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ABSTRACT

An interaction-site model for molecular fluids (non-ideal dipelar
hard spheres) is introduced, and solved analytically for a family of
approximate closures. We find that there is a distinguished closure,
the precise form of which can be determined by considering the dielectric
constant of the fluid. Our analysis shows that this quantity appears

in the large-r behavior of the site-site direct correlation function.
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Hyv Chand 11
by Chandlex 111y convenient means for

calculating the structural properties of molecular fiuid

assumption in ISM is that the molecular pair potential, u(r. .w.w
54 » ( 12 iwz),
which depes on the orientations w, of molecules 1 and 2 and the
e + k|
vector r,, between the molecular centers, can be expressed as a sun
of site-site potentials, viz,
Gyoo) =
u(r, w.w,) = o :
127172 uay(ray}, (L)
a,Y=1

In Eq. (1), UGY(r) is the interaction potential and raY the distance
between sites « and Y in distinct molecules; the molecules each have n
sites. The key quantity of theoretical interest in an ISH is the
site-site total correlation function hay(r)’ vhich is related té the

site-site distribution function gaY(r) by

hy (1) = g () - 1. (2)

The function gaY(r) is related to the probability of finding sites o and
Y, in distinct molecules, separated by distance r, and can be formally
defined in terms of the molecula£ pair distribution function g(;lzwlwz).z
Andersen and Chandler,l however, suggested an alternative method
based on analogy with the Ornstein-Zernike (OZ) equation3 for simple
fluids. They defined an auxiliary function, the site-site direct corre-

lation function caY(r), via the Site-Site Ornstein-Zernike equation (SSCZ)
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anc c{k) matrices, h (k) and ¢ (k), are the three-dimensionzl Fouries
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transforms of h (r) and c¢_ (r) respectively; the elements of the HE e
oy oy !

matrix are given by
sin RQGY
way(k) = SuY A i - O@Y) -‘EI;;—* (4)

where £@Y is the fixed distance between sites o and y within the same
molecule; waY{k) is the Fourier transform of the real space function
maY(r} which may be identified as the intramolecular site-site corre-
lation functioﬁ. Recently, Stell, et a1§4 have demonstrated that
Eq. (3), rather than being simply analogous to the 0Z equation for
molecule-molecule correlations, can be derived easily from the 0Z
equation for mixtures.

Andersen and Chandlerl censidered in detail two ISMs. In the

case where the uaY(r) in Eq. (1) are hard sphere potentials only, i.e.,

u . (r) = :
oY 0 Tidod, . (5)

Andersen and Chandler referred to this model as a Reference Interaction
Site Model (RISM) due to its expected role as the reference system in
perturbation theories. For RISMs, Andersen and Chandler proposed the

closure

2
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T >0, Andersen and Chandler suggest
I

hcw(r} = -1 r < GCW (7a)
N oz .
Ca},(r.i = "B“w{ (r) r > e (7b)

where R = I/RT? k is Boltzmann's constant, T is absolute tenperature,.
We will refer to this approximation as the Interaction Site Approxi-
mation (ISA). In both the RISA and ISA, the hard core condition [Eqs.
(7a) and (7b)] are exact; the approximation is in the assumed form for
cay(r).

Both the RISA and ISA are strongly suggested by analogy to the
Percus-Yevick [PY}7 approximation for hard spheres and the Mean
Spherical Approximation (MSA)S for hard core systems in the theory of
simple fluids. The MSA can be derived from a number of viewpoints,
one of which begins with the observation that for simple fluids (e.g.,
Lennard-Jones fluids), the direct correlation function satisfies the

following relation (valid off critical points)

c(x) » -Bu(x) row (8)

a
&

1
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: the extrapolatio e (8) to all separai 3

T greater than the hard core distance, We will contrast this behavior
of the MSA with that of the ISA in the discussion in Section I1T of
this paper.

One of the surprisi

et

1g aspects of the SS0Z equation, given its

o

complexity, is that it has been shown to be factorizable analytically

3

for a number of special RISMs and ISMs when the corresponding RISA or

-14
“* the

. a g 9
ISA closure is used. For the cases reported previously,
particular simplifying feature of the SSOZ equations involved were

that they reduced to one or more disjoint scalar SSOZ equations, For

example, for symmetric n-atomics (i.e., for n = 3, 3 equal diameter

triangularly-co-ordinated hard spheres; for n = 4, 4 equal diameter
hard-spheres tetrahedrally-co-ordinated, etc.) the SSOZ equation

reduces to the scalar equation

h(k) = [1 + -Du® %K) + np{l + (n-Dw(k)]e(k)h(k) .
(9)

Morriss, et alog'l1 exhibited a Baxter Weiner-llopf factorization 2 of

this problem for n = 2 (symmetric diatomics). Morriss and Perramlz

have also reported the solution of the ISA for two rigid polar molecules -
polar hard dumbells (two charged, equal diameter, fused hard spheres)

and four charged, equal diameter, tetrahedrally co-ordinated charged

hard spheres. In each of these cases, use of sum and difference

correlation functions, as is used in the solution of the Restricted



In this paper we begin an exploration of a further class of

igid polar molecule ISMs. We restrict our

attention in this paper to a model of non-ideal dipolar hard spheres,
although the reader will note that our method is sufficiently general

to adnit a wide class of models as analytically solvable cases. The

particular model we have in mind is depicted in Figure 1l: it consists

S

of a hard sphere of diameter ¢ with two point charges at sites 2 and 3

of +q and -q, respectively. The center of the sphere is at site 1;

L

all three sites lie on one straight line; sites 2 and 3 are located at

distance /2 from site 1 (i.e., 212 = RIS = QL2 223 = ) .

The molecular model proposed is thus hard spheres with a non-ideal

dipole, the dipole moment being p = qf. In Section II we give the

analytic solution of this model with the following quite general closure:

haY(r] = -1 r<ag (10)

where

= g =g = J =G-£ (11)

s w0
cow (r) = COZY () r>0o
for oy = 11; 12,; 21, 13; 31 (12a)

Q+Y+l.§- T > o-2
T

Cay(®) = e (@) + ()

for ay = 22, 23, 32, 33 . (12b)

L
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corresponds to a hard sphere with two auxiliary sites. If il
i falia s e
L&;
r > d_ , then this corresponds to calculatin
oy g
U & i i . . . .
(w)(r; in the RISA; here we arc allowing for the possibility that
} -
).
céw){r} may be calculated exactly.
¥

It should also be noted that we have not made any identification
PR A AT 3 =3 L ) 3 2 (0) -,
of the parameter A, With the identification A = Bag“ and ca (r) calcu-
lated in the RISA, Eqs. (12) correspond to the ISA approximation. In
Section III we shall discuss an identification for A which, in the
spirit of the MSA, would appear to be more appropriate than the ISA

value,
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closures given
in Egs. (10) - (12). It is also useful to define four new functions:

he sum (S)

W

nd difference (D) site-site total and direct correlation

functions given by

hg() =3 [h,(0) + hy(®] , By = 3 [, - hy@] (13a)
cg(@) = 3 [0y + e5(@] 5 y) = 5 [ey() = c5(m)] .+ (13b)

The SSOZ equation for the non-ideal dipolar hard sphere fluid can

be written as
h'(X) = w(k)e'{Kw(k) + pw(k)c'(kK)h' (k) (14)
where the matrices h'(k), c'(k) and w(k) are given by

hy(k)  hy () hy(K)

hl{k) hS(k) hz(k)

h' (k)

o) () ey (®)
clik) cz(k) c3{k)

c; () ezl eyk) _ (15)

c' (k)
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wk) =1} w, k) 1 A (1)

= et

\ 1 (k) fivy (k) 1 / (16

where
‘ sin (k&/2) vy . sin ki .
wy (k) KLz ¢ wy (k) =25 x5 (17,
By writing [see Eq. (13)]

hz(r) = hs{rj + hD(r) hS{T) = hs(r) - hD(r)
cz(r) & CS{IJ + CD(r) CE(T) = cs[r} - cD{r) (18)

and substituting into (14), the SSOZ equation is found to decouple

i

into two SSOZ equations:

il

h(k)
H(k)

wk)e(Xw(k) + pw(k)c(X)h(k) (193

w{k)C(K) w(k) + pu(k)CE)HE) . | (20)

Here,

Ilo(k) ]11(k} lxl(k)
hik) = hl(k) hs(k) hs(k)
hl(k} hS(k} hS(kj (21
and c(k) has the analogous form; the matrix H(k) [and likewise C{k)]
is given by
0 0 0
H(k) ={ 0 hD(k) —hD(k)

0 ~h (k) hp(K) . (22)

(o o]



Equati (22} fu 2 reduces to the *alar quation
'1 f" 3 = 'JIL - 3 l] r‘lz" ’1 3 o 2011 I/." } ] fd £] b 1: 7 i 3
i3t L Fatsd Jephd S pd. = ‘\\"J_‘L“.U‘/l";_l % S [H*f
Now from Egs. (10) ~ (13) it can be seen that the closure for
€or & and Cq (r) imply that the solution of the SSO7 equation (19)

subject to closures (10) - (12) is simply the solution of the SSO7

1

equation for a hard sphere with two uncharged auxiliary sites. Tt

—

e

1

blem is kncwn exactly (see, for example, Refs. 2,

HS

ho(k) = [w, (01050 (24a)

HS .
co(k) =¢ (k), cl(k} = cS(k) = () (24b)

HS Iis : &
where h' (k), ¢7(k) are the Fourier transforms of the exact hard
sphere total and direct correlation functions at density p. (The RISA
" . ; HS HS : . : ;
for this problem would replace h'°, ¢~ by their PY approximations --
see Ref. 2.)

The closure for Eq. (23) is easily seen to be

r < g-%.

1
(e}

hy ()

@) = -2 1> ot (25)

This problem has already been solved analytically via a Weiner-Hopf
= : : 1
factorization -by Morriss and Perram.

Thus we have derived an analytic solution for the SSOZ equation

(14) with closures (10} - (12).

[
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the dielectric cons L may oe written in terms of site-site total
S T D e i
corregiation functions as
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L ey el gl IR (26}
oy e s LYE
1]
where
| QP o 0 S N | o
Yy = g "pdu (27)

; .. 2 y
is the coefficient of k™ in the low-k expansion of h__ (k).
1 oy

For the model .considered here, (26) becomes

Z
2 (2) _H e-1 . o
4(1 hl) = -g—é- E‘}Té" - .)1 . _ (2u)

Thus the dielectric constant is determined solely by the low-k
behavior of Eq. (23), and hence the calculation of e given by lorriss
12 . .
and Perram™™ can be followed without change. If the parameter A is

taken to be its ISA value (i.e., qukT} then the ideal gas result
€ =1+3y ' (29)

. 12 S
follows as shown by Morriss and Perram, (In fact, this is just a

(\
special case of the more general analyses of ligye and Stelllg’lJ and

Sullivan and Gray.zo] If we therefore write
5 % A - =
A =8q (1-B) (30}

we find (by simple adaptation of the Morriss-Perram method) that



£ = 2 N ¢
i
& (31) may be inverted, yielding
; 1 1
B s e n e {
: 3y gl R
substitution into LEg. (30)
2 .1 + g(3y-1))
A = Bq | e e (32b)

3 . : 2 g .
Clearly, the ISA assumption (A = Bg”) leads to incorrect dielectric

(4

behavior for the model system under consideration in this problem.

-~

Although there are no simulation results available for the model stud

j=

in this paper -- non-ideal dipolar hard spheres -- the inadequacy of
(29) is easily seen. It is moreover interesting to note that in the
ISA, Eq. (22) remains true even in the ideal dipole limit (£ + 0, q +
such that U = g4 remains fixed) which leads to the following difficulty:
the ISA for non-ideal dipolar spheres (which has been suggested by
analogy with the MSAl) does not yield the known MSA resu1t21 for dipolar
spheres in the ideal dipole limit.

One consequence of the above subtlety is that the ISA is not the
natural extension of the MSA to site-site potentials. As was discussed
in the Introduction, the spirit of the MSA for central potentialé is
that it is the extrapolation of the asymptotic form of c(r) to the full
range of r outside the hard core diameter. In this spirit, then, the
true site-site analogue of.the MSA is Eq. (10) - (12) with A given by

Eq. (32b) rather than by unity. This improved analogue shares a
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ory of the dieclectric constant, unlike the

MSA for central pc This loss of predictive capacity appears
to be deeply rooted in the geometry of the site-site treatment;lS the

very fact that the asymptotic form of the site-site ¢ (r) depends
oy

explicitly on € shows that no simple state-independent approxima

to
Cuytr) can yield a dielectrically adequate theory. We note that taliing
the ideal dipole limit in the analysis presented in this section, while
avoiding the trivial result (29), will not yield the MSA result for
ideal-dipolar hard spheres unless the exact g implicitly used in (32b)

is replaced by an approximate dielectric constant, €', which in the

ideal dipole limit has the property

S €y
where €, 1s the Wertheim expression for the dielectric constant of
ideal dipolar hard spheres solved in the MSA,Zl The simplest choice
of €' is clearly €y

Some impression of the behavior of the parameter B (which amounts
to a dimensionless correction to the ISA) can be gained for near-ideal
dipolar hard spheres by evaluating (32a) with € replaced by €yt this is

shown in Figure 2. In particular, the limiting behavior

lim B =
¥y

L) =
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In this paper, we have solved analytically a useful model £

yoa x 0T
molecular fluids -- the non-ideal dipelar hard spiere model -- using

a quite general closure-within the framework of the ISM formali
It is intended that numerical work on this model will be reported

then Monte Carlo simulation results for this model become uvailable,zs
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Figure 2,

FIGURE CAPTICONS

. B T T - G 1 Y Zt g, G ST L
The non-ideal dipolar hard sphere model considered in this

he diameter of the sphere is o; point charges of

s

+q and -q are located at sites 2 and 3 respectively, each

a distance £/2 from the center of the sphere, identified

as site 1.

Behavior of the parameter B defined in Eqs. (30) and (322),
with the truec dielectric constant € replaced by S the

¥ L
dielectric constant cbtained by Wertheim for ideal dipolar

2 21
hard spheres solved in the MSA.”
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