
TR = 1000 = 0]+ 1900 = (0] + B(e) Bt
This result is used by the Model network (F_Model routine) to determine F_u(t) = giv((f))

oU(t)

W, the gradient of the utility with respect to the weight

which in turn is used to determine
space, W;; and W/ in the Action network according to the pseudo-code in Figure 3. Basically,
the idea is to change the output of the action network in the direction of F_u(t) by adjusting

its weights (W and W’).

In our implementation, we found that the adaptation process is more robust if the weights
of the Action network are adjusted through multiple iterations for the same F'_u(t) computed
by the F_Model routine. This is due to the fact that steepest descent in general takes multiple
iterations to achieve a particular desired output. Therefore, in this example, we have actually
modified the feedback mode of the flowchart in Figure 3 to include an inner loop of iterations
to adjust the internal weights of the Action network for a given F_u(t) from the F_Model
routine. Figure 8 shows the modified feedback component. The choice of the value for the

number of inner iteration, Iner_Maz depends on the problem. In this example, we have use

both Iner_Maz = 1,000 and 10, 000.

Figure 9 plots the generated torque
() =7(t-1)+67(t)

versus time where §7(t) is generated by the Action network. Note that at iteration one
(Iter=1), the generated torque is far from the desired value. But through multiple iterations,
the generated torque gradually converges to the desired value. The iteration number shown
here corresponds to the number of outer iterations. Figure 10 plots the error of the generated
torque with the desired value |74(t) — 7(t)| after approximately 5,000 iterations. From this
graph, we observe that the maximum error is about 0.02 Newtons. Better accuracy can be

obtained by continuing the iterations.
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Figure 9: Generated Torques at Different Iterations.

Again, unlike basic supervised control, the Backpropagation of Utility algorithm does
not require the desired value 74(t) be available to the Action network. They are used here
only to illustrate the performance of the action network. These figures show clearly that the
weights of the action network is adapting to generate a forecast of the desired control signals

based solely on the feedback signals F_u(t) from the F_Model routine.

5 Parallel Implementation

In the previous sections, we have illustrated and demonstrated how the backpropagation
of utility algorithm can be used to generate a series of control signals. The simple, one-
dimensional planar robotic system was used as an example. Basically, the underlying concept
of the algorithm is very simple. A neural network (the Model network) is used to emulate
the dynamic system and provide proper feedback to adjust weights of the Action network. In
short, the backpropagation of utility algorithm is a simple tool for neuro-control. However,
the main drawback of the algorithm is the amount of execution time. For the one-dimensional

manipulator system, in a Sun Sparc II computer running SunOs 4.1, it took approximately,

23



.1 T T T T T T T T T
0.01

[ra(t) — 7(8)]
0.001

0.0001

1e-05 1 | 1 1 1 ] 1 1 1
0 02 04 06 038 1 12 14 16 1.8 2

time (second)

Figure 10: E'rrors in Control Signals.

43 seconds for each outer iteration with a given inner iteration Inner_Iter = 1,000. To
improve the execution time, we explore parallel implementation of these algorithms. Both
the basic and backpropagation through time algorithm can be parallelized by two techniques

- node partitioning and pattern partitioning [12].

Basically, node-partitioning implies that the entire network is partitioned among different
processors, each computing for the whole set of training samples. Pattern-partitioning, on the
other hand, partitions the training patterns among the processors with each one representing
the entire network. In the next subsection, we include a brief description of node-partitioning.
Section 5.2 describes pattern partitioning and provides execution time comparison for two

examples.

5.1 Node-Partitioning

In node partitioning, nodes of the entire network are partitioned among different processors.
Our strategy is to divide the number of hidden nodes in each hidden layer equally among the

given number of processors. Because of the small number of nodes in the input and output
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Figure 11: A Flow-Chart for Pattern Partitioning of Basic Backpropagation.
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Lavers, these lavers are assigned to a specific processor. For simplicity, we have each processor
keep a « - of all weights of the network. In the forward loop. each processor calenlates
node activations r;(t) in parallel and broadcasts it to other processors for computation of

next layer activations.

In the backward loop, each processor computes node errors and weight changes required
for its incoming weights. Node errors are broadcasted to other processors for computation
of previous layer errors. Each processor also computes total weight change required for all
its incoming weights. At the end of backward loop, each processor broadcasts the weight
changes calculated to update the other processor’s buffer. ( Each processor keeps a copy
of all the weights in the network.) After this, Delta-bar-Delta rule is used to calculate new
weights. Our preliminary investigation found that node-partition helps to reduce execution
time only for large networks. In our example, both the Action and Model network only
have 10 hidden nodes in each layer. For such small networks, the communication overhead
involved in parallel implementation actually slows down the overall execution time. We,

therefore, consider only the pattern-partitioning scheme.

5.2 Pattern-Partitioning

In our implementation of the pattern partitioning scheme, training samples are equally di-
vided among the number of processors. That is, for T training sets, and N, number of
processors, each processor computes both the feedforward and the feedback components of

the T, = Nl, training samples. (We assume that N, divides T').

At the end of the backward loop, the weight changes computed based on the subset of
the training samples of each processor are broadcasted. Once this information is received by
all processors, the total weight changes F_.W;;, F_W/ are computed at every processor:

N, Ny
FWi =SS FWyk), FW =Y FWik
k=1 k=1
where F_W;;(k) and F_W/(k) are the weight gradient of processor k computed based on its

own subset of training samples. Upon obtaining the total weight gradient, delta-bar-delta
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Figure 12: Fzecution Time for Learning the Sine Function Using Pattern Partitioning.

rule is applied at all processors to update the weights which completes one iteration. A flow
chart for the basic backpropagation with pattern partitioning in included in Figure 11. The
case of backpropagation through time can be obtained in a similar manner with the proper

inclusion of W".

We implemented this pattern partitioning scheme for the basic backpropagation algo-
rithm on Intel’s 110-node Paragon parallel computer. As a simple test, we train two-hidden-
layer neural networks of different sizes to learn T = 100 samples of the sine curve equally
spaced over (0,27). In particular, we investigated networks with H; = H, = 10, 20,40 nodes
in each layer, on N, = 1,2, 4, 5, 10 processors, with each processor having T, = 100, 50, 25, 20
training samples respectively. Figure 12 shows the execution time per iteration on the dif-
ferent number of processors. From this figure, we observe that the execution time decreases
with the number of processors. However, we believe that if the number of processor in-
crease further, the execution time per iteration will not decrease continuously. We believe
that eventually, the communication overhead associated with multiple processors will out-
weigh the advantages of parallel execution and the execution time per iteration will start to

increase.
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| Paragon (1 node) | PC (Pentium-90) | Sparc Il | Sparcstation LN
Time/Iter 10.2 sec 14.3 sec 43.7 sec 34.8 sec E

Table 6: Comparison of Execution Time of Different Computing Platforms

After testing the scheme through the learning of the sine function, we use the pattern
partitioning scheme for the adaptation of the Action network discussed in Section 4.2. Fig-
ure 13 plots the execution time per outer iteration versus different number of processors.
The amount of inner iterations is Iner_Maz = 1,000. (See Figures 3 and 8 for the definition

of outer and inner iterations).

We observe that, initially, the execution time also decreases with increasing number of
processors, but when the number of processors is greater than four, the execution time
starts to increase. We attribute this phenomenon to the large amount of communication
among the processors. In particular, the local weight gradient (F_.W (k) for processor k,
k =1,..., N, processors) needs to be broadcasted to all before each Delta-Bar-Delta routine
can be called (see flowcharts in Figures3 and 8). Because of our modified feedback mode,
for each outer iteration, there are Iner_Maz = 1,000 number of inner iterations. Each of

this inner iteration requires each processor to broadcast its local weight gradient to all.

To provide an approximate comparison of the performance of the pattern-partitioning
scheme, Table 6 summarizes the execution time per outer iteration with inner iteration
In_Maz = 1,000 on different computer platforms for the adaptation of the Action net-
work discussed in Section 4.2. For the single-processor machine, we executed the compiler-
optimized program only when a single-user is logged on. We observe that the 4-node Paragon
implementation indeed gives the best performance. Furthermore, we believe as the size of the
problem grows larger, say bigger network, more training samples, the advantages of parallel
execution will be more pronounced and the difference between multiple- and single-processor

implementation will increase.
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6 Conclusions

Backpropagation of Utility is one of the methods for neuro-control. Its goal is to provide a
series of control signals to maximize a utility function. In this paper we demonstrated how
to use the basic backpropagation and backpropagation through time algorithms as building
blocks for the backpropagation of utility algorithm and explored parallel implementation of

the algorithm on Intel’s Paragon parallel computer.

Basically, the system is composed of three subnetworks, the Action network, Model net-
work and the Utility network which sometimes can be represented as a simple Utility function.
Each of these networks has the feedforward components Action, Model and Utility and
the feedback components F_Action, F_Model and F_Utility, respectively. The algorithm
involves first training of the Model network to emulate the dynamic system and later adap-
tation of the internal weights of the Action network to generate a series of control signals.
Such adaptation involves interactions of the three networks and are best described in the
flow chart of Figure 3. To further illustrate the algorithm, we use the algorithm to control
a 1 — D planar robot. We showed that the Action network is capable of generating a series

of control signals that maximize the utility function.
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In short. backpropagation of utility is a simple neuro-control techuiquie that uses a neural
network (the Model network) to emulate the dynamic system and to provide proper feedback
to adjust the weights of the Action network. It differs from supervised control in that the
desired control signals are not needed in the feedback mode. However, the main drawback

of the algorithm is its slow execution time.

To alleviate this problem, we investigated parallel implementation of the algorithm on
multiple processors of Intel’s Paragon parallel computer. We provided description of two
parallel schemes, node-partitioning and pattern-partitioning. Basically, for node-partitioning,
nodes of a neural network is partitioned among different processors, each computing the
entire training set. Pattern-partitioning, on the other hand, partions the training patterns

among different processors, each representing the entire network.

We found that for our example, with rather small networks (both the Action and Model
networks are two-layered with ten hidden nodes on each layer), pattern-partioning is more
appropriate. We first tested the pattern partioning scheme through the learning of a sine
curve and then applied the technique for the control of one-dimensional robot with the
Backpropagation of Utility algorithm. Comparison of the execution time for single and
different number of multiple processors are included. We believe that the advantages of
parallel implementation will be more pronounced for large problems that require bigger

networks with more training samples.
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