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ABSTRACT

An intel'action-site model for molecular fluids (non-ideal dipolar

hard spheres) is introduced, and solved analytically faT a familyof

approximate closureso ,':e find that there is a distinguished closure,

the precise forn of which can be determined by considering the dielectric

constant of the fluido Our analysis shoVls that thisquantity appeal's

in the large-I' behavior of the site-site direct correlation function.



10. Ir;-mOm]CTIc;~

The I.J:terilctiOl: S~Lte ~loclel (IS:i) for TI,olecular £l:lids was iLtl'ciucc.i

b ~, , , . .. 1 1 t '

1' '. ,..
y Gnan01Cr ar:c1 i-\.nGerSen as a co;;qu auor:a 1)' conVernCllT means Ior

cu.lculating the structur~! 1 properties of molecular fluids. The key
-'-

assUTIption in ISM is that the Elolec:dar pair potential, u(rlZWl(J2)'

which dcucnds on the orientatirnls w. of molecules 1 and 2 and the
L 1

+

vector 1'12 between the molecular centers, can be expressed as a sum

of site-site potentials, viz.

m

u(~12WlW2) = L Uay(ray).
a, y=l

(1)

In Eq. (1), u (1') is the interact.ion potential and l' the distance
ay ay

between sites a and y in distinct molecules; the molecules each have m

sites. The key quantity of theoretical interest in an ISH is the

site-site total correlation function h (1'), which is related to theay

site-site distribution function gayer) by

h (1') = g (1') - I .ay ay (2)

The function gayer) is related to the probability of finding sites a and

y, in distinct molecules, separated by distance 1', and can be formally
+ 7

defined in terms of the molecular pair distribution function g (1' li']l wZ) . -

Andersen and Chandler, I however, suggested an alternative method

based on analogy Hith the Ornstein-Zernike (OZ) equation3 for simple

fluids. They defined an auxiliary function, the site-site direct corre-

lation function c (1'), via the Site-Site Ornstein-Zernike equation (5502)
ay
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which is a matrIx Ll Fourier k-space given by

h( 1.) - (1., c ("
. 1 I,) _. U) i,"'-J \.1\. .) + 1\,., ( J,.) C' (i,) h (1 ~'" t-"w v' ,"~ ",...) 0 (3)

lIeno (; is the nUnu.H3Tdensity of molecules a.nci the elem'.cmts of the h(k)

and elk) nat1'ices, hay(k) and CayCk), are the th:ree-dimcnsional F01.J.l'ier

tJ.'ansfonns of h (1') and C (1') res l')cctively; the elements of the w (k)cry ay.

matrix are given by

. , A

SIn I(Yv

(AI - (k) == <5 + (1 - 0 ) - (xI'
a y ay ay k£ay

(4 )

where t is the fixed distance between sites a and v within the saLeay I

molecule; w (k) is the Fourier transfonn of the real Sp,ace function
ay

w (1') which may be identified as the intramolecular site-site co1're-Cty

lation function.
4

Recently, Stell, et al. have demonstrated that

Eq. (3), rather than being simply analogousto the OZ equation for

molecule-molecule correlations, can be derived easily from the OZ

equation forTaixtures.

Andersen and Chandlerl considered in detail two ISt',is. In the

case where the Uay(r) in Eqo (1) are hard sphere potentials only, Le.,

(1') ==

{

oo

Uay 0

l' < Gay

l' > °0'.1' , (5)

Andersen andChandler referred to this model as a Reference'Interaction

Si te ~jodel (RIS~I) due to its expected role as the reference system in

perturbation theories. For RISHs, Andersen and Chandler proposed the

closure



h (1') :::-1
cry

I'<c;
ay (6a)

C (.".,
,ay ~) :::0

l' > c;
ay (6b)

which we shall refer to as the Reference Interaction Site Approximation

(RISA) to distinguish the integral equation approximation for obtaining

hay (r')from the Hamiltonian model (RISM) under study 0 5 For the ISHs in

which the u (1')have hard cores of dia;;leter G but are nOll-zerofor
ay ay

l'> Gay' Andersen and Chandler suggest the approxiDation

h (1'):::-1
ay

l'< G
ay (7a)

C (1'):::-Su (1')ay ay l' > Gay
(7b)

where S ::: l/kT~ k is Boltzmann's constant, T is absolute temperature.

We will refer to this approximation as the Interaction Site Approxi-

mation (ISA). In both the RISA and ISA, the hard core condition [Eqs.

(7a) and (7b)] are exact; the approxiJ:lation is in the assumed form for

Cay (1') .

Both the RISA and ISA are strongly suggested by analogy to the

Percus-Yevick (Py)7 approximation for hard spheres and the Mean

Spherical Approxim.ation (MSA)8 for hard core systems in the theory of

simple fluids. The MSA can be derived from a number of viewpoints,6

one of which begins with the observation that for simple fluids (e.g.,

Lennard-Jones fluids), the direct correlation function satisfies the

following relation (valid off critical points)

c(r) ->- -Suer) 1'->-00 (8)
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\\'h"':1.'e UeT) is the interatomic potential; the ~,lS;\ C2J1 then he vic,:cJ

-, ,- ,'.h e- COY"C' Y"'nc 1 ",- -i ('n -,.1: tJl '" -1""F"V ) '-" 0,-iC S' c- -1-{"('-(" n t ( 8'\ tOr, -,1 1 se ":' -y>r,.-"() " S,,,.0 L" ~";-"L"J",""~--l. '.d. ~ c;".f'Jv',-~ -',"'---""~J_, J "H-'-~ i-'-'-J,0.L" -..

I' greater than the hard core distanceo We will contrast this behavior

of the HSA with that of the ISA in the discussion in Section III of

this papero

One of the surprising aspects of the SSOZ equation, given its

complexity, is that it has been shown to be factorizable analytically

for a.number of special RISMs and ISMs 1','hen the corresponding RISA or

ISA closure is usedo . 9-14
For the cases reported prevlously, the

particular simplifying feature of the SSOZ equations involved were

that they reduced to one or more disjoint scalar SSOZ equationso For

example, for synnnetric n-atomics (Le., for n = 3, 3 equal diameter

triangularly-co-ordinated hard spheres; for n = 4, 4 equal diameter

hard-spheres tetrahedrally-co-ordinated, etc.) the SSOZ equation

reduces to the scalar equation

2
h(k) = [1 + (n-l)w(k)J c(k) + np[l + (n-l)w(k)]c(k)h(k) .

(9)

Horriss, et a1o9-11 exhibited a Baxter Weiner-Hopf factorization15 of

this problem for n = 2 (synmletric diatomics). Horriss and perram12

have also reported the solution of the 1SA for. two rigid polar molecules --

polar hard dumbe11s (two charged, equal diameter, fused hard spheres)

and four charged, equal diameter, tetrahedrally co-ordinated charged

hard spheres. In each of these cases, use of sum and difference

correlation functions, as is used in the solution of the Restricted
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Pri];1itivc ;;o.1cl (RFH) of electrolytesin the ;.;S;\,16 yiellh (again as

in the RFl in "" c ilSA) t-,JO Jccoupled. sc ~ Ln' SSCiZ eqL:~- tiOL '; 0

In tilis r: reI' ,;'e bCf~in an exploT< -cion of a further class C't

analytically solvable rigid polar rnolecule ISfIs. We restrict our

attention in this paper to a model of non-idealdipolar hard spheres,

altl~ugh the reader will note that our method is sufficiently general

to adult a \dde cl?ss of r,lOdels as analytically solvable cases. The

particular model we have in mind is depicted in Figure 1: it consists

of a hard sphere of diameter a with two point charges at sites 2 and 3

of +q and -q, respectively. The center of the sphere is at site 1;

all three sites lie on one straight line; sites 2 and 3 are located at

distance 1/2 from site 1 (i.e., 112 = £13 = 1/2; 123 = 1).

The molecular model proposed is thus hard spheres with a non-ideal

dipole, the dipole moment being ~ = q£. In Section II we give the

analytic solution of this r.lOdelwith the following quite' general closure:

h (1')= -1
a:y r < aay

(10)

where

all = a, al2 = °21 = a13 = a3l = ° - 1/2

°22 = °23 = °32 = °33 = a -
1 (11)

c (1') = c(O) (1')
a.y ay l' > aay

for ay = 11, 12, 21, 13, 31 (12a)

Cay (1')= c~~)(r) + C_)a+y+l ~I r
r > a-9,

for ay = 22, 23, 32, 33 . ( 12b )
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The qUclDti t:1 es wit;. supel'script 0 refer to quantities calculate,' for

the IUS;~ E100cl co:cTcsponding to the IS;.] CCllsiden::d here -- 1<0., <1 =: (i

h'lncjl corresponds to a hard sphere with t\i03uxiliar)'si tcs. F (,(0' .
,. ~ ("'; (::: 'ju.: - /

1, co " 5 ",,,.,,.,,.1 i' C" hp 7('~r, .f o .,.. r > O. t-'n r>n! t-nl'; '" '-'Cy"r e "''''''',.-1 S to '~" l
'

C'
U.l ..,~"

-' ~ ~C'L,'.'. -' I/~ ~./~V ~ ~ ay' " ~ L~J vU-C- .;)Y~uc- ~u., ~,-

(0)
(

,. , I r" , 1 1 . 1''' . \ . . . . 'c r, III tne R ~A: Dere we are a~ OWln0 ror the DOSS1Olllt') ' ~hatay " 0 L

c(O) ( r) P'>\{ b.'" '-'alc'11ated pxrr.tl )
'

CI.y ..C<o"~ V l..~ ~ a~ - .

It should also be noted that He have not made any identification

of the parameter Ao With the identification A :::: 130, 2 and c(O) (r) calcu-
ay /

lated in the RISA, Eqs. (12) correspond to the ISA appro:cimation 0
1,-,,.

Section III we shall discuss an identification for A which, in the

spirit of the t.1SA, would appear to be more appropriate than the 1SA

valueo



,,

110 !;[Tl SOLUT jC'~

The :;;::;0:=equation for the nO:l-iclcal dipolsr h::u.d srhen,: fluid

under study in this l)apey involves four distinct site-site total

correlation functions -- hO :: h11' hI :: h12 = h21 :: h13 ==h3l>
. --

J ' l' - h h . 0 1 2 3 .,... d
h2 = 122 = fi33' ana D3 = 23 = '32; Ci' 1 :: c, , , are aerlne

similarly 0 The h. and c. (i = 0, 1, 2, 3) satisfy the closures gi-:en1 1

in Eqs. (10) - (12). It is al so useful to define four Dei\' functior 5:

the sum (S) and difference (D) site-site total and direct correlation

functions given by

hS(1') = ~ [h2(1') + h3(1')] , hD(1') = ; [h2(1') h3(r)] (13a)

cS(r) = ~ [c2(r) + c3(1')] ,
1

cD(r) = 2 [c2(r) - c3(r)] . (13b)

The SSOZ equation for the non-ideal dipolar hard spheTe fluid can

be written as

(14)

(15)

h' (k) :: w(k)c I (k) w(k) + pLUCk)c ' (k) h I (k)

where the matrices h' (k), c '(k) and w(k) are given by

110(k) hI (k) hI (k)

h' (k) :: I hI (k) h2 (k) h3(k)

hI (k) h3(k) h2 (k)

cOCk) cl (k) cl(k)

c' (k) :: I cl (k) c2(k) c3 (k)

cl (k) c3 (k) c 2(k)



,
anG

I 1

I,n,', - ( ' J 'k1

cc.I,J\.j -- \ ct 1 \."j
\

\(')l (k)

where

WI(k)

(:.)2(k)

WI(k) '" sin, (kM£)kPv/2 '

By writing [see Eq. (13)]

h2(r) = hS(r) + hO(Y)

c2(r) = cS(r) + cO(r)

s

1

\
(1, -, \

0.)1 I..Lj \

W2~k) (16)

lO2(k) '" sin k9.kf~- ( IT
)

h", (r) = he (r)
..) J hO (r)

c3(r) = cS(r) - cOCr) (18)

into two SSOZ equations:

and substituting into (14), the SSOZ equation is found to decouple

h(k) = lO(k)c(k)lO(k) + plO(k)c(k)h(k)

H (k) = lOCk)e (k) lO(k) + plO(k) e (k) Ii (k)

Here,

hO (k)

h(k) =( hI (k)

hI (k)

hI (k)

hS (k)

hS (k)

(19)

(20)

(21)

and c(k) has the analogous form; the matrix HCk) [and likewise elk)]

is given by

0 0 a

H(k) = (0 ho(k) -hoCk)

0
-hoCk) 110(k) J 0 (22)



C1
:.;

EqlDtl en :reduces to the scal'1T (':(juation

~D(k) = [1 - W2(k)]2CD(k) + 2p[1
", '1,', '1 ~ (

"'
) j, "1. )V-

2'" \.h/ -' \..-" j\. ." l)'"
1) u

C 23)

~ Y r' r'
( 1 0)

r 1 ~

)
'. ,

t 1 ... 1 r'
J'iOh' ITO:,] 1:;([So - - \.1.,) rc can De seen liat t11e Closure :tor

Co' c1 and cS(r) imply that the solutionof the SSOZ equation (19)

subj eet to closures (10) - (12) is simply the solutionof the SSGZ

equation for a hard sphere with tHO uncharged auxiliary sites. The

solution of this prob1eo is known exactly (see, for example, Refs. 2,

17) and is given by

11 (1' )
- h

HS
(' '\

0" - I() ,
1 (k) - n'l' HS ( 1, )11 \. - WI i)Z) hI\.,

2 HS
hS(k) = [Wl(k)] h (k) (24 a)

cOCk) = cHS(k), CI(k) = cS(k) = 0 (24b)

I-IS lIS .
where h (k), c (k) are the Fourler transformsof the exact hard

sphere total and direct correlation functions at density po (The RISA

for this problem would replace hHS, cBS by their PY approxir.1ations --

see Ref. 20)

The closure for Eqo (23) is easily seen to be

hD(r) = 0

cD (I') = - AI'

I' < 0-x'.

I' > 0-9.,. (25)

This problem has already been solved analytically via a Weiner-Hopf

f . .
b . , P 12

actorlzatlon. y: Morn.ss ana. erramo

Thus we have derived an analytic solution for the SSOZ equation

(14) with closures (10) - (12).
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III. DISC:USSlCJ» .

Of
interest in dipolar fluids is the calculation or the

d;electric constant E. For IS:.15,
. ()

and Stell10 l1ave that

the dielectricCQnstant niiy be written in tCT';lS or site-sitetotal

correlation fUJ~ctions as

'I ( ~' 2

[

'"1

L (L..tl. h.:') =L E-l -", I

ay u. ( 0vl 9p Y8 .)J
(26)

VJh21'e

4 2
Y = 9 '1TPSfl (27)

and h(2) is the coefficient of k2 in the low-k expansion of h (k).~ . ~
For the model.considered here, (26) becomes

2 (2) - 112 rE-l - 3
J

.
4q hD - 9p LYE

(28)

Thus the dielectric constant is determined solely by the lo\\'-k

behavior of Eg. (23), and hence the calculation of 8 given by Mon-iss

and perraml2 can be followed without change. If the parameter A is

taken to be its ISA value (i.e., q2jkT) then the ideal gas result

E = 1 + 3y (29)

fo11o\\'s as shown by Morriss and perram.12 (In fact, this is just a

. 18 19
speclal case of the more generalanalysesof H~ye and Stell' and

Sullivan and Gray.20] If we therefore write

A =' 8q2(1 - B) (30)

we find (by simple adaptation of the Morriss-Pen'am method) that



, 1,-J.

.Y)'
'1" ' r.

C ::: .. ,- T - 3yB (31:

, .'. , (.., "

EqLIC:LT.lUn \...)1) be inverted, yiel

IS ::: .1-
ju/

.,

.1.

£:.:-1 (:3;2;;)

or ' aI""I"r-" S ' lh st ""-"';';" I ' l
' n't'" J~ o (30)J ,,'.;J. - \. LI ~.I.L..,.'-V. .V ,. j.

r
( -- n ')

2 ,I + C .,.))'-1-) I

A = Sq l 3y(c-l) ) ( 3 2b )

Clearly, the ISA assumption (A == Sq2) leads to incorrect dielectric

behavior for the model system under consideration in this problem.

Although there are no simulation results available for the model studied

in this paper -- non-ideal dipolar hard spheres -- the inadequacyof

(29) is easily seen. It is moreover interesting to note that in the

ISA, Eq. (29) remains true even in the ideal dipole limit (9..-)-0, q -)-00

such that ).l == q9.. remains fixed) which leads to the following difficulty:

the ISA for non-ideal dipolar spheres (which has been suggested by

analogy with the HSAl) does not yield the known HSA resu1t2l for dipolar

spheres in the ideal dipole limit.

OnE~ consequence of the above subtlety is that the ISA is not the

natural extension of the MSA to site-site potentials. As was discussed

in the Introduction. the spirit of the MSA for central potentials is

that it is the extrapolation of the asymptotic form of c(r) to the full

range of l'outside the hard core Jiameter. In this spirit, then, the

true site-site analogue of the MSA is Eq. (10) - (12) \'lithA given by

Eq. (32b) rather than by unity 0 This improved analogue shares a



, ,~..

conc( c, .n"S' \'ij tL the f'geneTalizcdn rJean '~::Lcal "TO> l':<?' t ion

tc tr e8 t di po Iiil" 5.22,23 The use of s.

(10) - (12) closure by (32b)

(c the diel cetric constant for the systeC"l urder ir."vestigatioTl -.. i. s. ,

it is not a predictive theory of the dlelectric constant, unliketh,,,

MSA for contI'a1 potentials 0 This loss of predictive capacity appea's

1 "b ' l 1" f '"
t t ...0

to'c (Jeep y rootcG. 1n tne geometry 0 - tile slte-sltc rea ment; the

verv fact that the asy,mptotic form of the site-site c (1')depends-'. ay

explicitly on 8 shows that no simple state-independent approximant to

Cay(r) cc:myield a dielectric ally adequate theory. VIe note that toLing

the ideal dipole liDit in the analysis presented in this section, \~lile

avoiding the t.rivial result (29), will not yield the f.1SA result for

ideal-dipolar hard spheres unless the exact 8 implicitly used in (3::0)

is replaced by an approximate dielectric constant, 8', which in the

ideal dipole limit has the property

8' -+ 8W

where E:W is the Wertheim expression for the dielectric constant of

ideal dipolar hard spheres solved in the HSA.21 The simplest choice

of 8' is clearly 8W'

Some impressionof the behaviorof the parameterB (which an10unts

to a.dimensionless correction to the 18A) can be gained for near-ideal

dipolar hard spheresby evaluating (32a) with 8 replaced by 8W: this is

shO\m in Figure 2. In particular, the limiting behavior

lim 13 ::: !
y+o 3
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lS ex, ct, a, ; follc'.'s gencr;:-;lly fron the: } i,l-)"
" .

"<1 t'n of S .£.i,

- - - 2 j
[: :: ] + 'v + .,,, .1-.n (" )- '~,' -' 1 'v 1

In thisp;~pcr, we have solved analytically a useft;l ill0..iel for

molecular £]uicis -- the non-ideal dipc:l8.T hard sphere model -- USl'::.;

a quite general closure-;.;ithin the fl',:Lc;;ork of the ISr! fon.alis::1o

It is intended that numcl'ical Hork on this model willbe reported

when Monte Carlo simulationresults for this model become available.25
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Figure 20

IC

FIGURE C/\fTICNS

The ncn-iJc31 dipolar h::irJ sphere model cons
. ..
lYi tins

p2>p~r 0 The diaTI:cter of the sphere is CJ; point charges of

+q and -q are located at sites 2 and 3 respective , each

a distance2./2 from the center of the sphere, identified

as site 10

Bchs.vior of the parameter B defined in Eqso (30) and (32a),

wi th the truo dielectric constant E re p laced b )T C".. the
. II'

dielectric constant obtained by Wertheim for ideal dipolar

hard spheres solved in the MSAo21
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