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ON THE DECAY OF A REACTING SCALAR FIELD
IN TURBULENCE

Use is made of the Direct Interaction Approximation, which

1,2)

has been developed by Kraichnan( in his study of turbulence
dynamics, to obtain a closed set of spectral equations in the

case of an isotropically distributed scalar in isotropic turbulence.
The scalar is assumed to be undergoing not only convective mixing
and molecular diffusion, but also a reaction which is second order
in the reactant concentration. To minimise other coexisting phe-
nomena the effect of heat production due to the reaction is ignored
as is any dynamic influence of the reactant or products of reaction
on the carrier turbulence.

Such a system shares with the more complicated phenomenon of
shear flow turbulence an interaction between a mean and a fluctuat-
ing component, and it promises to be interesting not only in its
own right, since second order reactions are common, but also as a
preliminary for the situation in shear flows in which one has a
spatially dependent mean.

The pertinent approximation equations are presented and it is
hoped that numerical solutions paralleling Kraichnan's 3) velocity
field computations can be achieved.

Although no further reference is made to the fact, it is
obvious that equivalent equations for scalar mixing and for a
sScalar undergoing a first order reaction are easily obtainable by

analogy from the second order reaction results presented here.



Introduction:

A promising approximation technique has been developed by
Kraichnan in his work on turbulence dynamics and numerical cal-
culations for the case of isotropically distributed and incom-
bressible, decaying turbulence have been published(B)° There are
several features of the results which give one grounds for confi-
dence in the approximation in the low Reynold's number range to
which it has been applied. In particular the shewness of the
velocity field shows for all the cases examined an asymptotic
value remarkably close to that obtained experimentally. The
approximation has been shown to be energetically consistent and
it has physical interpretations which appear reasonable. It
seems to be worthwhile to pursue its predictions further,

Kraichnan(4) has recently presented the formal extension of
his approach to shear flow and thermally driven turbulence and is
presumably seeking solutions of the system of equations so obtained.
Another approach is to concentrate on scalar fields which are trans-
ported by the turbulence. These share much of the statistical com-
plexity of the turbulence field and in fact have proven to be just
as difficult a stochastic problem. In any situation in which the
scalar is a particle-attached invariant interest is again focused
only on the velocity field(s) and its statistical properties. It
is easy to show that if a first order reaction is also permitted
to such a particle-attached scalar in a decaying field the problem

can be transformed into the non-reacting case. The existence of a

dependence of the scalar field evolution on its spatial gradients,



such as occurs when molecular diffusion becomes significant gives
rise to scalar field complexities of the same order of difficulty
as that presented by turbulence itself. However the formal
similarities between the Navier-Stokes Equations and the scalar
conservation relation are such that Kraichnan®s approximation is
immediately applicable. In fact the details of such a system
with the additional difficulty of buoyancy induced motion have
already been presented(4).

Another system which introduces a further non-linearity but
retains a simple relation between the velocity field dynamics and
scalar field kinetics is that of a scalar being convected, diffused
and simultaneously reacting to the second order in its concentra-
tion. Such reactions are not uncommon. For example collision
controlled decompositions are frequently second order at low enough
pressures. Generally, however, there is a thermal energy associated
with the reaction which can produce buoyancy forces. If these are
to be included in the analysis of, say, the decay of such a
reaction the complications compound rapidly and the penalty of
having two scalar fields, possibly interacting with each other
and being carried simultaneously by a velocity field sensitive to
both, is excessive numerical complexity and the suspicion that
current solution techniques may be unequal to the task of obtain-
ing significant results.

We therefore propose to retain dynamic passivity of the
scalar undergoing the second order reaction with the hope of

identifying important features of the reaction®s nonlinearities,



(4)

The buoyancy term (Boussinesq approximation) retained in previous' .
work gives an indication of the role of temperature induced density

fluctuation within the direct interaction framework.

Scalar Field-velocity Field Equations

The simplest linkage between a turbulent field and a transported
Scalar is one in which the scalar exerts no influence on the dynamics
of the turbulence. This kind of dynamic passivity has asymptotic
validity in a linear scalar system for small fluctuations of the
Scalar and its use to amplify the velocity scalar interaction by no
means emasculates the problem., It is, however, a less satisfactory
assumption for the case under consideration here since if the second
order chemical reacting term is to be an effective transporter of
Scalar "“energy' in wave number space or an efficient destroyer of
such ffenergy" the scalar must occur in greater than infinitesimal
amounts. We have to assume therefore that despite the significance
of the term which is second order in concentration the consequent
generator of thermal energy is sufficiently low to not introduce
significant buoyancy effects or to otherwise interfere dynamically
with the carrier turbulence.

An immediate consequence of such a passivity assumption is
that the velocity field description by the Navier Stokes equations
can be considered in isolation. . We will denote the Eulerian velo-
city field by W (%,t) and assume that any of its statistical
properties can be summoned at will., We specifically have in mind
Kraichnan's computations for an array of initial conditions of the
decay of an isotropic field of turbulence, Alternatively for sim-

plicity,one could postulate the impossible combination of isotropy
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and nondecay of the velocity field. For our purposes, to derive
the pertinent scalar equations, the only specification necessary
is that the velocity field be isotropic.

There is another consequence of dynamic passivity which will
be of fundamental importance in the folliowing derivations. 1In
Kraichnan's theory a crucial role is played by the modal response
function which essentially describes how a perturbation of one mode
in a dynamical system is transported through the coexisting modes.
Obviously, by passivity, if the modes consist of scalar and velocity
field Fourier elements the perturbation of the former will have no
influence on the later and a wide group of responses can be ignored
in the subsequent development. The reverse is evidently not true.
Velocity field modes exert, through the inertia terms, a dominant
influence over the scalar field they transport. Naturally there
will also always be a response of the scalar field modes to a
berturbation of one of their own number.

The complexity of the turbulence dynamics problem invariably
forces on the investigator the necessity of postulating symmetries
in the system under examination. Kraichnan has presented in a
formal manner a set of equations in real space and time which make
no such appeals. They are consequently extremely complex and pre-
sumably solution depends on simplifications which will in part be
geometric. We will adopt the notion of isotropic distribution of
both velocity and scalar fluctuating fields, a zero meén velocity
and a spatially uniform mean concentration which will, of course,
because of the nonlinear reaction be time dependent. The less
restrictive assumption of homogenity effects a great deal of simpli-

fication but for our purposes in the search for the most readily



solvable system we will in general also specify isotropy. An
exception is made in an investigation of the final period of de-
cay where classically homogenity is sufficient for a solution.

We will take as self-evident the following equations which
describe the phenomena of turbulent mixing of a scalar field which
undergoes a second order reaction.

The incompressible Navier-Stokes equation (2.1),

20 < - 2 (A ) KT )R o,

At

where ’}()g,t} is the concentration of the reacting species.

Since the Navier-Stokes equations consist of terms which
are either linear or bilinear in the velocity field and the mass
conservation law, equation (2.2), reveals a similar property for

} (Kn‘:) we may expect that a matrix formulation will collapse

these two equations into a single one, It is convenient to make
use of the elaborate notational conventions of Kraichnan as used
in reference (4), (hereafter referred to as K).

Thus we can write the single matrix equation in the same

form as K Equation (6.8.)
S _ * o -1 ,
(ét ’vaf)%@”) = Z;P%W\Lv)[u}(&,t) um(z,tﬂ "'Z.;K(V)[U;(’S,?Zi-ﬁcx)t) (2.3),

where the operator definitions are as given by K, Equations (6.7),

(6,9), (6.10) and (6.11), with the following changes:
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(b) o the volume coefficient of thermal expansion is to

be taken as zero.

e.g. L. (v) =0 C# O

(c) ' U, C’f:t) - '&\(_X;ﬁ)

We may form the various statistical equations that can be

generated from Equation(s.3) in the usual manner to obtain

A U i) .—_—-CD—’;@:) - C U (x+;x¢
D0 PR

dt (204>v

(205)$
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wWhere the simplifications of passivity and homogeneity have already
Been applied. That equations (2.4), (2.5) and (2.6), when
CoOupled with the velocity field results from K, are sufficient
Follows from the result, which is not quite self-evident but is
€asy to show, that forms of the response function @ol(&,fj&/,f'v)g L#0
Dl1ay no role in the dynamics of the interaction under the assump=

tions of scalar and velocity field isotropy.

EFinal Period of Decay

A not quite trivial solution of turbulent velocity field
dynamics has been obtainedcé) for the asymptotic regime in tur-
bulent decay when effectively for any given wave number the inertia
contribution becomes negligible compared to the diffusive effects.
A similar solution exists for decay of a passive scalar field
obeying a linear conservation law. For the present problem we
<Gan, by the classical argument, expect the last two terms in
Equation (2.5) to become insignificant asymptotically.

If we can further ignore the other triple moment term, then

the combined equations (2.4) and (2.5) form a closed set. A



sufficient condition for neglecting the second term on the right
hand side of (2.5) compared to the first term on the same side

would be the relationship"

ooo("' )&% })L’,r*) — o(_fl_) as t‘)t'——aao (3.1)
Z%éﬂ'[{065¢5§&€>

In the direct interaction approximation with which the sub-
sequent sections of this report are concermed it will be sSeen
that such a relationship becomes highly plausible, but for the
moment we take it as an assumption and show that the consequences
are consistent with the assumption. We find under these circum-

stances that mean and fluctuwating scalar fields are related by

A U fe __* .
AtO):—C%“ Upo (2 407) (320

ot

P
["‘KVJU@JC x*t)*"‘ZCl)‘t::)U X, t; )(‘t) (3.3).

A more convenient form of (3.3) which also makes explicit use of

the homogeneity of (Iob(’i . &',t'\) can easily be derived,

E - % —
[ét 2K V,;j '(_](;0 ({;’{) = —4C Dyl) U(;D(r;)‘t\ (3.4),

* In the limit X'=x;¢'= ¢ , and assuming bounded skewness,

(3.1) is equivalent to

yl
U (o)
[ OC:_{O)t> - O(l_) as = - =0,
| Uplt)
See Reference (7) Section. (4.1).
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where [ . K -h and hence (4.1) becomes
0{‘ — __2—.
= W) = -0y - ¢ (0¢) (3.5).

A spatial Fourier transform of the correlation function
into, say, ?(f‘ﬁ—'} leads t an immediate formal solution

of (3.4) in wave number space,

t
l e
2k b (x -z, «ﬂzzcj‘-%&io{t
Plery= Plhn)e ) 3.0,
and the consequent form of the mean equation
g Ut L=
- = T - [ Plee)d b (3.7).

For kinematic reasons‘ ’ the spherical shell mean of (P(‘pﬁ,t—)
behaves as a quadratic in 191, near the wave number origin and
since, from (3.5) for + -T, very large, only wave numbers
near the origin contribute significantly to the total scalar

*energy', (3.7) can be written

&
— = Cak At -To) -4 C | Fole) Ltf
Ao _ _cOm -clah e > T,
At
oL = const

from which a straight forward integration yields



11

t
— o[ Toe) At
a{l.)"n‘(‘:> - - c U.-h:) — J]:r; /1 1’! 'COO
At BK(”“ t)] (3.8)

The analysis leading to (3.8) is only of asymptotic wvalidity.
Thus €, is a virtual time origin about which we can have no
information other than experimental and that does not appear to
be available,

The final term in (3.8) is positive for all time and hence
the rate of decay of E% (t) can be no less rapid than iu-
versely'with'timeg which is the reaction-controlled behavior
of a second order system.
Defining 7% = C(t _to) and

we can differentiate (3.8) to obtain

R (%—: +‘CDJ = 9(%)

9”-_-6«99’ ~49 - 2 (9 9) (3.9)

Thus we can extract a particular solution

8 = —’é; (3,10)
and know from (3.8) that no other solution can exhibit a less
rapid decay.

Substitution of the result (3.10) into (3.8) yields two

asymptotic statements;
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as t —=» =0

&
— L
U;@) N t-—to CBOll))
1
'U;o(ofe‘) —~ (t*_r)% (3.12),
[}

We may note a comparison between (3.12) and the correspond-
ing results for the turbulent energy decay in the final 1:~€—m:’i,c»cfl(63

and for the asymptotic rate of energy decay of a nonreacting

scalar<72
I::L (o,+) —~ (tl-tﬂ)g/z’ (3.13),
For the nonreacting
scalar TJEO(Q;t) N E;i%72233£ (3.14),

If we now refer forward to equation (4.2) in the next
section, the first term on the right hand side is the Direct
Interaction approximation to the term containing’b&m(&tsafjdtv
in (2.5). Application of (3.11) and (3,12) to (4.2) indicates
a consistency with the assumption (3.1). In fact the quadratic
nature of the dependence of the first term on the right hand
side of (4.2) on I%;>(Z,t; 13%) and the dependence of the
spectrum CP(&){:\ on  U,k) as given by (3.6) strongly
suggests that only the left hand side of (4.2) be retained in
a final period analysis. This of course is what has been done in

deriving (3.11) and (3.12).

* See also Reference (7), Bquation 36.
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The Direct Interaction Approximation

Application of Kraichnan®s approximation to the incomplete
set of equations (2.4), (2.5) and (2.6) is entirely straight
forward and formally similar, at least in their space;time form,
to the results he has quoted in K.

The approximation itself has been described in physical and
mathematical detail by its author in several publications.

It satisfies all of the elementary physical requirements such as
realizability and consistency and appears to predict for isotropic
decaying turbulence at low Reynold’s Numbers several of the
experimentally observed features of turbulence, It is hoped

that it may prove equally as useful in predicting similar features
in comparable Reynolds and Damkohler Number'rangeﬁ for the probe
lem under investigation here.

The algebraic details of the approximation as appiigd to the
triple moment terms (those with three subscripts) in (2.5) and
(2.6) can be omitted, Use is made of K equationg (5.1) and (5.2)
and the definitions following equation (2.3) above with the

following resultss

—_— 2
Jﬁ“@ = - ¢ Ut — CU;o(l‘:t) X,t) (4.1)

[E\«V+160@ U'U+K%)~“ﬂ34&f NCOUTE M&Fd*)dﬂ

ot

&j“ e rind s DLZZCIW)W

(4.2) |
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P——szc Ve C (x%%) = QCJﬂ( g 549 U, (564, Gogf5; x7¢) do

*“(A:‘fgté ’wa 00 '*S?c»")z oo(pt150¢') A8

(4.3).

For the purposes of computation and dynamical interpretation
it is convenient to transform the above set of equations into

Fourier space.

A typical transformation can be demonstrated with the term

t
(0& ZJG'Z;Q()‘(VI’{:';L&’Q) [Jo.o é&,tj‘&lﬁ) OQ.S’
t

which appears in (4.2)

Define
x-4)

Gy (%0t K¢ f@(ﬂt,t)e ‘bl Ab

plvad

(xr X/t ) f(P@/b t)€.§ A%

U, (15102 f pbee)e
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and we ob tain

fd‘ J (&)t)*' U (x)*) ‘&»""3 A g
gab gt @(pfg)& b.(x- ?()At Jg‘e"c&-(!”?ﬂ C?( ts)(P{h é}tg)

to b %\\ él
) t
[ LT AR 4 by I
- ( Ly (2rt) i*je(g,a,gjé’i FPlhies) A )
FERT o e"f"‘*o(éaigup.ts

!

= ((S[g%) e(f’fig)lf{{{'t ;:)%(’k B t,8) e hox+ip. Xla(@ allgou‘/dg
A‘E~ P!

Ty — R
t’
b k! /
= f et gty PBx,8) Pk ) AR ¢
f{ (4.4)
ts R

~.

Application of gimilar technigues to the other non-linear
terms in the space time equations leads to the following reason-
ably compact description of the phenomena of isotropic turbulent
mixing, diffusion and reactive decay of a reacting scalar,

Pl e,c) A&

— 2
AGE) . Ty ¢ )
dt (4.5

PSS
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To h 2
Uk e

(4.6)
)

+
2 kA qn ,
[\)f & 2L \}bt"’f] @(g?/'tft ) =f e(é)gﬁ'jg(ﬂr @/)'t,,d)
|
’ ‘.‘;, [;(};F/é/;t’s)“#éj gk%g(ﬂﬁhg) 4 ‘Q/(ﬂ
+{(t-1)

(4.7)

Isotropy of the various statistical functions involved in
the above description implies that they are functions only of
the magnitude of their vector arguments. Pursuit of this obwious
simplification is postponed until an investigstion of possible
numerical solution techniques for the above set iz undertaken.
Initial conditions will be guite similar to thoze employed by
Kraichnan(g) in his investigation of isotropic turbulence dynamics
and in fact a suitable form for the Yknown"” velocity field
function W(}E( &'/-6,9,) could be to the numerical results reported

by him,

Conclusion

An attempt is being madecS) to apply the direct interaction

approximation to the solution of the pagsive gcalar mixing problem,

Previous work'®’ has shown that for the freely decaying situation
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the linear reaction problem could be extracted from such a
solution, If it is possible to further solve the nonlinear scalar
problem whose statement in Fourier space has been presented in the
foregoing, then a direct comparison of spectral behavior for these
two kinds of reaction kinetics will be able to be made., In wiew of
the current lack of either theory or experiment for the freely
decaying nonlinear case znd the reasonable success of the Direct
Interaction Approximation in predicting some specific festures of
low Reynolds number turbulence it sppears to be well worth while
to attempt to effect such a comparison.
In a recent paper G@rxgin(loj has deduced the shape, in
various wave number subranges, of concentration spectra for
turbulence with sn iscthermal, second-crder resction., Both fields
are statiomary and locally isotropic,

Another use to which fthe above formulation could be put is
to attempt to predict some of the staticmary states with which
Corrsin has been concerned, An approximation suggestion by

: Kraichnan(ll} for turbulent fields sesms to be relevant to such an

attempt,
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