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ON THL DZCAY OF A. d i r , C T I R G  S C  LLR F h L D  ! 

i 
IN TUL~EIULLL CE i 
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ON 'BE DECAY OF A REACTING SCALAR FIELD 

1 IN TURBULENCE 

Use i s  made of t h e  Direct  I n t e r a c t i o n  Approximation, which 

h a s  been developed by Kraichnan (1,2)  i n  h i s  s tudy of turbulence 

dynamics, t o  obta in  a c losed s e t  of s p e c t r a l  equat ions i n  the  

c a s e  of an i s o t r o p i c a l l y  d i s t r i b u t e d  s c a l a r  i n  i s o t r o p i c  turbulence. 

The s c a l a r  is assumed t o  be undergoing n o t  only convective mixing 

and molecular  d i f f u s i o n ,  b u t  a l s o  a  r e a c t i o n  which i s  second order 

in t h e  r e a c t a n t  concentrat ion.  To minimise o the r  coex i s t ing  phe- 

nomena the  e f f e c t  of h e a t  production due  t o  the r e a c t i o n  i s  ignored 

a s  i s  any dynamic in f luence  o f  t h e  r e a c t a n t  or  products of reac t ion  

on  t h e  c a r r i e r  turbulence.  

Such a  system s h a r e s  w i t h  the  more complicated phenomenon of 

s h e a r  f low turbulence an i n t e r a c t i o n  between a mean and a  f l u c t u a t -  

ing component, and i t  promises t o  be i n t e r e s t i n g  not  only i n  i t s  

Own r i g h t ,  s i n c e  second order r e a c t i o n s  a r e  common, but a l s o  as  a 

p r e l i m i n a r y  f o r  the s i t u a t i o n  i n  shear  flows i n  which one has a 

s p a t i a l l y  dependent mean. 

The p e r t i n e n t  approximation equat ions  a r e  presented and i t  i s  
( 3 )  

hoped t h a t  numerical s o l u t i o n s  p a r a l l e l i n g  ICraichnanq s ve loc i ty  

f i e l d  computations can be achieved, 

Although no f u r t h e r  referenee is made t o  the f a c t ,  i t  is 

obv ious  t h a t  e q u i v a l e n t  equat ions for sca la r  mixing and f o r  a 

scalar  undergoing a first order r e a c t i o n  a r e  easily obtainable  by 

analogy from the second order reactgom results presented here,  



! 
1. In t roduc t ion :  

A promising approximation technique has been developed by 

Kraichnan i n  h i s  work on turbulence dynamics and numerical cal-  

, c u l a t i o n s  f o r  t h e  case of i s o t r o p l c a l l y  d i s t r ibu ted  and incorn- 

(3 )  p r e s s i b l e ,  decaying turbulence have been published There are 

s e v e r a l  f e a t u r e s  of the r e s u l t s  which give one grounds f o r  confi- 

dence i n  the  approximation i n  the  low Reynold" number range t o  
f 

which it has been applied. I n  p a r t i c u l a r  the shewness of the 

v e l o c i t y  f i e l d  shows f o r  a l l  t he  cases  examined a n  asymptotic 

C va lue  remarkably c lose  to  t h a t  obta ined  experimentally. The 

approximation has  been shown t o  be e n e r g e t i c a l l y  consistent and 

i t  has  phys ica l  i n t e r p r e t a t i o n s  which appear seasonable. It 

I seems t o  be worthwhile to  pursue i t s  p red ic t ions  fur ther ,  

~ r a i c h n a n ' ~ )  has  r e c e n t l y  presented  the formal extension of 
1 

: his approach t o  shear  flow and thermal ly  driven turbulence and is 

presumably seeking so lu t ions  of t h e  system of equations so obtained. 

Another approach i s  t o  concentrate  on s c a l a r  f i e l d s  which are  t rans-  

p o r t e d  by the turbulence.  These s h a r e  much of the s t a t i s t i c a l  corn- 

p l e x i t y  of the  turbulence f i e l d  and i n  f a c t  have proven t o  be just  

a s  d i f f i c u l t  a s t o c h a s t i c  problem, I n  any s i t u a t i o n  i n  which the 

s c a l a r  is a p a r t i c l e - a t t a c h e d  i n v a r i a n t  i n t e r e s t  i s  again focused 

o n l y  on t h e  v e l o c i t y  f i e l d  (5) and i ts s t a t i s t i c a l  properties.  It 

i s  easy t o  show t h a t  i f  a f i r s t  o r d e r  r eac t ion  is  also permitted 

t o  such a p a r t i c l e - a t t a c h e d  s c a l a r  i n  a decaying f i e l d  the problem 

can be transformed i n t o  the  non-react ing case, The existence of a 

dependence of the s c a l a r  field e v o l u t i o n  on i t s  s p a t i a l  gradients ,  



Such a s  occurs when molecular d i f f u s i o n  becomes s i g n i f i c a n t  gives 

r i s e  t o  s c a l a r  f i e l d  complexi t ies  of the  same order  of d i f f i c u l t y  

as  t h a t  presented by turbulence i t s e l f ,  However the formal 

s i m i l a r i t i e s  between the  Navier-Stokes Equations and the s c a l a r  

conservat ion  r e l a t i o n  a r e  such t h a t  Kraichnangs approximation is  

immediately appl icable .  I n  f a c t  the  d e t a i l s  of such a  system 

wi th  the  a d d i t i o n a l  d i f f i c u l t y  of buoyancy induced motion have 

(4) a l ready  been presented , 

Another system which introduces a fu r the r  non- l inear i ty  but 

r e t a i n s  a  simple r e l a  t i o n  between t h e  ve loc i ty  f i e l d  dynamics and 

s c a l a r  f i e l d  k i n e t i c s  is  t h a t  of a s c a l a r  being convected, diffused 

and s imultaneously r e a c t i n g  t o  t he  second order i n  i t s  concentra- 

t ion .  Such r e a c t i o n s  a re  no t  uncommon. For example c o l l i s i o n  

c o n t r o l l e d  decompositions a r e  f r e q u e n t l y  second order a t  low enough 

pressures .  Generally,  however, t h e r e  i s  a thermal energy associated 

~ 5 t h  the  r e a c t i o n  which can produce buoyancy fo rces ,  If  these a re  

t o  be included i n  the  a n a l y s i s  of ,  s a y ,  the decay of such a 

r e a c t i o n  the  complications compound r a p i d l y  and the penal ty of 

having two s c a l a r  f i e l d s ,  poss ib ly  i n t e r a c t i n g  with each other 

and being c a r r i e d  s imultaneously by a ve loc i ty  f i e l d  s e n s i t i v e  t o  

both,  i s  excessive numerical  complex5ty and the suspicion tha t  

c u r r e n t  s o l u t i o n  techniques may be unequal t o  the task of obtain- 

ing s i g n i f i c a n t  r e s u l  t s  . 
We therefore  propose t o  r e t a i n  dynamic pass iv i ty  of the 

s c a l a r  undergoing the  second order  r e a c t i o n  with the hope of 

i d e n t i f y i n g  important f e a t u r e s  of the  r e a c t i o n t s  non l inea r i t i e s .  



( 4  1 The buoyancy term (Boussinesq approximation) xe ta ined  i n  previous . 

work g i v e s  an i n d i c a t i o n  of the r o l e  of temperature induced dens i ty  

f luetua t i o n  wi th in  t h e  d i r e c t  i n t e r a c t i o n  framework, 

-2. S c a l a r  F ie ld -ve loc i ty  F ie ld  gqa.at9ons 

The s imples t  l inkage  between a t u r b u l e n t  f i e l d  and a t ranspor ted  

s c a l a r  is  one i n  which the  s c a l a r  exerts  no inf luence  on t he  dynamics 

of t h e  turbulence.  This kind of dgnamBc p a s s i v i t y  has asymptotic 

v a l i d i t y  i n  a l i n e a r  s c a l a r  system fox small  f l n e t u a t i s n s  of the 

s c a l a r  and i t s  use t o  amplif y t he  v e l o c i t y  s c a l a r  i n t e r a c t i o n  by no 

means emasculates t h e  problem, It is ,  however, a l e s s  s a t i s f a c t o r y  

assumption f o r  t h e  ease under considera&ion bere s i n c e  i f  the seeond 

o r d e r  chemical r e a c t i n g  term i s  to be an e f f e c t i v e  t r anspor te r  of 

s c a l a r  cPenergyd* in wave number space o r  an e f f i c i e n t  destroyer  of 

such  qtenergyf' t he  s c a l a r  must occur i n  g r e a t e r  than i n f i n i t e s i m a l  

amounts. W e  have t o  assume therefore t h a t  desp i t e  t h e  s igni f icance  

of the term which is seeond order  i n  eoneenkratPsn the  consequent 

g e n e r a t o r  of thermal energy is  suf f  ieaentlg IQW t o  n o t  introduce 

s i g n i f i c a n t  buoyancy e f f e c t s  o r  to otherwise i n t e r f e r e  dynamically 

w i t h  t h e  c a r r i e r  turbulence.  

An immediate consequence sf such a p a s s i v i t y  assumption is 

t h a t  t h e  v e l o c i t y  f j e l d  d e s c r i p t i o n  by the NavSer Stokes equations 

can be considered in i s o l a t i o n ,  . We wSfl denote the EoslerSan velo- 

c i t y  f i e l d  by u;[*,,c) and assume t h a t  any of i ts  s t a t i s t i c a l  

p r o p e r t i e s  can be summoned a t  w i l l ,  W e  s p e e i f i c a l l y  have 3n mind 

Kraiehnants  computations f o r  an axray of 5nPtEal e snd i t ions  of the 

decay of an i s o t r o p i c  f i e l d  of turbulence.  AI terna tively, f or s i m -  

p l i c i t y ,  one could p o s t u l a t e  the impossible csmbinat%on of isotropy 



1 

5 

and nondecay of the velocl-ty f i e l d ,  For our  purposesp t o  derive 

the  p e r t i n e n t  s c a l a r  equations,  t h e  only  speeJf i c a t i o n  necessary 

i s  t h a t  t h e  v e l o c i t y  f Peld be isotropPc. 

There i s  another  consequence of dynamic p a s s i v i t y  which w i l l  

be of fundamental importance in  the  f olfowing der iva t ions ,  In 

KraJchnants  theory  a c r u c i a l  r o l e  i s  played by the modal response 

f u n c t i o n  which e s s e n t i a l l y  descr ibes  how a per turba t ion  of one mode 

in a dynamical system is transported through the coexis t ing modes, 

Obvjous ly ,  by p a s s i v i t y ,  i f  the modes cons i s t  of s c a l a r  and ve3Locity 

field F o u r i e r  elements the  per furba t ion  of the former w i l l  have no 

I n f l u e n c e  on t h e  l a t e r  and a wide group of responses can 'be ignored 
1 

5.n the subsequent development, The reverse $a evident ly  not  true* 

V e l o c i t y  f i e l d  modes e x e r t ,  through t h e  i n e r t i a  terms, a dominant 

jn f fuence  over t h e  sealar f i e l d  they  t ransport .  Natural ly  there 

w i l l  a l s o  always be a response of the s e a l a r  fiield modes t o  a 

p e r t u r b a t i o n  of one of t h e i r  o m  number. 

The eomplexi t y  of the  turbulence dynamics problem invariably 

forces on t h e  i n v e s t i g a t o r  the neee%s%ty of pos.&eo$%*tbng s.yYmrnetrks 

in .the system under examination, ICraSehrzan h a s  presented in a 

f o r m a l  manner a s e t  of equations i n  r e a l  space and time which make 

no such appeals.  They a r e  consequent%y extremely complex and pre- 

s u m a b l y  s o l u t i o n  depends on s implif  jcations which will i n  par t  be 

geomet r i c .  We w i l l  adopt the not ion  of i so t rop ic  d i s t r ibu t ion  of 

both v e l o c i t y  and s c a l a r  f l u c t u a t i n g  f i e l d s ,  a zero mean ~ e l o c i t y  

and a s p a t i a l l y  uniform mean concent ra t ion  which w i l l ,  of course, 

b e c a u s e  of t h e  nonlineax reac t ion  be time dependent, The le s s  

r e s t r i c t i v e  assumption of hoanogenity e f f e c t s  a g r e a t  deal. of simpli- 

f g c a t i o n  bu t  f o r  our purposes i n  t h e  search f o r  the most readi ly 



solvable  syatem we w i l l  i n  genera l  a l s o  specify isotropy, A n  

e x c e p t i o n  is made in an Inves t igakion  of the f i n a l  period of de- 

cay  where classically homogenity %a saf%%cienit for a so3ution. 

We will take a s  se l f -ev9dent  the following eqaat3sns which 

d e s c r i b e  t he  phenomena of' taxbulent m$xing ~f s scalar fceld which 

undergoes a second order re%et%on,  

The incompressible Navier-S%eBes equation (2J>, 

where , is the  c o n c e n t r a t i o n  of the  reacting species. 

S ince  t h e  Navrer-Stokes equations consist of terns which 

a r e  either l i n e a r  or  b i l i n e a r  i n  the! ve3toePt-y f i e l d  and the mass 

c o n s e r v a t i o n  law, equation (2.21, , reveals a s i m i l a r  property for  

1 ( ~ b t )  we map. expect  that a matr ix  formulat ion will collapse 

these two equat ions i n t o  a single one, It i s  convenient t o  make 

use of t h e  e l abora te  notational eonvcnt%ons of ICrzliehnan as used 

i n  ref e rence  (41, ( h e x e d  ter ref erred to as K), 

'Thus we can w r i t e  the s i n g l e  mat r ix  cque t i o n  in the same 

form a s  K Equation (6,8,) 

where t h e  opera tor  de f in i t rons  a r e  as  gfven by Kg Equations (607) ,  

(6,9), (6.10) and {6.Il), wi*h %he fol lowing changes; 



(b) d. the volume coefffcian't of thermal expansion 5s to 

be taken as zero, 

e.g. L l o [ v )  L + o  

We may f o m  the various  s t a t i s t i c a l  equations t h a t  can be 

generated f r o m  Equation(s.3) Sn the u s u a l  manner to o b t a i n  

- 1  5 y: 
ax* t o o  ( 5 ,  e ; x,t-; $,e? 



- a  H 3 
ax. k o O  ; ;  S S[+-TI) 

Q 

where the simplif $cat ions  o f  passivity and homogeneity have already 

b e e n  appl ied .  Tha t  equations (2.4), (2.5) and (2.61, when 

c o u p l e d  with the v e l o c i t y  field results from K, are sufficient 

f o l l o w s  from the r e s u l t ,  which  i s  not qu i t e  self-evident but  is  

e a s y  t o  show, t h a t  forms of t h e  response func t ion  Goi(!)t;~~+')* i $ O  
B 

P l a y  no r o l e  in the dynamics of the in terac t ion  under the assump- 

tions of s c a l a r  and ve loc i ty  f i e l d  %sotropy. 

3 0  P i n a l  Period of Decay 

A not quite trivial solat5on of turbulent velocity field 

d ~ a m i c s  has been obtained"' f o r  the asymptotic regime in tux- 

bulen't decay when eff eetively for any given wave number the inertia 

e o n f k i b u t i o n  becomes negl ig ib le  compared t o  the  d i f f  us%ve eff eets.  

A s i m i l a r  solution e x i s t s  for decay of a passive scalar f i e l d  

~ b e ~ f n g  a lineax conservation law. For the present problem we 

6""s by the classi,caj. argument, expect: the last t w o  terms i n  

=qua tion ( 2 , 5 )  t o  become ins ign i f i can t  asymptotica-tf .ye 

If we can fnrtpier 5gnore the other triple moment tern, then  

ehe combined equatsons (2-4) and (2,s) farm a c losed  set .  A 



I 

suff i e i e n t  condition for neglecting the ~ e c ~ n d  term on the r i g h t  

hand side sf (2,s) compared t o  the first &ern on the same s i d e  
* would be the r e l a t i ~ n s h i p  

/ 

In the direct gntezaetion spprox9matgon with whHeh the sub- 

sequent sections of th9s repart are concerned it wEll be seen 
, 

t h a t  such a  elations ship becomes h5ghly pfaasPble, but %or the 

moment we take 5% as an assumption and show that the consequences 

a re  consistent ~ 5 t h  the aseumptiam, We f i n d  under these efrcum- 

s tances  t h a t  mean and ffasctw..ahing sealalto f ieEdla are r e l a t ed  by 

A snore convenient form sf (3,3) which a l s o  makes exgl5e5t use 0% 

the homogeneity of ( , can easily be derived. 

at LC !3,41, 

* In the l i m i t  $,I=*_; el r  t and assurngng bounded skewness, 

(3-1) f a  equivalent t o  

See Reference (7) Seet%sn C4*1) 



I where P. = X, - %. and henee 94,1) becomes 

A s p a t i a l  Fourier transform of the corxele tion function 

i n t o ,  say, f )  (+, t) l e a d s  t an immediate formal solutfon 

of (3.4) in wave number apace. 

: and the eonsequent form sf the mean equation 

FOX kinematic reasons ") the s p h e r i c a l  shell mesa of (p (4,t) 
behaves a s  a q u a d r a t i c  in k near  the wave number or ig in  and 

s i n c e ,  from (3,s) fsz -t -to very l a rge ,  only wave numbers 

n e a r  the  origin e ~ n t s i b a t e  s igni f icaae lg  t o  the $0fX3l  seafar 

euene~gyDBo (3-7) can be written 
f 

n 

from which a sPra5ghlt: f s m r d  i.ntegretSon yiel,da 
: 



The analysis l ead jng  t o  C3,8) 5s only of a s p p t s $ Z c  validity. 

Thus t , is a 'sui~tanal time 0r5.gin about wkieh w e  can have no 

inf ormatiion other  than expezimen~&al and t h a t  does not appear to 

- 
the r a t e  of decay of O, (e) can be no leas rapid than in- 

! 

j versely with t h e ,  wh5ch is the reaction-controlled behavior 

of a second order  system, 

Defining r =  c l t - t Q )  and 

w e  can d i f f e r e n t i a t e  (3 ,8 )  t o  obtain 

and know from (3,8) t h a t  no other  s o l u t i o n  cam exhibit s leas 

sapid  decay, 

Substitution sf the resul$ (3,10) into (3,8$ y ie lds  

asynptotilc statements; 



We may note a eomparPasn between (3,121 and the correspond- 

ing results for the tmbalent energy decsy in the final, period(6) 

and f o r  the asymptotic r a t e  of energy decsy of a nonxeacting 

97) s c a l a r  * 

For the nonreaeting 

Pf we mow zef er forward t o  equation (4,2) in the nex t  

s€?c*~u~, the f i r s t  t e ~ m  on %he r5gh-k hand s98e Ps the Direct 

Interaction approximatf on to the term containing q0&,t; xp, &:TI) 

Sn <2,5), Appl%eat&on o f  (3,EX) and (3,9.2) to 94.2) indicates 

a eonsistevley with the ass\%anptPon (3,%), 3n fact the quadfatic 

na 'tare of the dependence of t h e  f i x s t  term on the sight hand 

s i d e  of (4.2) on ( , t ; , $) and We dependence of the 

spectrum $@kit) on PO@) as given by (3,6) s t rong ly  

suggests %fist only the Ief t hand side of (4,2) be retained in 

a f inal period anaXys9s, This of' coarse is what has been done in 

deriving Q3,ll) and (3,12), 
- - - - - - - 

* See also Ref erenee (7), Equation :3Q, 



4 .  The Direct Interaction A~psoxima tion 

Application of Kraiehnanws approximation to the Sncsmp%e%e 

s e t  of equations (2,4)9 ( 2 0 5 )  and ( Z 0 6 )  is entirely straight 

fo rward  and f oxanally similar, st feast in their space-%$me form, 

to the r e s u l t s  he has quoted in KO 

The approximat ion i t s e l f  has been desc~ibed in phys ica l  and 

ma thema t i c a l  deeail by i t s  au tho r  4.n several pablica tionso 

%t satisfies a l l  of the elemenls,ry physical requirements such a s  

resliza b i % i  t y  and consistency axnd appears t o  predict f a r  iarstf opSe 

decaying turbulence a t  low RepoIEdgs Mmbers sevetml sf the  

expe~imen$al%g observed f ea tu r e s  of %ur$af enee, %t is hoped 
! 

-that i t  may prove equa l ly  as useful in predicting sirnilax featurea 

in eompaxable Reynolds and Bmkohler  Numbex ranges f o r  the prob- 

l e m  under investigation hem?, 

The algebraic detaSla of the appraximati~m a s  appfSed t o  the 

t r i p 1  e moment terms ( those  with three! aubscx:ip&s) in (2,5) and 

(206) can be camStked, Use 5s made of K equat ions  95,1,) and (5,2) 

and the def initf ons following eqaat30rm (2,3) above with the 

following reau%$s; 



For t h e  purposes af computation and dynamieal interpretatPsn 

3s convenient to transform the above set sf equat ions  i n t o  

Four ie r  space, 

A t y p i c a l  ~ransEoma$Son eavk be demona%ra%ed with the term 

whzeh appears 5n (4,2) 

Bef 5ne 



and we obta in  

-terms 5n the space time equations leads to the f ollowPng reaasm- 

ably compact deserPpt3on of the phenomena of SssfsopS@ turbulent  

mixing, dfff  usion and react9ve decay of a reacting s c a l a r a  



I so t ropy  of the var ious  a&a*kPstHe:t~l fnnctlons invof,ved i l r l  

the above deseriptietn impS.Pea t h a t  they are fnnctSoas only of  

t he  magn$tade of t h e i r  vector  asgwoents. Pursuit of th i s  obvious 

sgmplif 5cation $8 pa;; tpsned uuf.t5l arn f rives t igat%on of poss ib le  

n ~ m e ~ i c a k  ssln'kion techniques for $he a b ~ v e  se t  is undertaken, 

InietiarS, cond1,tlona will "8? qui te  s imi la r  t o  those  employed by 

K r a i c b a n  '3' in h i s  k n v e s f i g a t i ~ n  of i so t rop i c  turbulence dynamic5 

and in fact a sunHtabf e f om f QJ[: $he fi%nozmo¶ velocity f i e l d  

f~nctgon e ~ u $ d  be t o  the numerical 2esu.Its repo~t:ed 

by h i m ,  

5, @onele%sf en 

An attempt is being madec8' to apply the direct: interaction 

approxima t i o n  to the so lu t ion  of the pass Ive sca la r  mixing probl.em. 

~ ~ e v i o u s  work(9) has shorn t h a t  f o r  the fzeely decaying situstion 
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