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ABSTRACT: We make precise an earlier argument that a fluid of symmetrically charged

hard spheres, the restricted primitive model (RPM), has Argon-like critical behavior. By

using a renormalized closure for the Ornstein-Zernike equation, it is shown that the RPM

correlations are dominated by the same terms as those that dominates the critical behavior

of a one-component simple fluid.
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Recently there has been considerable interest in the critical behavior of ionic solu-

tions. Two sorts of experimental results have been reported. In some ionic fluids, the

results appear to be consistent with mean-field behavior [1,2], while in others, the results

are consistent with Argon-like critical behavior [3,4]. H. Weingartner et al. atribute these

different results to different types of unmixing-solvophobic unmixing and Coulombic un-

mixing [5]. Here we focus on a widely used ionic-solution model, the restricted primitive

model (RPM), and give an argument that shows directly that only the Argon-like behavior

can be expected in the RPM.

As one of us has discussed in earlier work [6,7], there are a number of important

features of the Hamiltonians of real ionic solutions that are absent in the RPM, in par-

ticular, asymmetric features (such as different anion-cation charge numbers and diameters

and different anion-solvent and cation-solvent interactions) as well as long-range 1'-4 terms

due to ion-dipole interactions. We intend to precisely assess the effect of such feature in

forthcoming work.

In a paper [6] summarying and extending earlier work in [7] which was based in

turn on [8 - 10], one of the authors outlined an argument from which he concluded that

the RPM is in the same universality class as a model of a simple non-ionic fluid such

as Argon with respect to the liquid-gas critical point that one expects in both systems.

That representation, however, does not lend itself to a direct determination of the critical

exponents of either system. Here we consider a somewhat different representation that

does so lend itself, and also facilitates a more precise comparison of the two systems. It is

a variant of the representation recently introduced by one of the authors with Badiali to
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treat an Argon-like simple fluid [11]. It enables one to make direct use of the field-theoretic

arguments of refs. [12,13].

We begin our discussion with the RPM, which we shall describe in "d" dimensions.

It is a system of charged hard spheres of equal diameter a in which the potential energy

associated with N particles is a sum of pair-potential terms of the form t.pij(r) = 00 for

r < a and t.pij(r) = SiSju(r) for r 2: a where

u(r) = l jEr, (1)

with species indices i and j either a or b and charge numbers Sa = -Sb, with the elec-

troneutrality condition Sapa + SbPb = 0, where Pi is the number density of species i. Thus

in the RPM, we have pa = Pb = P with total density n = Pa+ Pb= 2p. The E in (1) is the

dielectric constant (relative to that of the vacuum) of the uniform structureless continuum

solvent in which the spheres are immersed, and q is electronic charge. The r is distance

between ion centers.

One has an Ornstein-Zernike (OZ) equation relating the total correlation functions

hij(r) to direct correlation functions Cij(r) and a one-particle local density Pn(r),

hij(rI2) = Cij(r12) + L J Pn(r3)hin(rI3)Cnj(r32)dr3n
(2)

and a second independent relation expressing Cij(r) as -(3t.pij(r) plus a functional that is

fully determined by Pi, hij and r. Here (3 = (kBT)-I, T is the temperature and kB is

Boltzmann's constant.
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It is convenient for our purposes here to express Cij(r) as a term associated with the

Coulombic potential plus a remainder,

Cij(r) = <I>ij(r)+ Rij(r, hij, pi), (3)

where <I>ij(r)= -j3siSju(r). A boundary condition for this system is: hij(r) = -1 for

r ~ <7,so we only need (3) for r > <7 [14].

When the d-dimensionalFourier transforms hij(k) and cij(k) are used, and Pn(r) = pn,

independent of r, eq. (2) can be rewritten as

hij(k) = cij(k) + Lpnhin(k)cnj(k) (4)
n

from which we get

(
caa(k)(l - pCbb(k)) + pC~b(k)

haa k) = I )(1 - PCaa(k)+ PCab(k) 1 - PCaa(k)- PCab(k)
(5a)

Cab(k)

hab(k) = hba(k) = (1 - PCaa(k)+ PCab(k))(l- PCaa(k)- PCab(k))
(5b)

hbb(k)= Cbb(k)(l - PCaa(k)) + pC~b(k)
(1- PCaa(k)+ PCab(k))(1 - PCaa(k)- PCab(k))

(5c)

where the symmetry relations Caa = Cbb and Cab = Cba have been used. We can further

decompose hij into a product of common function x( k) that is independent of charge

species and a specific part cij(k) by writing hij(k) = cij(k)X(k) with

[
C..(k)

]

-

[

caa(k)(l- pCbb(k))+ pC~b(k) cab(k)
]ZJ - cab(k) cbb(k)(l-pcaa(k))+pc~b(k) .

(6)
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The common part can be written as X(k) = f-l(k), where

r(k) = (1 - PCaa(k)+ PCab(k))(1 - PCaa(k)- PCab(k)) (7)

The Fourier transform of eq. (3) is in the form:

Cij(k) = if?ij(k) + Rij(k,hij,p) (8)

with if?ij(k) '" l/k2. In order to get the long-range behavior of hij(r) through hij(k), we

need to focus on k ~ O. When eq. (8) is introduced in eqs. (5), the dominant term in both

Cij(k) and r(k) will be proportional to l/k2 which diverges in the limit k ~ O. Therefore

for small k, we further get

hij(k) = cij(k)X(k), X(k) = f-l(k), (9a)

plus neglegible terms that vanish as k ~ 0, where

[Cij(k)] = (2p)-1 [(2PRaa(k) + ~pRab(k) -1) (2pRaa(k) + ~PRab(k)- 1)]
(9b)

and

f(k) = 1 - pRaa(k) - pRab(k) (10)

It is worth noting that the right-hand side of (7), which appears as the denominator in

(5), is simply cAk )cq(k) where nCp(k) = nCp(k)-1 and nCq(k) = nCq(k )-1. Here cp(k) and

Cq(k) are the density-density and charge-charge direct correlation functions, respectively,
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given by the sum and difference terms. cp = (caa + Cab)/2, Cq = (Caa - Cab)/2, while cp( k)

and Cq(k) are the corresponding "modified" functions that include the "self" (i. e. ideal-gas)

terms that are Kronecker deltas in k-space; pCij(k) = pCij(k) - 15ij, also Rp(k) = cp(k).

The r( k) of eq (10) is just -ncp( k); at k = 0 this is the inverse compressibility term

(3op/on of the RPM, p =pressure. Thus r(O) = 0 is the spinodal condition of criticality.

We note from (7) that r(k) = nCq(k)r(k), so r(k) would become zero in the presence of

long-range charge-density waves, the signature of which is the condition Cq(k) = 0 at some

k = ko. Also X(k) = r-1(k) is just the density-density structure factor of the system,

X(k) = 1 + phaa(k) + phab(k) = 1 + nhp(k).

When r(O) = 0, one expects no singular behavior in the elements of cij(k), which

can be replaced by Cij(O) in analysing the long-range behavior of the hij(r). At r(O) = 0,

Cij (0) becomes exactly

[Cij(O)] =n-1 [~ ~]
(11)

This means that in the case of RPM, Cij (k) is universal at the critical point and hij (k)

can be simply expressed for small k near critical as hij(k) ~ x(k)/n. But x(k)/n ~ hp(k)

near critical, so hij(k) can be effectively replaced by hp(k) in assessing its critical and near

critical behavior, which is determined by r(k) in eq. (10).

To evaluate the Rij(k) of (10) we shall follow ref. [11] in constructing a perturbation

theory in which the reference system consists of the molecules enclosed in an isolated sphere

5(1,'\) of radius ,\ = A-I, which we take to be large compared to a molecular diameter
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but small compared to the density-density correlation length. The system in 5(1, -\) is held

at the same chemical potentials and temperature as the infinite system, which we shall

examine at its critical point. Under these condition the finite reference system in 5(1,-\)

will not be at the critical; it will be at /3 = /3e, but at some expected density pAl(r), where

pAl(r) = PA for r E 5(1, -\), pA1(r) = 0 for r outside 5(1, -\). This system has its own

correlation functions htl and Rtl, which are short-ranged on the scale of -\. Introducing

the reference system also enables us to define a useful set of longer-ranged ht-function,

given by eq. (2) with Cij and Cnj replaced by ctl and c*;, respectively, and Pn(r3) replaced

by p~3(r3) (rather than p~1(r3)' as in the case of htl). Thus ht is the sum over all chains

of ctl-bonds and pAl-vertices while htl is the sum over all chains of ctl-bonds and pAI-

vertices. The relevant behavior of ht( k) near the critical point will occur through the

function 1 + PAh~a(k) + PAh~b(k) = 1 + nAh~(k) = rA(k) (nA = 2PA)which we expect

(and can verify) to be of the Gaussian-approximation form (Aexp - m2r)/rd-2 for r > -\.

We now need a way of breaking cp(r) and Rp(r) into parts c~(r) and R~(r) that are

short-ranged (even at critical) plus comparatively longer-range remainders. We do this by

extracting from hp(k) the Ornstein-Zernike term h?Z (k) = A/(k2 +K2) associated with the

poles :f:iK of hp(k) nearest the origin in complex Fourier space, for hp off (but near) critical.

This h?Z(k) term has a well-defined critical-point limit as K --7 0 even though the pole

loses its identity at the critical point in a branch-point confluence of the other singularities.

We shall denote the parts of cp(r) and Rp(r) associated with this h?Z(r) through the

Ornstein-Zernike equations as c~(r) and R~(r), since they are short-ranged, and write

cp = c~ + c~ and Rp = R~ + R~. We also introduce the zeroth moment of cp(r)[= Rp(r)]
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and the second moment of c~(r)[= R~(r)];r = M2 = r(k = 0) = 1 - pRp(k = 0) and

K = (pj2d) Jr2R~(r)dr. We can neglect moments of R~ beyond the zeroth and second

for our purposes here and write

Rp(k) = -Kk2 + Rp(k = 0) + R~(k) - R~(k = 0) (12)

which, used in (10), yields

r(k) = Kk2 + M2 + 2P[R~(k = 0) - R~(k)]
(13a)

For K ~ A ~ a-I we can also neglect both K - KA and R~I,L(k = 0) - R~I,L(k) in

the remaining analysis, and write simply [15]

rACk) = Kk2 + MX (13b)

For K ~ A ~ a-I we can prove nMX rv A2 in the reference system [11]. Introducing

rACk) = x::\l(k), ctl(k) can be written in terms of rA[= rA(O)] as

[
C~\.1(k )

]
= ~

[

(1 - 2rA) 1

]zJ (2PA) 1 (1 - 2r A)
(14)

This follows from evaluating the l.h.s. of (9b) with Rij = Rtl, using the fact that

ctl(k) can be approximated here by ctl(O).

The critical behavior of our system is clearly determined by the critical behavior

of the function r( k), which describes the two-particle density-density correlations. The
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evaluation of r( k) in turn requires the evaluation of Rp. To determine the behavior of Rp

as a functional ofthe Pi and hij at and near the critical point, where Pi = Pc and hij = hij,

we can evaluate Rp at pAl and hij = ht in terms of a functional Taylor-series expansion

of Rij about Rtl in the independent function hij expanded about ht. This brings in the

functional derivatives 8Rtl /8h~I' 82Rtl /8h~18h~n' etc., which can be systematically re-

expressed in terms of the functional derivatives 8ct/8Pk = Cijk, 82ct/8pk8pl = Cijkl, etc..

The expansion can be conveniently represented as a sum of graphs with bonds representing

the ht - htl and reference-system hypervertices representing Rtl and the functional

derivatives. We can then relate the expansion of Rp[pAl, ht] to Rp[pC,hij] by means

of a renormalization-group argument. This argument and its conclusion follows closely

the analysis in [11] of a non-ionic one-species system, and a few observatives concerning

the correspondence between quantities appearing here and in that analysis will facilitate

contact with its results.

The function R~(k = 0)- R~(k) appearing in (13) can also be written as c~(k = 0)-

c~( k). In the one-species case with a short-range potential, it is exactly the corresponding

term cL( k = 0) - cL(k) that appears in the expression for the inverse structure factor r( k).

The dependence of R~( k = 0)- R~(k) upon ht - htl, R~l, and the functional derivatives

of R~l in turn correspond to the dependence of cL(k = O)-cL( k) as a functional of hA - hAl,

CAl, and the derivatives of cAl for the one-component non-ionic fluid considered in [11].

The reference-system quantities can be seen to have the same asymptotic behavior in the

two systems, and the crucial question is whether the ht - htl here has the same asymptotic

behavior as the corresponding hA - hAl in the non-ionic case. We can decompose ht - htl
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into the products ct1XA -ct1XA1 and using (14) we see that ct1 = ct1. We can replace ct1

by the constant n -1 in considering Rp[pA1 , ht] through O( A2). So we let ct1 XII.- ct1 XA1 ~

(XII. - XA1)/n. But this is just hA - hAl, as in the non-ionic case. (Only this lowest-order

result in A is needed in our analysis.) The net result of the above observation is that the

analysis of [11] for a non-ionic system can be applied step-by-step to the RPM without

change and with no change in the conclusions. Thus the critical behavior to be expected is

exactly that of the non-ionic one-species fluid (e.g. Argon). This is the conclusion already

reached in ref. [6] and earlier in [7] on the basis of a very similar argument. The primary

difference between that argument and the one given here lies in the representation used

for Rij. In [6], a representation was used that did not lend itself to direct determination

of critical exponents and similar technical features. The representation used here does.

Since they have already appeared in ref. [11], we shall not repeat all the steps in that

determination. Instead we note certain differences in notation between the discussion here

and in ref. [11] to help the reader interested in following the full determination of the

critical behavior given there. First the hand c with which the analysis is begun in [11]

would be denoted ph and pc in the notation used here. The hand c there are then resealed

by a factor K. We have not done that resealing here. The reference-system ph is denoted

bhA there rather than the PAhA1 that would be consistent with our notation here. Finally,

the long-range hA-bonds in [11] should, strictly speaking, be (hA - bhA)-bonds. (The

subtracted bhA term is of short-range and can be completely neglected for r > -\).

We conclude with a final observation concerning the behavior of hp and hq determined

by eq. (9) near but off the critical point (M2 =I 0). For Kr ~ 1 we find hp(r) = (1 -
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M2)x(r)jn (consistent with Argon-like behavior) and hq(r) = M2x(r)jn. Thus the charge-

charge correlation function varies sensitively with M for large r. A more detailed account of

the application of the field-theoretic analysis of [11] to the primitive model is in preparation.
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