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Introduction

the control of large complex systems because of

their versatility and accuracy. It is expected
that this trend will continue, and the future develop-
ment of control science will be centered around digital
technology .

In general, a digital computer may serve any or all of
three separate functions in a control system:

(1) Data processing and monitoring, e.g., computation
of system which cannot be directly measured, data
logging, s canning, and supervisory control, etc.;

(2) Direct control or compensation of system dynam-
ics; and

(3) Inplementation of adaptive or learning loop.

Of the three functions mentioned, (1) is simply using
a computer as a computer. The present review is con-
cerned essentially with (2) and (3), in which the com-
puter is used for direct on line control.

D igital computers are finding more and more use in

System Considerations

There are a few unique system considerations in
digital computer control, namely:

1. Data sampling and reconstruction

Since the computer takes its inputs in the form of a
sequence of numbers, the input signal is sampled, nor-
mally at equal intervals. The output from computer is
a sequence of numbers. It must be reconstructed to a
continuous analog signal before it can be applied to the
input of a continuous plant. Normally this is done by a
data hold which holds the signal for one sampling
period.

2 Time Sharing

Quite often a large number of independent systems
are controlled by a single digital computer on a time
sharing basis. It can be done in two ways:

(i) The computer is assigned to each controlled sys-
tem at some fixed instants in tum. Sufficient time for
computation must be allowed to each system, and the
sanpling time is unnecessarily large.

(i) The computation is done continuously, and the

c.ornputed results are stored and sampled at preassigned
times. There is no waste of computer time, however,
there is an extra delay in the sampled output from the
computer,

(iii) The computer is assigned to each controlled
system in turn. There is no waste of computer time,
and only a minimum of computer delay. However, the
sampling periods for each system becomes random and
fluctuable.

3. Quantizing error in computations and in analog-to-
digital conversion.

The quantizing error is significant when there is not
a sufficient number of significant figures. To estimate
its effect, one may regard each place where roundoff
occurs as a element of unity gain with an additive
noise of mean square value

2

q
n(t) = =
) 12

where g is the value represented by a change of one in
the lowest digit. The equation is valid if the system is
sufficiently exercised so that the average change in
successive samples is many times g. Otherwise, non-
linear oscillations may occur, and the amplitude of os-
cillation may reach a few times ¢ [14], [155], [156].

From the given system considerations, it readily is
seen that the quantization error is negligible when a
general purpose computer is used, and the problem of
time sharing is basically an engineering design problem
once the basic problem of discrete control is solved.
The major problem in digital computer control is that
both the measured data and computer output are sam-
pled. 1t is referred to in the literature as sampled-data
system, or discrete (time) control system.

The development of discrete control theory can be
divided into three stages. In the first stage, methods
are developed which treat some aspects of a discrete
system as that of a continuous system. In the second
stage, discrete control technology is dev-eloped parallel
with that of continuous control. In the third stage, com-
puter control moves ahead of continuous. control3 not
only in theory but also in doing many th}ngs which a
continuous control has no possibility of doing.
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Mathematical
Reconstruction

Representation of Sampling and Data

The first important development is the z-transform
method developed independently by Barker, Ragazzini,
and Zadeh, which makes it possible to analyze the ef-
fect produced by discrete or sampled signal on continu-
ous systems using a transform method which is a slight
modification of thé Laplace transform method and can
be used in conjunction with the Laplace transform [4],
[122].

A sampled-signal r*(¢) of the continuous signal (¢) is
represented as:

() = Z HnT)8( — nT) = r(t) Z 8t —nT). (1)

It is noted that the sequence of numbers r(n7T) is not
a signal because it cannot be applied to a continuous

system to produce any meaningful result, but 7*(¢) is a

signal in the given sense, For instance, if r*(t) is ap-
plied to a circuit with an impulse response h(z):
hty=1  0<tST

(2)
=0 t<0,t>T.

The outpur is a stepwise signal m(z) = r(nT), nT <t <
n+ DT.

The effect of sampling can be visualized by perform-
ing a Laplace transform on r*(t). Since

- _ __l_ = inWet
Z 8t nT)_T Z el"%s (3)
n=0o00 N= =00
where ws =2 7/T.
1 =
R* =L {r* = —inWgt
(s) fr(2)} 7 Z L {r@)e st}
nem (4)
LT R s moy
=7 s +jnog).

In (4), R(s) is the Laplace transform of .r(¢). Equa-
tion (4) shows that one effect of sampling is to create
many side bands which are exact duplicates of the spec-
trum of 7(¢) but are shifted along the frequency axis by
multiples of ws.

The result gives some insight on the required sam-
pling rate for any given r(t). In an overly simplified
case, r(t) is strictly band-limired: RGw) =0, for all
02wp I wg> 20p the sidebands are completely
separated from the main spectrum, and r(¢) can be re-

covered from r*(t) by filtering out the sidebands. The
condition ws > 2wy is the same as

1
—->2
T 7o

(5)
where fp = wp/2n.  That (5) is the necessary and suf-
ficient condition for errorless reconstruction of r(t) from
r*{t) is known as Shannon’s sampling theorem [130],

In general, a signal r(t) is not strictly band-limited.
The sampling rate wg is usually selected so that only a

—“

negligible amount of power |j

. es outside the frequenc
range 0 — ws/2 radians. y

Linear Avutonomous Systems

It is obvious. from (4) that each pole s, in R(s) cor
responds to infinitely many poles i, R¥(s) at s, + g,
. —1,0,1,2 «..00. The task of using LaplacC
transform to study sampled systems is  formidabl,
However, if one substitutes the peyw variable z =¢Tj
R*(s), each pole s, in R(s) becomes 2 single pole z =
e*1’ in the new function R*, In zetransform Literature,
this new function is denoted as R(z), It is worthy of
note that R(z) is not the same function R(s) as is i
lustrated by the following example:

r(t) = e~ %t

N ==—=00 ...

R(s) =

s +a

ﬁ&):}:e"MT8ﬁ—nﬂ

n
R*(s) = ~anT _—nT 1

;e < Szl—e_'aTe'ST
R(z) = 1

1- e—aTz—x

For a continuous system to be stable, all the poles of
the system function F(s) are located in the LHP (lef
half plane). In a sampled-system, the entire s-plane is
mapped into a strip of width w; in the complex plane of
F*(s), and the LHP is mapped into a half strip, which
is, in turn, mapped into a unit circle in the =-plage.

The unique correspondence between the IL.HP of F(s)
and unit circle of F(z) makes it possible to modify con
ventional techniques for analysis and design of cor
tinuous systems, such as root locus method, polar plo,
Bode plot, Routh-Hurwitz criterion, and Ny quist crite
rion, to do the same for sampled systems [80], [81],
[83], [84], [85], [96], [97], [108]. A further step is
represented by development of techniques -which apply
only to sampled systems: studies of the basic limits
tions of closed-loop sampled-systems and design fora
specified performance within these limitations, systems
which are error free (at sampling instants), and ripple
free (errorless at all times) within a few sampliyg
periods after the application of a deterministic input,
and the introduction of a staleness factor to slow dow
the system response so that saturation will not becone
a serious problem [10], [26], [64], [6s],[125].

Consider a feedback system with the sampled value
e*(t) of the system error e(t) as an input to the computer
and the computer output m*(t) is fed to a data hold ele-
ment. The output of the data hold element is the inpl?r
of the controlled plant. A plant output controlled var-
able c(t) is subtracted from the reference -walue r(t) ?f
the controlled variable to obtain e(t). The systen is
assumed to be linear with plant transfer function Gyls)
and hold circuit H(s), and the computer is represented
by the pulse transfer function D(z). Let G (=) =HG(2)
The system transfer function K(z) is then
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_‘C_(f_) _ D(z) G(z)

R(z) 1+D(z)G)’ ©)

K(z) =

It is shown by Bergen and Ragazzini [107] that for
D(z) to be realizable, F(z) must contain the same delay
25 G(z), and all the zeros of G(z) outside the unit circle
as its zeros., To be more precise, let O(z) denote a
function of which the reciprocal 1/Q(z) is analytic for
all ]Z‘> 1. If

G(z)=="" IT (1 = 2:z™) Q(z) %)

where |A;| > 1, and none of A; is a pole of Q(z), then for
a realizable stable closed-loop system K(z) is neces-
sarily of the form

K@) ==z"" I (1~ \z™)F(z) (8)

where F(z) is analytic for [z 2 1.

The basic ideas of error-free and ripple-free systems
are as follows: Let r(t) denote a deterministic input
function. If r(t) is a polynomial of ¢ of the k-th degree,
R(z) has an (k + 1)-th order pole at z = 1. Since

E(z) = [1 = K(2)] R(z) )]

one can obtain an error-free system by selecting a K(z)
which satisfies both (8) and (10)

1 -K(z)= (1 -z 1+ P(z) (10)

1

where P(z) is a polynomial in 27°. From (9) and (10),
one sees that E(z) is also a polynomial in z™*, and con-
sequently e(®T)=0 for any n higher than the order of
E{z) in =1,

To obtain a ripple-free design, one needs only to
modify (8) so that the set {A;} include all zeros of G(z)
instead of only the zeros outside the unit circle. The
modified (8) and (10) specify a ripple-free design.

If one chooses P(z) to be a polynomial of minimum
order among the ones which satisfy (8) and (10) simul-
taneously, the system is called a prototype system.
Prototype systems have minimum settling time in which
the error is reduced to zero. However, it is not always
the most desirable because it usually has high over-
shoots and also large values for m*(t). To overcome
these difficulties, a higher-order polynomial is selected
as P(z), and the extra coefficients are used to minimize
the overshoot or m*(¢) or both [26], [125].

There are various extensions of the basic theory:
(1) multi-rate systems where the computer output sam-
ples are more frequent than its input, so that the hold
circuit delay can be reduced [72], [73], [74]; (2) modi-
fied z-transform, which allows the ripple between

sampling instants to be determined mathematically so

that it can be taken into consideration in system de-
sign (861, [90], [94], [125], [139]; (3) the extension of
Viener’s technique of optimum filtering to sampled
systems [47], [48]; and (4) statistical design techniques
for minimizing the mean square error for systems with
random  imputs, or minimizing the integral value of a
quadratic cost function for systems with deterministic
inputs (23], [24), [26], [141]).” In both cases, the aver-

aging can be over sampled errors only or over errors at
allltimes, and the minimization is carrjed out under
various constraints: plant input saturation
condition of Eq. (8), etc. A noteworthy point is that
whi.le the modified z-transform is very useful in com-
puting error in between sampling, it is not the only
method by which one can design a system with some
control over the error at all times. The technique for
analyzing multi-rate systems can be used to determine
the error at a number of subintervals. A ripple-free de-
31gn results in a system with no error at all after an
initial period, and a least mean square error design re-
sults in a system with least mean Square error averag-
ing over all times.

, and the

Linear Time Yarying Systems

One advantage of the z-transform method is its sim-
plicity. Most problems can be solved analytically, and
the resulting D(z) is realizable as a recurrence relatjon
which takes very few operations and very little com-
puter memory. Its major use, however, is limited to
linear, autonomous systems. For nonlinear or time
varying systems, the method becomes cumbersome and
difficult to work with. An age-old concept, which is at
least as old as Newtonian mechanics, becomes the
basic tool of analysis. The state of a dynamical sys-
tem is represented completely by a state vector x =
(%, %;...%,) in the sense that:

1. x as a function of time describes the motion of the
system;

2. The future motion of the system depends only on
the present value of x and the input variable # from now
on, and is independent of past history.

The dynamics of a continuous system is represented
by

dx

—:i—t— = C(X, u, t). (11)

The dynamics of a discrete system is represented by
x(t+ T)=f(x(2), u(t), ) t=0,T,2T....(12)

If a continuous system is sampled, the sampled x(#)
obviously satisfies an equation of the form (12), and
f is the solution of (11) at z+ T later with the initial
value x(#). As an example, let

folx, u, t)=Fx+Bu (13)

where F and B are constant matrices, and z () is a con-
stant for nT <t <(n+ 1)T, then

[ (@), u(t), )= eFTx()+ F7(eFT = 1)Bu(n).  (14)

For linear time-varying systems with a quadratic cost
function, Kalman worked out what is now called Kalman
Filter and a duality principle for optimum filtering and
control [67], [68]. This principle was later extended by
other investigators to various applications: [22, 3{1, 57,
82, 140]. The random process to be estimated is de-

scribed by

X _ F(t)x+w. (15)
dt
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Measurements y(¢;) are made at random instants £;

¥ (e H(t;) () + v(t;). (16)
The best estimate of x is given as X:
dx —
d—’ti - F()%+ Z K () Ly () -
H@) % (t;=))8 - t;).  (17)

Equation (17) has the following meaning:

In between measurements, X follows the same dy-
namics as x is (15) without the noise term. If the
measured y(¢;) differs from its expected value y(¢;) =
H(t)% (t;—)a step correction equal to K(t;:)[y(@;) =5 ,)]
is made on the estimated X at t;. The error matrix ¢ =
(% = %)(x - ?)T satisfies the differential equation

¢ =Fp+ $F + ¢y~
: D ¢HT HBHT + ¢, Hpd (e~ t). (18)
i

The matrix ¢ is discontinuous at t;, and its value im-
mediately before the discontinuity (¢ (¢;-)) is used in
the last term, of (18). The solution of (18) is in the
form of recurrence relations which can be readily pro-
grammed on a computer.
K(t;) is given as
K(t;) = ¢ (=) BT (8) [H (2) (1) HT (2) +
é, (D7 (19)
For optimum control of a dynamic system described by
dx

— =Fx+Lu+w

dt (20)

under the criterion

1 (f2, T
]='2’f (' px+u" Qu)dt+
ty

x7 (2;) R(t,) £(t,) = minimum  (21)

the cor .ol law is

u(t) ==~C(t) x(2) (22)

where
C)=Q7' (M L(HR® (23)
i-‘f:-:RF_ FTR—p+ RLQ"LTR. (24)

Note that R(t) can be obtained by solving (24) back-
wards with the final condition R(t,). If x(#) is not
measurable, and the best estimate x () is used in (22),
it is proved to be still the optimum control law. Equa-
tions (18) and (24) are readily solved on a computer but
quite impossible to solve analytically. Consequently,
the gain matrices K and C must be obtained from a
computer. Optimum filtering and control systems are
readily realized on a digital computer and are very use-
ful, and they cannot be realized by any other means.

If a continuously measured signal z(t) also is avail-
_ able, it can be used fo improve the system petformance,
as shown in reference [30].

The correction gain matrix’

Nonlinear Discrete Systems

The stability of a nonlinear discrete system can be
readily studied by the second method of Lyapunov [561,
[66], [100]. Consider the system described by (12)-
The system is assumed to be autonomous and there is a
control law which gives # as a function of the state
variable «x:

u(t) — U(x(t)). (25)
The motion of the closed loop ‘system is described by
x(t+ T)=[f(x(2), Ux(2)) = g(x (). (26)

Equation (26) defines g(x). The function g(x) is as-
sumed to be continuous in x. A point %, is said to be
an equilibrium point if .
27
Lyapunov’s theorem tan be stated in many ways. One

of the simplest is as follows:
If there exists a function V (x) such that

%o = g (%)-

V() >0 if x+#x, (28)
=0 if x=x,

V(se) =00 (29)

V(g(x)) LV (x) (30)

the system is stable about x,. If the equality sign ir
(29) is satisfied only by x = x,, then the system is as-
ymptotically stable about x,. :

Lyapunov’s method can be used not only for stability
analysis, but also for system design. The problem be:
comes the choice of a control law U(x) such that (30
is satisfied for some V(x) which satisfies (28) and (29).

Optimization of nonlinear discrete systems can be
achieved either by Bellman’s dynamic programming {71
(8], [140] or a discrete version of Pontryagin’s maxi
mum principle. As dynamic programming is a suitable
topic for a separate review article, the present reviev
will be limited to the discrete maximum principle [26]
[27], [29], [69], (121]. A general formulation of th
problem is as follows:

Consider the dynamical system as described in (12
with an additional component x,, and f, satisfying a
equation of the same form. The problem is to select
sequence u(t) to transfer x from some initial valu
£, at t, to a final value &, at ¢, (or a final set) and ¢
minimize x,(f,) among all sequences which transfers
from &, to £,. A necessary condition for z(#) to E
optimal is the existence of an adjoint function
(o, Yy...¥,) which satisfies (31) and some boundar
conditions (or transversality conditions) at ¢, and ¢

OH W, x, u, £)

Y (1) = i=0,1...n (31
6 xi
and that the Hamiltonian function
i=n .
HOp, %, )= ) i+ Dfi(x 0, 1) (3

i=0

is either a local maximum or stationary point for su
ficiently small variation of f due toallowed change in
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[f the range of the function f is convex, then the given
condition can be strengthened to require that z maxi-
nizes H (¥, x, u, t) at every £ [58]. If the state variable
1 is restricted to & certain region X, then for the part of
the trajectory lying on the boundary of X, (31) is modi-
fied to

2 x) u) t)
Ui (2) = %"—— CMni(x),i=0,1,n (33)

where £(2) > O, and 7(x) is the normal of X pointing
outward from -x 29]. Similar conditions also are ob-
tained for more complex boundaries of X. For linear
systems with convex allowed regions X and U, the
necessary condition (32) is also sufficient for optimal
control [31].

While Lyapunov’s method and-discrete maximum
principle do not give a complete solution of the design
poblem of computer controlled nonlinear systems, they
ate very useful concepts in aiding the design processes.

Adaptive and Learning Systems

Adaptive and learning controllers are used when cer-
tain aspects of the controlled system are not known or
are changing with time, and the control law is auto-
matically modified to adapt to the unknown or changing
situation.

The division line between an adaptive and a learning
system is quite ambiguous. Perhaps one way to dis-

tinguish these two types of systems is that adaptive -

systems are the ones which have fixed simple adaptive
strategy, and learning systems place greater emphasis
on search, pattern recognition, storage, and inference
(26], [28], [144].

Adaptive systems are usually of the following types:
(1) measurement and estimation of the controlled plant
characteristics and adjusting the controller accord-
ingly [63]; (2) forcing the controlled plant to conform to
agiven model [26], [28]; (3) using a dimensionless con-
tol law and adjusting the scale factors automatically [2];
(4) adjusting for the improvement of certain performance
index by hill-climbing technique [42], [25], [62]; and
(5) adjusting for certain specified values for a number
of performance parameters [3], [25], [62]. Theoretically,
the first type should give best results but it is also the
most difficult to implement. The second type gives
tolerable performance but it is also the fastest in re-
sponding to a change in plant characteristics. The
third type gives best performance wherever it can be
applied, but its application is limited. The last two
types are comparatively simple to implement.

The controller to an adaptive learning system may
represent a threshold logic with a bang-bang output,
and the learning logic may represent a *teacher’’ which
generates a signal to be compared. If the two signals
ae identical, the threshold logic is left undisturbed.
Otherwise, it is adjusted [15], [112]. Alternatively, the
“teacher’’ may evaluate the result, and punishes the
conroller if it failed its mission [157].

In learning systems of a different type, the learning
logic may represent hill-climbing search technique,
either of the single peak [71] or a multiple peak type
7], (78], It may include a categorizer and a storage

element. The categorizer determines the control situa-

tio.n from a set of observable parameters,
' h . - setting for a certain situa-
z;;ns;;;e:i;lles fc;lr active use, it is also improved at
1€ by the learning process [59], [6o].
) One .poss1ble way of modeling the learning process
itself is to regard it as a probabilistic automata. A
probab{lfs.nc automata is a Markov chain with transition
probabilities depefldm‘g on the inpue [126]. Using such
models,ithe effectiveness of the learning processes can
be studied [70]. Two excellent papers on learning con-
trol systems have recently been published by Sklansky
[132] and Tou [144]. The reader is referred to these
papers for a detailed account.

In summary, the digital computer greatly multiplies
the adaptive and learning capabilities of control sys=
tems. With the rapid development of high speed com-
puters, the day soon may come that any engineering
procedure of measurement and design which can be
written into an algorithm can be used as part of an on-
line adaptive or learning system. In such a system, the
control law is always the best within limits of engi-
neering know-how and the limited on-line as well as
prior-test knowledge about the system.

A basic limitation is that in writing the algorithm,
the engineer has to foresee all possible developments,
and specifies the immediate as well as learning re-
sponse. Is there a way of constructing a learning sys-
tem which programs itself by interacting with the en-
vironment and generates its own algorithm in a way
which cannot be foreseen by the engineer? Lerner,
Vapnik, and Chervonenkis proposed an evolutionary
principle as the basis for the synthesis of such a learn-
ing system [104]. The design starts from a small
initial device which is capable of developing its own
structure through interaction with the environment. It
is not clear how the authors propose to accomplish
this. One thing seems certain; if a complex system is
to grow out of elementary electronic cells, or building
blocks, by itself, the most likely candidates f.or Fhe
building blocks are **and,” ‘*or,”’ *“‘not’’ logical circuits.

and the best
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