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ABSTRACT

Some properties of the Boltzmann equation (BE) for a spatially-

uniform system of Maxwellian molecules are considered, including the

explicit evaluation of the energy-space transition probability P(y,z;x),

the evaluation of the constants A and ~ . which enter in the momentn n,l

equations, the form of the energy BE, the linearization of the moment

equations, and a symmetry property of the BE itself.



1. INTRODUCTION

Maxwellian molecules (~W) are particles that have an inverse-

fourth power repulsive potential ($ = K/r4) and a differential

scattering cross-section cr(g,e) that is inversely proportional to the

relative velocity g. For a spatially uniform system of such particles,

the Boltzmann equation (BE) has been all but solved. Among the many

results found, it has been shown that: (i) the moments of the distri-

bution function satisfy an infinite, but closed, set of differential

equations;1-4 (ii) a formal general solution can be written in the

form of an infinite series of Laguerre polynomials; 2-4 (iii) there

is a closed-form solution, the celebrated Bobylev-Krook-Wu solution;I,5

and (iv) the BE can be transformed into an energy-space scalar equation,

with an explicit expression given for the transition probability.6,7

Yet to be found are a practical method to construct the solution for

a given initial condition, and a method to generate additional closed

form solutions, if any such exist.

~luch of the work that has been done in this subject has concerned

simplified models of the W~, for which cr(g,e) is still inversely propor-

tional to g, but depends upon e in a different way than the W.1.4,8-12

Notable among these models is the pseudo-Maxwelliam model, discussed

by both Bobylev5 and Krook and Wu,l in which cr is assumed to be

independent of e. The advantage of these various models is that the

form and properties of the solution are similar to those for the ~W,

while the quantities that enter in the solution can generally be
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evaluated explicitly. For the r~l, those quantities which are related

to integrals of ga(g,e) (with respect to e) cannot be evaluated

analytically in closed form because of the nature of a(g,e). Another

feature of the simplified models is that the corresponding a are

non-singular functions of e, which makes the manipulation of the

kinetic equations easier.

The purpose of this paper is to consider some aspects of the

solution to the BE specifically for the true ~~1, with its singular a.

We present explicit calculations of the a-dependent parameters that

enter in the known results, and present a plot of the energy-space

collision frequency. We develop an analytical approximation scheme

which gives a rapidly converging series of closed-form expressions

for this collision frequency, based upon an analysis of the differ-

ential scattering cross section which is given in an Appendixo We

also discuss a constraint on the form of the kinetic equation for the

~1, an important symmetry property of the BE, and consider

the linearization of the moment equation. We begin, in the next section,

with a summary of the theoretical results. For a more complete review,

the reader is referred to Ref. 13.
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II. FORHULAS

\Jedefine the energy distribution function F(x,t), related to

the usual velocity distribution function f(v,T) by F(x,t) = (KBT/nm)

x 4~v f(v,T), where KB = Boltzmann's constant, T = temperature,

n = number density (assumed to be uniform), m = mass of a particle,

v = the magnitude of the velocity, x is an energy variable x = mv2/2KBT,

and t is a dimensionless time related to the actual time T by

t = 4~n(2K/m)1/2T, where (2K/m)1/2 is a constant that multiplies gcr(g,8)

(see Appendix B). We also define the dimensionless collision rate

h(8) = (2K/m)-1/2 gcr(g,8), which for Maxwellian molecules depends only

upon 8 and is given in the Appendix.

For the uniform system of Maxwellian molecules, it has been shown:

(i) The normalized moments of F, defined by

M*(t) = r(n) [
TI-

n ren + 3/2) 0 x l'(x,t)dx
(1)

satisfy the closed set of moment equations (written in symmetrical

1-4
form):

dM* n-l

~ + A M* = L 1.1 .M~M* .dt n n . 1 n,l 1 n-11=
(2a)

where

- n! 1
J

~ . 2i+l 8 2n-2i+l 8
1.1 . - . I( -' )I _2

Sln ~ cos _2
n,l 1. n 1. 0 ~

x [h(8) + h(~-8)] d8 (2b)

and
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f
7f

[ J
1 . 2n 8 2n 8 . 8 8

A = - 1 - s~n - - cos - s~n - cos -
n 20 2 2 2 2

x [h(8) + h(7f-8)]d8 (2c)

Conservation of mass and energy imply HO = 1 and Mi = 1. Although

(2) may be solved successively, a general closed-form solution for

all M* has not been found.n Some comments about (2c), including

expressions for the first seven M* are given in Section VI.n

(ii) The formal solution to the BE is given by2-4

- xl/2 e-x 00 n (1/2)

F(x,t) - r(3/2) n~o cn(t) (-1) Ln (x)

where L(1/2) (x) is the associated Laguerre polynomial of order 1/2.n

(3)

The c (t) satisfy an equation identical to (2),n with the M* replacedn

by the cn' and with Co = 1, cl = O.

from F(x,O) by the equation

The c at t = 0 can be determinedn

n

f

oo

c (0) = (-1) r(3/2)n! F(x O)L(1/2) (x)dx .
n r (n + 3/2) 0 ' n

(4)

Although (2), (3), and (4) provide a procedure to find a general

solution, this procedure is of limited practical use because of the

necessity of solving the set of equations (2).

(iii) The closed-form solution of BobylevS and of Krook and Wul

is given by

1/2 -x/a
F (x t ) = x e [

Sa-3 l-a j, -+ X

r(3/2)aS/2 2 a
(Sa)

where



S

a = 1 - e-A(t-to) (Sb)

A = A/2 (Sc)

(iv) The energy-space BE satisfied by F(x,t) is given by

dF(x,t) = roo d~ r~ dy [F(y,t)F(~-y,t)P(y,~-y;x)
dt Jx Jo

- F(x,t)F(~-x,t)P(x,~-x;y)] (6)

where P(y,z;x) represents the probability that a pair of particles

with energies y and z collide and take on energies x and y+z-x, in

the laboratory frame of reference. The form of the above equation

and its relation to other ways of writing an energy-space BE are

discussed in Section V.

.
b 6,7

glven y

For Maxwellian molecules, P(y,z;x) is

1

P(y,z;x) = IYZ

q (~ ' ~j

q [~ ' ~)

q (1 - ~ ' ~J

0 < x < y

y < x < z

z < x < (y+z) (7a)

for y < z, where ~ = y+z and

1

I

b

q(u,v) = 4 [h(8) + h(TI-8)]d8a

-1 L -1 T.:'1
a = 2[sin vv - sin VUJ

-1 L -1 r
b = 2[sin vv + sin vu] (7b)

Equations (6) and (7) represent a reformulation (and simplification)

of the BE for the ~W.
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III. P(y, z;x)

First, consider the transition probability function P(y,z;x),

which is determined by (7) and the expression for h(8) given in the

Appendix. Using numerical techniques to eliminate the parameter s

from (AI) - (A2) and to do the integration in (7), we produced the

plot of P(O.3~,O.7~,x) as a function of x/~, given in Fig. 1. This

function gives the probability that a ~~1 leaves a collision with

energy x/~, given that the particles collided with energies O.3~ and

O.7~. Figure 1 may be compared to the plot given in Fig. 1 of Ref. 12

cf the P(y,z;x) for the Bobylev-Krook-Wu pseudo-Maxwellian model

(which corresponds to h = I). Figure 1 of Ref. 12 also exhibits the

P(y,z;x) for a class of models of general dimensionality d, with h(8)

proportional to sin3-d 8, which includes the model of Tjon and Wu8

when d = 2. The plot of P(y,z;x) for the Maxwellian molecule given

here may also be compared to the P(y,z;x) of a class of models con-

sidered by Ernst and Hendriks, which are plotted in Fig. 1.4 of Ref. 13.

Finally, one may also compare the P(y,z;x) for a three-dimensional

system with h(8) = cos2 8, whose plot is given in Ref. 6. The most

notable difference between the P(y,z;x) of the W4 and the P(y,z;x) of

these other model systems is that in the case of the W4 the P(y,z;x)

is singular at x = y and x = z, while none of the others are (although

some show discontinuities in the derivatives at these points).

The points x = y and x = z correspond to the two cases where a

particle leaves a collision with the s~~e energy that one particle had
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coming into the collision. The divergence of P(y,z;x) at these points

is a consequence of the infinite cross-section for the Maxwellian

molecule. Since all long-range potentials have an infinite classical

cross-section,14 they should all have P(y,z;x) 's which are divergent.

w~ can analyze the divergence of P(y,z;x) by using the expansion

of h(8) given in (A6). To lowest order we have

h(8) ~ fu 8-5/28 (3)

and therefore

q(u,v) ~ l~ IITT3 {a-3/2 - b-3/2 + (~-a)3/2 - (~-b)3/2}
(9)

where a and b are given in (7b). It follows from (9) that P(y,z;x)

diverges as ly-xl-3/2 at x = y, and is not integrable. The implications

of this divergence regarding the form of the BE will be discussed in

Section V. Successively closer approximations to q(u,v) [and therefore

to P(y,z;x)] can be found by taking further terms in the expansion (A6).

Figure 2 shows P(y,z;x) for the two limiting cases y/~ = 0.5 (both

particles have the same incoming energy) and y/~ = 0 (one particle is

stationary). The curve for the latter case also illustrates the function

h(8) + h(~-e), since it follows from (7) that15

1 -1 ~ -1 ~
P(O,z;x) = ~ [h(2sin yx/z) + h(~ - 2sin yx/z)]. (10)

We note that (9) can be thought of as the definition of a new model,

obviously very closely related to the HM. The corresponding P(y,z;x)
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for this model would then be given exactly and in closed form by (7a)

and (9). The sequence of functions h(8) found by taking successively

higher terms in (A6) could then be thought of as a sequence of new

models, rapidly converging to the ~4M. Although the P(y,z;x) of these

models
can be written in explicit form, the ~ . and A apparentlyn,l n

cannot.

IV. THE A AND THE ~ .
n n,l

Using the expression for h(8) given in the Appendix we have also

calculated the A and the ~ ..

n n,l
The results of these calculations are

given in Tables I and II, and the techniques used are described in the

Appendix.

First note that these numbers are not independento The A forn

all odd n can be determined from the An of even n,16 for example, by

repeated use of the relation

n-l

[ )
2A = L ~ (-l)iA.n . 2 1 1

1=
(11)

which follows from (2c).
17

The ~ . are related to the A byn,l n

~ . =.!.
(

~
)

I
(

n-i

)
(-l)i+k+l A .

n,l 2 1 k . n-k k=1
(12)

Second note that some A have been given previously by Alterman,n

Frankowski, and Pekeris18 and also by Cornille and Gervoiso16 The An

given here are proportional to the A 0 of Alterman, et alo, which
n,
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are normalized such that A2 0 = 0.4.
,

In Alterman, et al., the first

eighteen values of A 0, n = 0, 1, ..., 18, are given, and thesen,

An,0/A2,0 agree with our An/A2 to seven figures (note that only five

figures are shown in Table I). The work of Alterman, et al., was done

(20 years ago) on the "WEIZAC" conputer while ours was done on a pocket

calculator. Partly to our advantage was the change of variables described

in the Appendix.

Cornille and Gervois16 give seven values of ~ which are related ton

A2' A3' ..., A15 by A2 = ~1/12, A3 = ~1/8, A4 = ~1/6 - ~2/60, etc.
Their

numbers, which are given to seven significant figures, agree with ours

only to three figures.

With the numbers of Table I and Table II, the BE for the ~w has been

reduced to a set of equations with no undetermined constants. Thus, for

example, one can write the first few Mn(t), using the solutions Mn(t)

given in Section VI.

For the pseudo-Maxwellian model, we have simply ~ . = l/(n+l) andn,l

An = (n-l)/(n+l).1,5 Note that both these A and the A of the t~1 givenn n

in Table II are slowly increasing functions of n. For large n, the An

of the pseudo-Maxwellian approaches unity, while for the W4 An grows

1/4
slowly as n -- a result that follows from (2c).
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v. THE ENERGYBE

Here we discuss Eq. (6), which is written in a slightly different

form than the equation considered previously by one of us:12

In this way of writing the equation, the interpretation of the two

terms as representing gain and loss, respectively, and the interpre-

tat ion of P(y,z;x) as a transition probability, is perhaps more

immediate, but for the MM the two terms on the RHS of (13) are each

infinite because of the divergence of P(y,z;x). With both terms

written inside the integrations, as in (6), the divergences cancel.

Equation (6) is of the form used by Ernst,2 who writes K(x,y;~) for

P(y,~-y;x). We can also use the inverse-collision sYmmetry (or detailed-

balance condition),

k(x,y;~) = k(y,x;~) (14)

where k(x,y;~) = [y(~_y)]1/2p(y,~_y;x), and rewrite (6) in the form

r (3/ 2)xl/2 a~\x: t) = ~ di; fai;dy k (x, y; i;)['i\y, t) f(i;-y, t)

- f(x,t)f(~-x,t)] (15)

- -1/2 -
where here f(x,t) = r(3/2)x F(x,t). [This f is closely related, but

not identical, to the f(v,T) introduced at the beginning.] Written in

this form, the cancellationof the two terms at x = y and x = ~-y is

fa 00aFX{t) = 0 dy fa dz F(y,t)F(z,t)P(y,z;x)

- F(x,t) dy F(y,t) J; dz P(x,y;z).
(13)
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obvious. Note that (14) is more nearly in the form of a BE than either

~

(6) or (13) since the four f terms are written in a factor that multiplies

the function k(x,y;s), which evidently takes the place of the differential

scattering cross-section, with the variable s taking the place of the

scattering angle.

d
O l 12

rea 1 y proven.

In this form, for example, the H-theorem is most

VI. THE MOMENT EQUATIONS

Explicit expressions for the first few M*(t) or c(t) have beenn

given by Krook and Wul (for

17
Praestgaard,

the pseudo-Maxwellian model), Hauge and

and Cornille and Gervois.16 One way the solutions may

be written is in a linearized form, which is possible since the equation

(2) for M* depends only linearly upon M*on n That is, (2) may be written

db
---E.+Ab =0dt n n (16)

with solution b (t) = b (O)e-Ant, wheren n

b 2 = M2 - 1

b3 = M3 - 3M2 + 2

2
b4 = M4 - 4M3 + 3M2

2
bS = MS - SM4 + 2M2M3 + 8M3 - 6M2

(17)

where we have dropped the asterisks on the M. Although this proceduren

has recently been described by Bobylev,19 these explicit expressions
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of the b were not previously given.n The corresponding linearization

of (2) for the c leads to simpler expressions for the b , since C
l

= O.n n

We find

b2 = c2

b3 = c3

2
b4 = c4 + 3c2

b5 = c5 + 2cZc3 . (18)

The interesting thing about (17) and (18) is that no A enters the bn n

for n .s..5. This does not seem to be the case for higher n; for example,

for b 6 we find

We note that for the BKW solution, where cn = (-1) n-l (n-l) exp [-nA (t - to)] ,

it follows that b4 = b5 = 0, which would be expected since only the A2

enters in the solution, (5).

VII. THE TERM h(8) + h(TI-8)

Finally, we would like to comment on the meaning of the combination

h(8) + h(TI-8), which occurs in (2b), (Zc), and (7c) above. Evidently,

for each collision with scattering angle 8 the contribution from a

b6 = c6 +
15 (A6 - 4A4 - 5AZ) 45 (A6 - 4A4 + 5AZ) (A4 - 2AZ) 3

A6 - AZ - A4 cZc4 +
(A6 - AZ - A4) (A6 - 3AZ) Cz

5 (ZA6 - 9A4 + lZAZ) Z
(19)+ (3A - A ) c3'Z 6
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collision with scattering angle 0-6 contributes equally. Viewed from

outside the collision region, the outgoing particles from these two

collisions have the same directions and velocities, but the identity

of the two particles are switched, as is shown in Fig. 3. But since

the identity of the particles cannot be determined, the two collisions

cannot be distinguished. Therefore, the occurrence of h(6) always in

the combination h(6) + h(0-6) reflects the symmetry with respect to

interchange of the outgoing particles.

At first glance, the Boltzmann equation does not appear to contain

this symmetry, since only h(6) [or cr(g,6)] occurs, and one formally

distinguishes between particle 1 and particle 2 in the collision integral.

However, because 6 is integrated over all values 0 ~ 6 ~ 0, and the

integrand [besides h(6)] is symmetric under interchange of 6 and 0-6,

both the 8 and 0-8 collisions contribute equally and in fact the BE

does not distinguish between particles. Although unnecessary, it would

be conceptually more accurate to replace h(6) by ; [h(8) + h(0-6)] in

the BE to explicitly exhibit this symmetry.
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APPENDIX

The expression for h(e) for Maxwellian molecules is given biO

1 1 .
h = '4 sine (

1 - 2s ) 1/2
s(l - s))

- (1-2s)E(s)]-1 (AI)x [(1 - s)K(s)

where see) is determined from

1T-e = (1 - 2s) l/2K(S)2 (A2)

with K(s) and E(s) the complete elliptic integrals of the first and

second kind, respectively. Equation (A2) follows from the general

scattering relation between e, g, m and the collision parameter b,

1
110 d11

e=1T-2 2 2 12
. 0 [1-11 -2/mg <I>(b/11)] I

for <I>= K/r4, with s defined by

(A3)

1 - 2s = [1 + x12)-1/2
2

x = Iml 2K gb2 (A4)

In (A4), 110 is the smallest zero of the denominator of the integrand.

Then (AI) follows by virtue of the relation

g db_~dx
h :: .fm/2K gO"= .fm/2K sine d8 - sine de (AS)

Using the expressions (AI) - (A2) in a numerical integration is somewhat

slow because of the necessity to eliminate s for each integration point.
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This problem is eliminated by a change of variables from 6 to x defined

by (A4) with s(6) determined by (A2). By virtue of (AS), we have for

any function f(6),

f f(6)sin6 h(6) d6 = J f(6) dx
(A6)

Now, for each value x of the numerical integration, 6 is calculated

directly via (A2) and (A4) .and f is evaluated at that point. In the

integral (7b) for P(y,z;x) the determination of the limits on x require

the solution of (A2) for given 6. In this way the curves in Fig. 1

and Fig. 2 were generated. In the integrals for A and ~ ., in whichn n,l

0 ~ 6 ~ IT, we have simply 0 ~ x ~ooo These integrals were done by

Gaussian quadrature, transforming to y = (x-l)/(x+1) so that -1 < y < 1.

To estimate convergence, we did 16-, 32-, and 64-point integration.

For the significance listed in Tables I and II, it turns out that

16-point integration is sufficient.

We also derived an explicit expansion of h(6) in powers of 6. We

numerically inverted (A2) to find s(6) (to ninth order) and used (A4)

to find x as a function of s and then 6. Then applying (AS), we found

1 6
[

35

(

6
) (

IT2 35,

(

6
)

2

h(6)=8. 65/2 1 + 24 IT + 6"" - 384) IT

+ ... + cn( ~ ) 11 + ...]
(A7)

with c3 = 0.9114128, c4 = 0.7273464, Cs = 0.3183929, c6 = 0.3518717,

c7 = 0.0565650, and c8 = 0.1807578. The first two terms of (A6) were

previously derived by Uh1enbeck and Ford.20 The accuracy of Eq. (A7)
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is obviously very high for small 8; for 0 S. 8 S. rr/2, (A6) with n S. 8

is accurate within 1 x 10-6. When 8 + TI, however, (A6), n S. 8, is in

error by about one percent. The results for the integrals of h(8)

appearing in Eq. (7) are much more accurate than that, because (i) in

the regions (those of large 8) \qhere (A6) is less accurate, its value

is very small and thus its contribution to the integrals is small,

and (ii), in each integral the combination h(8) + h(rr-8) always appears,

so that also for 8 + TI the large (and accurate) contribution again

dominates. For the combination h(8) + h(rr-8), (A6) with n ~ 8 is

accurate to 1 x 10-4 for alIOS. 8 S. TI. This series may be used to

evaluate the integrals for A and ~ . directly in terms of 8, accuraten n,1.

to within 1 x 10-4. The integral (7b) for P(y,z;x) may be done explicitly,

as shown in (9) when only the first term of (A7) is used.
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TABLE I

1

2

3

4

0.30844

n

3 4 5 6 7 8 9

0.23133 0.21110 0.20305 0.19952 0.19813 0.19786 0.19825

0.14600 0.12167 0.11033 0.10395 0.09998 0.09737

0.09622 0.08419 0.07724 0.07276

0.07183 0.06465



TABLE II

The A
n

n A n An n

2 0.30845 14 1.03618

3 0.46167 15 1.06356

4 0.56823 16 1. 08941

5 0.64946 17 1.11391

6 0.71597 18 1.13720

7 0077259 19 1015941

8 0082206 20 1.18066

9 0086612 2S 1.2751

10 0.90594 30 103550

11 0.94232 40 1.4863

12 0.97587 50 1.5932

13 1.00704 100 1.9574



Figure 1.

Figure 2.

Figure 3.

FIGURE CAPTIONS

~P(y,z;x) as a function of x/~, for y/~ = 0.3, where

~ = y+z.

~P(y,z;x) for x/~ = 0 (solid line) and x/~ = 0.5 (dashed

line.

Collisions of two particles with scattering angles of 8

(solid line) and TI-8 (dashed line). .
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