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Note On the Scalar Spectrum Transported by an
Artificial Turbulent Spectrum

Edward E. O'Brien and Thore Omholt
State University of New York at Stony Brook
Stony Brook, New York

A recent analysis(l) has shown that the evolution of a scalar
correlation in a homogeneous turbulent fluid in the absence of
molecular diffusion can be represented by

£(z,t) = j; £(£0,04(E, /20,0)dx, eh)
~0

i

where f(zr,t) is the correlation at time t and q(;,t/go,o) is the
probability that two fluid particles separated by a vector distance

r, at time zero will be separated by a vector r at time t.

=0
Unfortunately information about q(g,t/;o,o) in realizable

turbulent flows is extremely meagre and certainly there is no in-

formation about the whole range of separatioms r,. Certain attemptscl)(Z)

have been made to use the asymptotic behavior in time of this Lagran-

gian function but in both cases the region near the origin is too

(1D

awkard. Por example Roberts is interested in the small time ap=
proximation when the fluid point can be assumed to move with the
Eulerian velocity at the point over the time of interest. For the

velocity field he made a Gaussian assumption and obtained

q(£,t/fp,0) = p(ry,t) exp - <§(Ep’t)<¥12 + r2%) + B(rO,t)rS%D

Without considering the details of this result it is evident that

q(O,t/ED,O) is in general nonzero for r, # 0., Continuum theory of

sEmmemany
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course rejects such a notion and instead we should demand

Lin  q(r,t/r,,0) = 8(x_,t)
r=>0 -
(2
_and Lim q(g,t/gp,o) = §(x,t)
r0-90

where 8(r,t) is the Dirac delta function. Purther for q(gjt/to,o)

to be a legitimate probability density we require

| atz,t/z,,00dr = 1 (3)
1."0

—~

and J' q(get/{p,O)dr =1
T

To obtain a simply integrable function satisfying conditions
(2) and (3) we add an assumption which, in detail, is unreasonable
but probably not so violent as to compromise the spectral evolution
seriously. Namely we consider g as a function only of the magnitudes
of r and I, - This is evidently not true in general but Batchelor's
quasi asymptotic assumption(l) amounts to something similar after a
time of order (%)%)the Kolmogoroff time scale.

A well behaved function which satisfies all the above condi=-

tions can be written

z
alz,t/r_,0) = _B(t) exp.{Zg(t) - g(t)[ﬂ + Lo (4)
~ "0 (rr m=z Io T

Here we notice a further disadvantage and that is the symmetry

in r and ry a property which we do not anticipate. However, both
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¢ fon)z

Here we notice a further disadvantage and that is the symmetry

in r and r, a property which we do not anticipate. However, both




-3m

,..
&
s R S T

St

the small r behavior and the large r behavior seem to be crudely
correct. Quadratic functions of r would have been preferable but

we were unable to arrive at a simple expression satisfying all the

—-a

necessary conditions. We note in passing that g(t) should be a
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monotonically decreasing function of t which is infinite initially

e

——
e

and zero asymptotically. Furthermore the time scale should be O(%,)

e
o

where X is the turbulence microscale and v’ the root mean square

TR

turbulence velocity. e

Numerical calculation of equation (f) for the cases g(t) = 6,3,1
5 .
r
0

and .001 and for f(rO,O) = e 1" have been carried out with the results

B e —

as graphed in Figure 1.

It has also been establishedc3) that molecular diffusion up to

———

terms 0(t) can be included in the decay evolution and that the

appropriate integral relation with which to replace (1) is, if k is

the diffusion coefficient

fayey = [ [14 2kt72]f(r,O)q(r,t/ro,O)dro (5)
r
)
5
- =
or using f(r,,0) = e and the previous assumptions on ¢ i
£2
5
-]
L 4kt

F(r,t) = J‘ es q(r,t/ro,O) dry + [f%{r,t) + f%(r,t%] By (6)

(4

LR R S Sy =

Thus the first contribution of molecular diffusion can be determined

by examining the second and third term of Equation (6).

In Pigure 2(a & b) plots have been made of the resultant of

—— e @

these two contributions and it is found that, initially at least, |

molecular diffusion tends to reinforce the turbulent diffusion effect

on the scalar spectrum.
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