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ABRSTRACT

A comparizon betieen iha exact and approximate theoretical
scluticns for closures at the third and fourth order moment is pre-

sented for the problen of the decay of reactants which obey an arbi-

trary order equation (the order being limited to be between 1 and 3)

e

and whose initial description

.

s given stochastically. The closures

-

satisfy prescribtad realizab

[
;_J
e
+
B
m

nd asymptotic conditions for certain
ranges of initial values of the mean, mean square fluctuations, third
order moments, and fourth order momznts of the concentration field.
The restrictions on initial valu.s are given in terms of dimension-
less ratios that arve independent of the form of the closures.

The closures were applied to two diffevent probability dis-
tributions 1o determine the accuracy of the closures. It was found
that: (1) Violation of the prescribed limits on the initial values
of the moments led to severely unphysical, unacceptable behavior in
the time history of scme or all of the moments considered, and (2)

When initial moments were within the allowable limits, proper q alitative
behavior was exhibiﬁed in all cases. However, cuantitative accuracy

as deterwined by comparison with emact stochastic solutions was greatest
for: the second order reaction and was reduced somewhat as the order
diverged from 2. It was further found. for the case when all initial
moments were such that a fourth order closure was possible that the

esults were not significantly more accurate than those predicted by

a third moment closura.



I. INTRODUCTION

O'Brien and Engl have presented simple two term closurce forms at
the third and fourth order moments for the problém of the decay of reactants
fhat obey an equation wvhose order is between 1 and 3.

The forms do not vary for various order equations or for various
initial data. However, certain limits have been found which deliniate the
rangés‘within which raalizability and proper physical behavior of the evolu-
tion of the quantity under consideration can be obtained. These limits have

. 1.
been given™ in terms

o]

T dimensionless ratios that are independent of the-
closure forms used.
s 2 . .
0'Brien has already shown that a simple two term third order
closure form can closely model the exact solutions for the case of second
order reactions. The objective of this report is to determine the accuracy

of similar simple closure forms for the case of arbitrary order reactions.
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II.  THE STATISTICAL PROBLEM
The system is deseribed by the equation
AT S,
e = = e
C:[ S } (2.1)

wvhere T is the concentration which will be a random variable bounded be-
tween 0 & T' <« , R is the order of the reaction which is bounded by

1 <R g3, and t 1is the time which has been normalized by a constant

reaction rate,

The problem is made stochastic by assigning initial conditions in
s oax 1 . . . . P
a statistical manner™. TFor example, if P[T(0)] is a prescribed initial
probability density for the concentration field, then the exact solution
. . . 2
for any order moment exists in the following form :

R=1) _
::\:'w’ B ~ mw--“mX o 2= . .
t 3:.;_,( N XETD ] TOOSK, e

where the overbar denotes an ensemble average.
There are some asymptotic properties of (2.2) which were used to

determine the forms of the moment closures to be presented:

T =Cirene]

e

e

% , V) /[(/@ i) ’)’ (2.4)

— ?/’

M T4 L] 7

Zr —od

/ ;;177?)*:“ s Je=1) 7/ "’“/ (2.8)
_L e o

¥hebe y = I'-T . These follow simply from an asymptotic expansion of (2.2)



and the assumption that

PRREPES———

j X S ) dX = ‘:’ (o)

exist for N = 1, 2, 3, 4,
By keeping certain requirements in mindl, the first three moment

equations of an infinite unclosed hierarchy were found to be:

AT C PR RRD R T RR-NRDTFREUE
p i N G S N

_VIKCR—D(Q51>(%§Q = R ”"7¥ (2.7)
d} 2\ ] - [ )/ J
T B o R e . —--¥ L
”ﬁ%?ﬂﬂiﬁl r“4-R(“D Y’ -
R(R~-1)(R-2) &t A
+ ------ = o] 3’ ) (2.8)
“Eﬁﬁfz,?P\7 -ﬂﬁg :§§20¢{yﬁi~\£’lgmgﬁ "1
= > (1 (P-2) o B3 [ e = -
- R{R- D__E.: = ‘)L)/S -)/3 Y z J }M
_ RODEDED Frig =
G .

Note that it is the fractional orders that significantly introduce
the effect of ;El. At the integral orders, (2.7) and (2.8) are independent
of ?J: 4

The resulting equations suppose that ;kO), ;§ko), and ;Eko)
are prescribed. Ve w%ll require that ;I“Aand §n_ be replaced by specified
functions of /f~ and ;?‘ whohse forins do not depend on the initial data
(though the magnitude of ?§?ES-~;263;2 is restricted) and are such that

(2.7) and (2.8) yield physically acceptable descriptions of the first three

moments. Note that since v°(0) is not prescribed, we cannot uvse (2.9),



wm

even to the extent of evaluéting fgé-(o).
The following realizability conditions were imposed to specify a

certain degree of physical reasonableness to the solution:

O£t <=2, | O (2.10)
O = YH) <o, G
S e i e 2. e

\(3’:"’(./) > 7{7\[-{_{-) 70t ' “’?Z(‘j 3-‘7(*{1)}_ (2.22)

B
V) 7 YR/ 3y T

— 3;757 17 A_ —H y3 1. (2.13)

The inequalities (2.12) and (2.13) arise from a restrictionu on the skew-
ness and kurtosis of any probabilit§ density which is zero for values of
the random variable that are less than or egual to zero.

In the next section, closures are presented that have been shownl
to satisfy the realizability conditions (2.10), (2.11), (2.12), and (2.13)
for all values of ;ko), ;5k0), ;éko), and ;ﬂko) which themselves do
not violate (Q.io), (2.11), (2.12), and (2.13). Ve have also required that
the asymptotic behaviors given by (2.3), (2.4), (2.5), and (2.6) are satis-
fied. The closures are simple functional forms that do not vary for different

initial data.



I17. CLOSURES AND THEORETICAL RESULTS

The third order moment closure

— = /2

YD(C) /} y {—1;) TéH) — A o Y Et) (3.1)

and the fourth order moment closure

) = B Y20 =B,y () 1)
(3.2)
have been shownl to satisfy realizability, physical behavior, and asymptotic

requirements if certain conditions are met, The results presented employ

the following definitions:

\(1 = 1) ) : (3.3a)

\(l Y?“/C) ) :j (3.3b)

. s - -3z
S = )/3['@ )-”*('t), (3.3e)

A. Fourth Order Moment Requirements

Using the assumed third and fourth order moment closures and

requiring that realizability and physical requirements on the Y., and Y

1 2

moment equations are satisfied, ylelds the following requirements:

For 1 < R < 2:

O, ()< (34) /2 % 0.79, (ot

Y3 + 3L 2+ RN, (0]

N | (3.1b)

Y,%) R (R-V)(2-R)




e et

3 2 . P |
j__ {;C»/w s \{l[U‘> ”\‘L(O)) (3.hc)

epraae s e

Ao 3 g2 N T . (0) |
l\a"g;ls 7 \(2 ( ﬁ) "X“J)YZ,&{ ()\} M;j\;z ( 0) /71 \}( 3 ( 0) » (3.4e)

By substituting closures (3.1) and (3.2) into (3.4b) through (3.4e), it can

be shown that the constants used in the closures must be such that:

Ao 7 "L\;(m("'ﬂ.’? RY=A)+
R (2-RYTS Y0 G

/}L < 2(‘!-\,-!742, = er }\, > | ) (3.4g)
B, = f[ :)R\( (0)+RU34-(2-R Y m}}x
{A N, (0) - Ao\\z (a)}] R (2-R)x
CSRTGEN +E, wm, o
b Vs ‘\ L (0) 43~ 3 (L(CI ~H A = Ae X
X ‘L(C}? FBLYS (0), (3.45)

and for 2 <RZ3:

O 3\’2 (O £ (~~3—+ A > /2 = 07 (/} (3.45)
'\\/‘33(9 / (3.8%)
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Y2(0) 5 =Y, 0 0) +H(R/Z), (0

AN (T/Z”)Lsm SEAT) IR
Kok < o [t (Rin/2) Y, 10) (v e e/

SED) “ R(R-D(R-2)(3- L)] (.tm)

D SN

\ Ll \ ‘”"‘3 A

Y (o) - piadl 6)

TR [ ()) +3 ( /U 3 Y, /¢ C) H (3.4n)
N7 7Y 30

And by following the precedure previously indicated, it can be shown that

the constants used in the closures must be such that:

oo < p < BLGINADY AR )3 IO 2/
o ~ ¢ (3.uc)
YA (0 (57 R)
However, if R 1is very close to 2, or if .

RICY (2-R) Y, (0) YA /Y, 2r0) e

e e e Rt et e

oy s -

\( [0) “‘C R/ZIY, ZU) ( /2) yv?’/o)/YB[c: T (3.8p)

then it can be shown that (3.%0) may be simplified to yield the requirement

that A0 be such that:

—oo <A< 2[C2/R)A-N]F s A7 (5.50)

Returning to generally appllcable zﬂgults, we find that:
B <4LA-AY, 0] (3R)" + 1" [z-—:- R (R-1YY, [ ] %
< [y 2oy Rie-NR2)(3-0)] " B, Y, (6), o)

and




B, > Y, () +3 -3, (&) ~4L A, +
— Ao \f ‘"(0):( %—E?z\( (0). (3.4)

Using the same procedures, the third order moment closure problen

was also considered.

B. Third Order Moment Closure

If the Yl+ terms are dropped from the Yl and Y2 moment equations,

. . . 3 . .
and thus only a third order moment closure is required, then y realizability

and physical requirements on Yl ard Y2 require that:

For 1 < R < 2: o
<Y, <R »—1)(6‘—-?\ VIR (R-D (5~ R)] +
25 R (R-N(2- P) H:Z}\(I\ D(A“Rﬂ (3.5a)

Vo0 02 yE Y (0) < 32+
+ R(R-DY, (W][?\CR"D (Z“K)J (3.5b)

ho 7 =1 (O13(2 Q) ARG
x(/ P\)} J (()) (3.5¢)

L . ‘
Ao S Z (A)‘I)Z ; A‘>__L L (3.5d)

O < \(1(03 < B(R——Z\)w ©(3.5¢)




10 ‘
=, (0) + (R ]2 7\/2 ) Y3y )
(R/ L3+ (2-R)Y.(0)] \'\(13(0) <eo (3.56)
~eo <A, £ 3L a(A ~D AT fzm/z}-x
AR o) 2 R ] Y, - 2(6) (é Py ! (3.5g)

v

and if 3}

(R/6) (2-RYY, (0> Y03 X, J(Oﬂ X
LY, (0) ~R/DY0) +(R/2)*
A RO R (@

Then, as before, (3.5g) is simplified to:

e L
—c0 < A, X ZL(?/R/('[\PO]A ’ 1e (3.51)

In general,.therefore, the major advantage of the third order mo-
ment closure over the fourth order moment closure is that it is applicable
to many more initial values of YQ(O). A plot of (4.2a) and (4.2e) versus
R (see Fig. 19) shows that the mazimum allowable value of the ratio for
the third order moment closure is at least three times that allowed by the

fourth order moment closure.
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IvV. APPLICATIONS OF THE CLOSURES

Since the major interest of this paper is to determine the accu-
racy of closures which have already been shmwnl to give at least physically
acceptable results for certain ranges of initial valuss, it is of interest
to demonstrate their behavior by a few typical cases. Also, in view of the
relationship (2.2), it is possible to compare the results predicted by the
closures with those obtained exactly when explicit initial probability dis-
tributions, F(X), of the concentration fileld are prescribed.

The comparisons were cafried out using the following distri-

butions:

. - ozt ,
P(x)= (3.5 i) ‘)('3 1_,;2, (1.1)

Px)= LOY2 (14x) " 5.2)

These are the same distributions O'Brien used2. In particular:
(4.1) had initial values that satisfied all third order moment closure and
all fourth order moment closure requirenments, and (4.2) had initial values
that satisfied all third order, but hardly any of the fourth order require-
ments. The exact details are contained in Tables I and II.
Thus the end result of this procedure is:
1. To highlight the more restrictive nature of
the fourth order moment closure, and
2, To emphasize that although the third order
moment closure for non-second order reactions is

not as generally applicable as for the second order,

IR .



12

it still has enough flexibility to be of fairly
general use.
Exact solutions were obtained by substituting (4.1) and (4.2)

inte (2.2) and numerically integrating on a IBM 360 computer,

Approximate solutions were obtained from (2,7) and (2.8) (suitably

recastQ) with initial conditions specified by the exact solutions.

For each distribution, the quantities Yl’- Y2 and S are
plotted as functions of time with the order of reaction, R, as a para-
meter. For each quantity, there gre three graphs arranged as follows: the
exact solution, third order moment closure solution, and fourth order mo-
ment closure solution. The order of appearance of distributions is: Fig.
1-9 for (4.1), and Figs. 10-18 for (4.2).

A comparison of the results presented for the particular distri-
butions considered shows:

1. The third order moment closure requirements allow one
to handle a distribution whose Y,(0) is at least
three times that allowed by a fourth order moment
closure. Thus, the third order closure is demon-
strably applicable to many more cases thar the
fourth order closure (see Fig. 19);

2. However, it was found that for the third order clos-
sure, the time histories for R<2 (for the dis-
tribution where Y2(O)zi) could not be made as ac-
cuﬁate as those for R>2. Further, the R#2  solu-
tions were inaccurate compared to the R=2 solutions.
Details are presented in Table III for (4.2) only.

3. Violation of any of the requirements set forth in



(3.4) and (8.5) led to serious, quite unacceptable
unphysicalhéehavior in some or all of the variables.
For (4.1), which does satisfy.all requirements set
by (2.4) and (3,5), it seems that use of a fourth
order moment closure does not significantiy improve
the accuraéy of the results in comparison to those

from the third order moment closure.

13
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V. CONCLUSIONS

The results of the preceding section indicate that for the cases
considered a simple two term expansion form for closures at the third and
fourth order moment does yield soluticns that are glebally satisfactory
when all prescribed limits are satisfied. However, it is also evident that
solutions for the non-second order reaction equation are not as accurate as
those for the second order equation. The inaccuracies are due to: 1) the
truncation of what were originally infinite series moment equations and, 2)
the number and types of terms used in the closure forms.

The first souppe of error would seem to be alleviated by accounting
for more terms in the moment equations. However, this leads to the problems
of specifying the closure forms and of even having these higher moments
accurately available from experiments for comparison with the thecretical
results. Besides, as shown by our results, increasing the number of moments

accounted for in the moment equations not only does not seem to markedly

increase the accuracy of results but also introduces additional restrictions,

vwhich reduce the general applicability of the method.

The second éource of error may seem to be most easily suppressed
by using more terms in the suggested closure forms. Thus, since very good
accuracy was obtained in the second ordér case by forming a closure that
automatically satisfied pealizabilityQ, a plausible scheme would be to
force this condition for the non-second order reaction. This implies having
a closure whose functional form varies explicitly with R. However, as
remarked in Ref. [1], the ﬁature of the realizability conditions precludes
the formulation of such a closure in its exact form. This coupled with

the fairly wide range of values possible for the arbitrary constants

ne -

L e T e D s
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'

involved, makes it very difficult to predict a priori the number and kinds
of terms that best fit a particular distribution function.
However, as has been chown, quite satisfactory, globally correct

results may be obtained by using a simple two term closure in truncated

infinite series moment equations.
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’ TABIJE Io ~1 3'5’ -
ALLOWABLE RATIOS AS A FUNCTION OF R FOR P(X) = (3.5!1) x e

Ratl ¢ 1.25 1.50 2.00 2.50 3.00
a ~0.173  -0.173 | -0.173  -0.133 ~6.1o7
b 0.099 0.099 0.099 0.099 0.099
¢ 26.149 17.33 ® © ©
a -0.903  -0.903 Any -0.903  -0.903
e 0.21} 0.21L Any 0.21l 0.21h -
f 1.49 1.93 Any 37.06 o

b = Value of YB[()} \i/, 3 (0)
e -3
¢ = Maximum allowable value of Y 3( D) \(‘ (O\
. —— -4
d = Minimum allowable value of YAI( 0) \\/; /O)

B -
e = Value of YL)(O)\(‘ (0

T o4
£ = Maximm allowable value of Yi] () T, (0)




TABLE II.

ATTOWABLE RATIOS AS A FUNCTION OF R FOR P(¥) = 60x

R ~ |
h\ 1.25 1.50 2.00

2 0.0 0.0 . 0.0
b 5.88 5.88 5.88
c 29.6 22.0 o

d ' -22.5 -22.5 Any
e 196.2 195.2 Any
£ 22.1 31k Any

P

——— et et

——gy Py 4
= Value of \v( L}( 0) \\1 (O)

- - .
Minimum allowable value of /3(0)\(|; (O

= Value of ’?*7{“[“‘53 \(/1 _’IB/OD

Minimum allowable value of YL[(()) \/;'

2.50

0.2L

5.88
-22.5
196.2

120.7

\

e
Maximum allowable value of )/L/ ( O) \]/, (O)

4.
(0)

2() T

3.00

0.50

5.88
-22.5
196.2

[en)
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TABLE TII. 7
INITIAL, SLOPES FOR P(X) = 60x (L+x)

L. Exact Expression

é\’a___] = —-«3&0(;@1){ »r\;‘)r‘(g; \5
©

dt Je=o ) "“7(1“7) v
EACH
B d€ [g=0

1.00 0.0

1.25 -1.25

1.50 : -2.67

2.00 . ~12.00

2.50 -69.5]

3.00 i Undefined

B. Approximate Expression

C!\{ } - '"Z(R D[ Jrk\/ BL(A '“"t)( ’\5 j.}.)
dt wiHEre A= 7,,555;’)) A= 2,0

R _gﬁi](;:c
1.00 0.0

1.25 -2.148
1.50 -5.40
2.00 -11.76
2.50 -17.63
3.00 -21.52
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Fig. 1. Exact Solution for Dependence of Mean Concentration on
Dimensionless Time for Probability Distribution (4,1),
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Fig. 2, Third Order Moment Closure Solution Ffor Devendence of
Mean Concentration on Dimensionless Time for Probability
Distribution (4.1).
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Fig, 3. Fourth Order Moment Closure Solution for Dependence of

Mean Concentration on Dimensionless Time for Probability
Distribution (%.1).
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Fig. 4, Exact Solution for Dependence of Concentration Rela-
: tive Intensity on Dimensionless Time for Probability
Distribution (4.1).
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Fig., 5. Third Order Mcment Closurve Soluticn for Devendence
of Concentration Relative Intensity on Dimensionless
Time for Probability Distribution (4,1).
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. Fig. 6. Fourth Order Moment Closure Solution for Dependence
of Concentration Relative Intensity on Dimensionless
Time for Probability Distribution (4.1).
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Fig. 7.

Exact Solution for Dependence of Concentration
Skewness on Dimensionless Time for Probability
Distribution (&.1).
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2.00, A= 6.24
0.00, Bp= 0.00

Ve €3 00
e R=2.50

T R=3.00

. Fig. 8.

Third Order Moment Closure Solution for Dependence
of Concentration Skewness on Dimensionless Time for

Probability Distribution (4.1).




Ag= 2.00, A= 6.24
5.44, By= 5.00
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sl e a2

" Fig. S. Fourth Order Moment Closure Soluticen for Dependence
of Concentration Skewness on Dimensionless Time for
Probability Distribution (4.1).
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Fig. 10, Exact Solution for Dependence of Mean Concentration
on Dimensionless Time for Probability Distribution
(1,2).




Ag= 200, A= T7.88
By = 0.00, By=0.00

0.2

0.0 — .

Fig, 11, Third Order Moment Closure Solution for Dependence of
Mean Concentration on Dimensionless Time for Proba-
bility Distribution (4.2),
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Ap=  20,A,= 7.88
| =.396.2, B,=200.00

Fig. 12.

Fourth Order Moment Closure Solution for Dependence
of Mean Concentration on Dimensionless Time for Proba-
bility Distribution (&.2). '



Fig. 13,

\

Exact Solution for Dependence of Concentration Rela-
tive Intensity on Dimensionless Time for Probability
Distribution (4,2),.




1.0+ . DAg=200, A= 788

- e

Fig, 14, Third Order Moment Closure Solution for Dependence
of Concentration Relative Intensity on Dimensionless
Time for Probability Distribution (%.2).
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'Pig. 15. Fourth Order Moment Closure Solution for Dependence
of Concentration Relative Intensity on Dimensionless

Time for Probability Distribution (4.2).




w

-2.04 R

P.ig. 16, Exact Solution for Dependence of Concentration
Skewness on Dimensionless Time for Probability
Distribution (%.2).
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Ao= 200, A= 7.88
B,=0.00, By= 0.00
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0.0

= 1.0~
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Fig, 17. Third Order Moment Closure Sclution for Dependence
of Concentration Skewness on Dimensionless Time for
Probability Distribution (%.2).
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Fig. 18.  Fourth Order Moment Closure Solution for Dependence
of Concentration Bkewness on Dimensionless Time for
Frobability Distribution (4.2).
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