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ABSTRACT

The results of Yih, in hi n : .
, > S paper Lammar Free Convection abo

ve a Line

wia L

of Heat", Ref. 1, have been extended to include = prescribed shea
: ‘ . a oz

roin the horieoa.io

_plane- The results show that for an initiélly linear profile of
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Veloc;Lty in the horizontal plane in the amblent fluid, the presence of a i

a Lloyancey
N

plume flow field causes a diffusion of vorticity towards the vertical plans
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the line source, i.e., the transverse gradient of the longitudinal velocily

appreciably amplified towards the vertical plane-above the line source, ul

1~‘l{

ilda

Aiminished away from it. The pressure field was also determined.

A few minor corrections of algepraic nature were necessary on Yih's solution

so that it is'in the corrected form in the present analysis.

. - The corrected results of Yih are applicable for values of Prandtil nu?

ey of
5/9 and 2, however, this analysis is restricted to a value of Prandtl nwiter of 5/7.
INTRODUCTION
A line source of heat is placed in an infinite horizontal plane eguidistub
betiveen two verbical infinite parallel sci‘eens as shown in Fig. 1. The screeas ate

joels in sipn
in motion in the x-direction with velocities equal in nagnitude but oppesite I [

S ; e the property thi
U - and -U ,-respectively. The screens will be considered to have the property tin
s

th L. vet they are able
ey offer no resistance ‘to flow 1n the dlrectlon normal to them, yeb they
K Y et oo d
r in urabtion might te consllered
bO impact shea the tangentlal dlrectlon. This conflg £ ;

nreobiced
ary shear field proluces
a specialigation of the more complicated case of the boundary

i ‘ i . It will furiher ‘c.e:
by two currents of opposite direction meetlng each other

m bl
' fer n igtan + in-the vertical direstzon.
assumed that the screens offer no resis ce to the flo

: 3 irly sonable &f the
‘ ’ r, is fairly reas
This assumption, as will be more clearly seen later, -




: screens are a’G moderate distances from the 11ne source, since the buoyanc‘ ield
s restrlcted to a relatively small reglon in the neighborhood of the vertical
| a
symmetrlcal plane above the source, for moderate values of the relght 2

For
larger wvalues of z, the flow may already have become turbulent so that t.hls analjs”

is inappllcable in any case.

The complete velocity field and buoyancy field are sought.

JOMENCE.ATURE

¢ buoyancy parameter of the plume as defined by G::f wAydy
L . distance from line source to either screen
P ' locé.l static pressure
! b pressure of ambient undlsturbed fluid
P ydrostatlc pressure of ambient undisturbed fluid
p’ - = P-p, as defined
--’ .- 2—. - .
P = P_]_:._p, as defined
- 2 '
3 .
» .
)
P = o, .
o = £, 35 defined
- - u ‘
| S gas constant
‘T . local temperature
1, ~ temperature of ambient undisturbed fluid ‘L
8T . = T-T,, local temperature increment
u o velocity in the x-direction
"n’"_' = _li_,'as defined S
SR Tg : e
.:.Us screen veloc:.ty "
".:Y W Yelocity in the y—dj.rectlon B
2
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sy
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= QEV, as defined

velocity in the z-direction

=(u>£§w, as defined
oL ~

" coordinate parallel to the line heat-source

i the vertical. coordinate

= L , as defined
1

horizontal coordinate perpendicular to the line heat source

3 %Z’ as defined

LG/

" thermal diffusivity of fluid A .

Iocal specific weight

specific weight of ambient undisturbed fluid
= ¥ - Yos local buoyancy
viscosity of fluid

density of fluid

. ANALYSTS AND RESULTS

First, we assume that the variations in p, 0, and T are small. As a con-

| sequence of this we can say that the variations in density are small compared to the

magnitude of the density itself, hence , We can use the incompressible contlnulty

equation. Also , from the ideal gas equatlon: |

by o ()

' we can write from the above assumption:




.g—T-z.;'éx |
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Furbher , We assume that variations of the flow variables in the y-directi
- on
are laf'ge as compared W:L‘ch their variations in the z-dlrectlon, hence, we can
A 2
" formulate a boundary layer type pro‘blem.
Making the usual boundary layer type assumptions, and assinﬁing the z-pressure
variation is essentially hydrostatic, we obtain the equatidn of cdntinuity and the

equations of conservation of linear momentum, respectiveiy,

Cont.: SR W L o
= t 3z =0 | | (3)
. : . 2 -
x— Mom;: X ?_'l_l_ = u ? u - T
. Tw T W | ) O
y-tlom: oy 2% ®)
- | A 352 A
. z-Mom: v W W3 _ HD2W 8 Av (6)
° . - 2y * P e Yo

N Ma‘xjking use of Eq. (2), the energy equation becomes :

2 .
3y v - Ay . SRR
Yoz 1 2y v : R - ‘ (N

' The boundary conditions are:

Ll

" y=1; u=Ts T "
y=-1; u=-Ug S . (ka)
'. ‘ ) - bw v i
ga=0; v=055=0, u=0(
o (5a)

oo

(6a)
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“Now, obeervation of qu (3), (6), and (7) with boundary condltlons, Egs. (5a),
y1elds that these. form a complete set, i.e., they may be solved independently
of Eqs. (L) and (5) Further, Eqs. (L) and (5) are independent of each other.
. Hence , our plan of solution should be first to solve the system of Egs.
.(3),', (6), and (7) with boundary conditions Egs, (5a) for the variebles v, w, and
AY. ‘With v known, we can go to Eq. (L) and solve for u. With Eq. (5) we can
‘readily determine tne pressure distribution.
We have 'l';hus reduced the solution of what appeared to be a ratner complex

three-dimensional problem into.'bwo_ two-dimensional probiems.

A similarity solution to tne system of equations, Eqs. (3), (6), and (7),
with boundary conditions Eqs, (5a) was obtained by Yih, Ref. 1, for values of
| - Prandtl number of 5/9 and 2. Usinv"fih's-results for a value of Prandtl number
oi‘ 5'/9 5 We will proceed to solve Eq. (L) with boundary conditions Eqs. (Lka).

'v Y:Lh's results, in corrected form, are:

2 W5 -, 2 |
W= '801(pu ) z’/5 sech [.365'h PTB”) Z-Z/J. y:l (8)
: 265 -2 o 5 o
v= -(P%% z /s 1.3153 tanh [.36%( ) -2/7 ]
R .
| : (Lp) ;_2/5 7 sech [365h(u3 =5 ]} -
e % . |
_‘ AY = --3h2° T -a/s sech. [.3651;(&5_) 2\2/:' y':l : -+ (20)
" vhere G =_L, wAydy | N o (ll) |

1s the buoyancy parameter. ‘ | | o . '
The.buoyancy parameter, G. which ,-as shown by .Yih, is independent of Z,

. is a measure of tne source streng‘th, and may be shown to be directly propor-

| ’tionaAl ‘bo the heet. releaee rate of the source per unit length in the x-direction.

Employing the dimensionless variables shown in "Nomenclature", Egs. (.8)

ST
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and (9) vecome:

L " o
W' = .80L Z"/') sech™ [-365'l1 . 2/5 'y']

. (12)
<€ - _ t . l . 1 - . 2 . - ;

‘,v D {l 3 53 tanhI: 365k Z y';l - .3204 2 ¥' sech® [.36511 z' _Z/Ey!-]j
which are plotted as shown in Figs. 2 and 3 I'é-Spectively. . (3)
Similarly, Eq. (L) becomes
. ? - au.' - azu"

v T3 : B v
and the corresponding boundary conditions from Eqs. (La)
. .y': l; ur = 1
y'=-1; u'=-1
y'=0; u' =0 e R - (1ha)
'-Eq. (1)4) may be integrated to yield:
» o o ,]
cdu! = f(z') exp L vy
| 3y . A (15)
o ot du! . ' du! _
wvhere f(z') =[=— which is the value of ——— evaluated at y' = o.
- ay' yY = 0 ay‘

Substitﬁ’cing into Eq. (15) the expression for v' from Eq. (13),. we obtain after

~performing the indicated integration

S o “ofe” ' of | -2
. out = f(z') sech6 [‘365L1 z! 2éyr],exp{- .8768 T /2 A tanh(.365 z’ ¥t )]
ST / S S

A

" To find u', we integrate Eq. (16), and noting that u’ (0,2') = O from the

- last equation of Eqz. (1ha), we have:

w o= 2 () rabsua Tp) . o e
SO &
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‘Wheré; | ‘ | B : E
S 6 ~
I(B) = sech £- exp E‘hﬂg'tanhﬂﬂdﬁf

o

The functlon £(z" ) can be obbtained by applying to Eq. (17) the ‘boundary conditions
3

-~

."ur: = 1 at yr =] or u‘ = -1l at y' = -1, from the first two equations of Egs. (lha):

e = g%) S N %
. ‘ yt=o0 7! /5 I(,365'hzt—-2/5)‘ ' (18)
-The integral I(B) was evaluated numerically and the resul‘bs for the dimensionless

H

yi=o

velocity gradiant 3du' evaluated at the symmetrical plane y’—o, 221 =/5u j
3y" _ ST
Y

from Eq. (18) are plotted in Fig. L. The results for the dlmensmnless velocity in

| the x? —dlrect;on, u', from Eq. (17) are plotted in Fig. 5.

‘Employing the dimensionless variables in "Nomenclature" » Eq. (5) may be

written:

'ée'. '= 3 v' - : (1)

which, ilpon integrating, performed between the limits of y' == and y'= 7', gives

Pt =dv! + p'(z") - ) - : , o (20)
dy! ' ' S - ‘ .

| where ) (Z') represents the contribution of 'nydrostatlc pressure of the ambient

”» )

: ,ﬂ-‘?‘ld- Neglecting the variation in the hydrostatic pressure, we can have the °

boundary condition:

(21)

fri . ;‘~y.= 00; pf - 5’ =pé |
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Since dv! = 0as y 2 o0, we have from Eqs- (20) and (21),
B 4 o
ot R %}‘é’—
(22)
<13), gives the

difference between the dimensionless local static pPressure and the undisturbed

which, upon substitution of the expression for v' from Eq.

"ambient pressure

_)_1/

| - -2 ) -2
pt - p! = 3! _5 sech2[.365hz' /Sy‘]'él602 + .23L1l 2t /

-2
Syt tanh(.365k2 Sy )}
. | - (23)

which is plotted in Fig. 6.

: DISCUSSIONS

“ Observation of Flg. S clearly shows the effect on the shear field of the
>buoyancy. Consider a flow 1n1t1a11y with zero buoyance, i.e., at z' =, We
. have, essentl-a]ly ,» plane Oouette flow with a linear x—dlrectlon velocity dis-
trlbutlon. The addition of buoyance then causes a dlstortlon of the x-direction
ve_lo;:ity field, increasing the _u' velocity gradient at y' = o0 and decreasing
it towards y' = 1. As the buoyance is increased, we reach a point such that the
s n—véloci’cy gradient is nearly zero as y" apéroaches one, but becomes very large

as y' approaches zero. This, in essence, signifies that the buoyance causes a

'~ diffusion of z-vortlclty to the center. " The variation of z-vorticity at the

cen‘terllne, 7t =0, with buoyance may be seen firm Fig. .. Since z! varies .

Al

inverse]_y as the square root of the buoyance parameter, G, z'=0 corresponds to

-

- Zero buoyance or infinite height, z. The z—vort1c1ty, then, approac

roaches infinity as

hes a constant

i value , corresponding to plane Couette flow, at z' =, and app

PAS




e results, however, are not unexpen
~ These . 1 Pected. In order to explain this, consider

2 sysbem with plane Couette _flow. If a fluid particle is displaced towards the centep
‘.1ts speed will be retarded by the slower moving fluig particles, but they, in turn,
will be speeded up, or, the particle will transfer x—momentum to the slower moving
prticles. In our system, we have a steady flow of these particles moving towards
the center, hence, we have a contlnuous transfer of x-momentum towards the center.
Since , as seen from Fig. 3, the v' velocity component decreases rapldly towards the
center s there will also be a correspondlng decrease in the transfer of x-momentum
since the mward flux of the particles carrying this momentum is reduced. The result,
‘then, is tha’o we have a decrease in the transverse gradient of longltudmal velocity
in the vn.cmlty of y': “1 and an increase near y'=o.

The pressure distribution is shown i_n Fig. 6. As might be expected, the
: smallér thé value of the dimensionless height' above .the line source, z', the greater
the value oft the minimum pressure, y.‘et , the sxﬁaller is its range of ﬁfluenée , 1.e.,
for small values of z', the more _rapidly the pressure approaches the ambient pressure
‘po with y'. It maiy also be observed that for y' = const. o, the pressure decreases
with =1, approaches a minimum, and then increases to atmospheric.

One might also observe that the poin’d of minimum pressure moves away from‘ the
vertical plane of symmeﬁry, the x'— z' plane, i“or increasing z'. This may be readily

seen from Fig. 7 where the locus of points of minimum pressure is plotted._
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Dimensionless Vertical Velocity, w’
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Figure 2 RESULTS OF DISRIBUTION

OF VERTICAL VELOCITY
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Negative of Dimensionless Tranverse Velocity, -v’

o)
O

S

W
@)

N
O

o

Z =0.000|

A

JoBL,
y=¥
Bt

1]

—

N

-

# =0,0005

@)

1 | 1 |

Z =0.00lI

|

—

z =0,003

z =0.005
2:=0.010

0o J .2 3 4 .5

Figure 3

5

N

8 9 |10
Dimensionless Tranverse Distance From Plane of Symmetry,y

~ RESULTS OF DISTRIBUTION
- OF TRANSVERSE VELOCITY

7’



MITTT T

HIrrTT

I

1 MiTTTT

I

AHL3WWAS 40 3NVd LV

Q3LYNTVA3 ALIDOT3A TWNIGNLIONOT 40 LNIIQVHO 3ISHIASNYHL 40 SLINS3Y 274 QLDO._ 4

(2)) ‘ AijawwAhs jo audld §y PRIONIDAT A}190|BA |OUIPNHBUOT JO JUDIPDI) ©SIOASUDI] SSBIUOISUBWIQ
S¢ o_n o_u ow ] o_. S 0

I

TTINEN

1

piiigl

1

|

111

i

1000" &

S000°

JI1JaA  SSajuoiswewIq

100°

S00°

o010

06O’

* 92400 BuI woi4 doudisiqg o

O

o

—
z

’

00¢*

000!




Dimensionless Longitudinal Velocity, u’
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Figure 5  RESULTS OF DISTRIBUTION
| OF LONGITUDINAL VELOCITY
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