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 Abstract

An electric analogue made of Teledelbos paper, dielectric sheets and metal
foil was utilized for the solution of the Fourier equation in two dimensions.

The analogue was used to determine the steé,dy state slug flow wall tem-
perature distributions in the entrance region of ducts having a variety of
noncircular shapes. These temperature distributions sre a limiting case of
turbulent liquid metal duct flow. The boundary condition for the fluid was one
of constant heat input per unit of duct wall ares and the cross sectional shépes
considered were circles, parallel plates, equilatersl triangles, sguares, penta-
gons, hexagons and octagons.

In the case of the parallel plates and circles where analybtic solutions

were gvailable, the experimental results showed sabtisfactory agreement.
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2.
INTRODUCTION

Weight and space limitetions in many present day heat exchangers present
critical problems in the selection of suitable passage shapes and frequently
dictate passages of noncircular cross section. Often the passage lengths are so
| short that the temperature and velocity profiles are not fully developed before
the fluid exits from the passage. Thus, for many compact exchangers, the thermal
and hydraulic entrance regién. occuples a major portion of the passage length.
For fully developed turbulent flow of a liquid metal in circular ducts it
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has been found by Lyon(l) 5 Claibomé( and others that the heat transfer

performance may be estimated by an appropriate canbination of the separate
contributions due to molecular conduction and turbulent exchange. Since the

- velocity profile in turbulent flow approximates a slug flow profile, it is
reasoned that the convective heat transfer due to molecular conduction may be
obtained from the energy equation utilizing the actual boundary conditions but
assuming a constant velocity distribuﬁion., The application of this approach to
noncircular duct heat transfer was treated by Hartnett and Irvine(s)‘

The above authors in the same paper also discussed the variocus boundary
conditions which may be encountered in noncircular duct heat transfer. In
particular they pointed out that if the heat flux is specified, the peripheral
wall temperature distribution is of greatest interest since structural consid-
erations noma:liy d.i;*:‘ba'ba a maximum possible operating temperature. Thus, the
wall temperasture dia‘&ribution predicted by the slug flow analysis may be taken
a8 a limiting case in turbulent flow. Any turbulent contribution will have &

mitigating effect on the slug flow temperature distribution.
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The purpose of the present paper is to provide these slug flow tempera-
ture distributions in the entrance region of ducts having a variety of cross

sectional shapes. For design purposes these distributions represent extreme

cases but should be useful since their utilization will produce conservative
designs, w}hich approach true design conditions at low Reynolds numbers in
turbulent flow.

It is also of interest to note that the steady state slug flow convection
problem is the same as the problem of unsteady state heat conduction in a two
dimensional solid with the same cross sectionsl shape and the same boundary
conditions. The solutions reported here for all of the shapes except the

parallel plates and the circles have not been available before.

Governing Bquations and Basis for Electrical Analogy

Consider the entrance region of a duct with a constant cross sectional
shape as shown in Figure 1. A fluid enters the duct at a constant temper-
ature T o and flows through the duct with a constant velocity w. The
coordinate system is selected so that the z axis pierces the centroid of
"bhe‘ duct's cross section and the origin is at the ductfs emtrance. For
cdnstant fluid properties, incompressible flow, negligible viscous energy
dissipation and axial heat conduction, the steady energy equation can be

written as
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where n is the direction perpendicular to the duct’s surface and (g =
0(x, y) is the inside surface of the duct. If Equation (1) and its boundary

conditions are made dimensionless by selecting the following variables:

e = o Zs= Z

hg /& &, RePr

X=x , T=y , N=n ,

& A 4,
Equation (1) becomes
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and boundary conditions (2) and (3) become
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m E on z E (5)

o (X, ¥, 0) =0, (6)

whereZ = 2, (X, Y) is the dimesnionless inside surface of the duct.
The bulk temperature of the fluid is found by performing an energy

balance on an increment of fluid

P
ar, = & 4. (7
wAJoc
Integrating from Tb = Ta’ z =0 to Tb =Ty 2z =2 yields
Tb Z
d'Ib =
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or T, = T, + hq_w . (9)




Making this equation dimensionless gives

g =Za

b (10)

Now consider the electrical médel described by Fa,‘ct(b’) vhich is composed of
a thin dielectric sheet sandwiched between an electrically conducting resistance
sheet and & sheet of metal foil as shown in Figure 2. The model boundary is the
curveg* =c— % (x*, y*) which has the same shape as the duct cross sectiong™ (x,¥).«
The coordinate system (x*, y¥) is oriented so that the origin is at the centroid
of the curve ¢;* and the (x*, y*) plane is in the plane of the model. An electric
current is allowed to flow into the model at the curveo™ * and the circuit is
cémpleted by gounding the metal foil. If the resistivity of the resistance sheet
and the thickness of the dielectric are uniform over the model, the governing
differential equation is

Fr, P -RC ;E.
e 'ay_,@ ot o (1)

If the electrical current flowing into the model is constant per unit

length ofia— * after a certain time t = 0 and if the entire model is at a
uniform voltage E, until t = O the boundary conditions of equation (11) are

-BE = _Riw = COZlB'h» on g *’

on® (12)
E(x*, y*, 0) = E, = const., (13)

where n* is the direction perpendicular to the boundaryes— ¥. Now if these

equations are normalized by selected the following dimensionless variables:

= E- EO; z* - L)
ox  Lidfm - a¥Re
X* = x*, T o= g%, N 2 ook,
¥ ¥ ¥
dh dh
Equation (11) becomes
“sPo% + 2%k - ¥
3 3 (1k)
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and boundary conditions (12) and (13) becoume

do*  _ 1
& = F ML (15)

0% (X*, Y*, 0) =0 (16)
where Z * & T% (X%, Y#) is the dimensionless expression for curve ( *.
The bulk voltage E, of the electrical model may be found by perfortﬁing

an energy balance on the model.

B, = ;;;;; dt. (17)

Integrating from E o to Eb and from time zero to t glves

Ey t 1 P¥
[oa

Eo (18)
or b
Brlo L
cag (19)
or in dimensionless form
* . Z¥,
o% -z (20)

Comparing Equation (4) and its boundary conditions / Equations (5) and
(6)_] with Equation (lljb) and its boundary conditions [ Equations (15) and (16)/
it is seen that the two systems of equations are idemtical in form so that the
solution of one system is the solution of the other. The @ons{zant heat inmput
boundary condition is replaced by & comstant current input in the electric
model. This is the basis of the present study.

Experimental Procedure

The apparatus consists of the compomnents shown in Figure 3. In order to
approximate a constant electrical eurrent flow inte the model at the boundary,
it was necessary to divide the current input into a finite number of constant

current inputs along the boundary. The method which gave the most satisfactory




Te
results is illustrated in Pigure L.

Type L Teledeltos paper which had a resistivity of about 1,400 chms per
square was selected as the resistance sheet., The resisﬁiviﬁy of this paper was
linear within 2 percent in any particular direction but the resistivity across
the sheet was approximately 10 percent greater than the resistivity along the
sheet. In order to maeke the resistivi‘t;‘y of the models more nearly uwniform in
ell directions the models were made of two layers of resistance paper cut so
that the direction across the sheet on one half of the model corresponded to
the direction along the sheet ¢n the other half., With the coodueting sides
of the paper touching, the resistivity of the models was spproximately 700
chms per square.

In order to increasé the capacitance of the model, sheets of dielectric
and metal foil were placed on each side of the resistance model as shown in
Figure 4. This made the capactiance of the model spproximately 1,000 pfd.
per square inch.

Rather than measure all the parameters required to evaluate the dimension-
less voltage ©* and the dimensionless time Z¥, an auxiliary model, as shown
in Figure 4, was constructed from resistance paper immedistely mdjacent to
that from vwhich the primsry model was cut. Here again the auxilisry model
was cubt from two pieces of resistance peper oriented at right angles to each
other.

By analysis it is found that the voltage measured at the tabs of the
auxiliary model is

Bx = b iR

Another helpful measurement can be made on the model itself. The slope

of voltage vs. time curve approaches & consbant value as t increases. By

BRAKY
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Applying this information to the dimensionless variables yields

ox . E-E, . E-E
L i Rag Epuxdt (22)
and
7% = + = £ .. dE |
%@BC hi Rax dtl t>>0 = % . dE
Eauxd’ﬁ dt] t>7o

(23)
Therefore, it is seen that 0¥ and Z¥ can be determined from measurements of E o’

E, t, @ By, and aE/dt.

The model holder, which is shown in Figure 3, was comstructed so that it
shielded the model and input resistors from stray electrical effects without
creating excessive stray capacitance. The rubber diaphragm presses the model and
auxiliary model together with a uniform force of about seven pounds per square inch
when the pressure reservoir is pressurized by use of a bicycle pump. The cover
shield has 40 3/16 inch dimmeter holes drilled along its base so that the base of

each input resistor is accessible to the probe from the oseilloscope. A shielded

lead was attached to the bus bar and exited thrcﬁgh the end of the cover shield.
The lead is three inches long and terminstes with & banena plug whiech is inserted
into the 600 chm 55 volt output socket of the square wave generator. Greater
details on the preparation of the model and the technique of data tsking are to
(5)

be found in a thesis study by Pearson

Comparison of Anaslogue Solutions with

Analytical Solutions

Analytical solutions for slug flow wall tempersture distributions in cirecular
tubes and between parallel plates with constant wall heat flux may be cbtained
from unsteady convection solutions presented by Siegel(6> . Transforming these

solutions into the dimensionless variables selected in this investigation yields

22
Oy = Z+ 1= 1 160772
B 2 2 T

ns 1l n (21")
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for parallel plates and

L hB%Z
e, =2 1 -1 =
w = — :‘: €
32 E n = 1 ,:Enﬁ A2 BE (25)
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for circular ducts where B, are the positive roots of J‘l (B) = 0.

The dimensionless wall temperature OW has been calculated for various Z

(M) employing up

locations along the tube and parallel plate surfaces by Cess
to 35 térms of the series. These results are shown in Figures 5 and 6 as
solid lines. Experimental data obtained on the appersatus described previously
is also presented in these figures. It 1s seen that the agreement is satis-
factory. |

Solutions for Equilateral Polygons

Using the same experimental techniques, messurements were made on the
other geometries. The data for the equilateral triangle are shown in Figures
7 and 8. Figure 7 illustrates the dimensionless wall temperature variation
at two wall locations as it changes down the duct. Figure 8 gives the peripheral
wall temperature distributions at various distances from the entrance.

The dashed lines on the two figures are the fully-developed solutions as
glven by Clai‘bomecg) o Again the agreement is seen to be satisfactory. It
should be pointed out that Figure 8 is a cross-plot of a series of experimental
curves similar to Figure 7.

Figures 9, 10, 1l and 12 show the wall temperature distributions for
squares, pentagons, hexagons, and octagons respectively. The "dééhed curves
again represent the asymptotic solutions far from the duct entrance. These

asynptotic solutions were obtained from the solution for en n sided equilatersl

polygon,

R 1L I | S

vhich to the authors' knowledge has not been previously published.




10.
Surmery
Entrance wall temperature distributions are presented for a number of

ncncircular ducts. These distributions are limiting cases for the turbulent

flow of a liquid metal in the entrance regions of these ducts. The data were

obtained by an analogue technique which proved to be simple and accurate.
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NCMENCLATURE

-cross secticnal area of duct

-surface area of electrical mcdel

-peceitive roots of Jl(B) =0

-specific heat

-capacitance of model per unit area

-hydraulic diameter of duct

~hydraulic diameter of electrical mcdel

-voltage at any roint cn electrical mcdel

-voltage at tab of auxiliary mcdel

-electrical current flcwing into mcdel per unit length of boundary
-Bessel function of first order

-thermal conductivity

-distance normal to duct wall

-distance normal to electrical mcdel bcundary
-dimensionless distance along normal to duct wall, N = n/dh

-dimensionless distance alcng normal to electrilcal mcdel bcundary,
N¥* = n*/dﬁ('

~-perimeter of duct

~rerimeter cf electrical mcdel

-Prandtl number, Pr = +//q

~heat flux into fluid per unit area of duct wall
~resistivity of resistance sheet in resistance per square
-Reynolds nugmer, Re = Wdh/xi

~time

~-temperature

~-fluid velocity in z directicn




Xy Y52
x¥, y¥
X,Y,Z

X¥*, Y*, Z%

o

e
o%*

F
T
a*
2
2*

Subscripts

-gcoordinate axes in thermal system
-coordinate axes of electrical analogue model

-dimensionless coordinstesof thermal system, X = x/d,, ¥ = y/q,,
7 = z/d.bRePr

~-dimensionless coordinates of electrical analogue model, X¥ = x*/dﬁ’,
T* = y*/af, z* = t/apRC -
-thermal diffusivity o= -BEE

~dimensionless temperature, 8 = (T - TO)/hq,wdh/k

~-dimensionless voltage, 0% = (E - Eo)/ ll-iwdﬁR

-density

-the surface representing the Inside surface of the duct

-the curve respresenting the boundary of the electrical model

~the dimensionless form of the surface ¢

~the dimensionless form of the curve g%

b =bulk or average

W -wall or boundary

o -condition at z = QO or t = O
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Figure 1. Noncirecular duct with arbitrary cross sectional shape
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Figure 2. Resistance-capacitance electric analogue model with same cross
sectional shape as duct
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Figure 3, Basic components of apparatus
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Figure 4. Model and asuxiliary model used in solution of equilateral tri-

angular duct geometry showing how models were constructed and
positioned
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Figure 5. Variation of dimensionless wall temperature for slug flow between
parallel plates with constant heat flux at each plate
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Figure 6. Variation of dimensionless wall temperature for slug flow through
a cilrcular duct with constant heat flux at the wall
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Figure 7. Variation of dimensiomless wall temperature for slug flow through
' an equilateral trisogular duct with constant heat flux at the wall



Figare 8. Distribution of dimensionless wall temperature for slug flow
through an equilateral triangular duct with constant heat flux
at the wall
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Figure 9. Distribution of dimensionless wall temperature for slug flow
through a square duct with constant heat flux at the wall
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Distribution of dimensionless wall temperature for slug flow
through an equilateral pentagonal duct with constant heat flux
at the wall
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Figure 1l. Distribution of dimensionless wall temperature for slug flow
through an equilateral hexagonal duct with constant heat flux
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Figure 12. Distribution of dimensionless wall temperature for slug flow
through an equilsteral octagonal duct with constant heat flux

at the wall



